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Mapping the Spatial Distribution 
and Characteristics of Lineaments 
Using Fractal and Multifractal 
Models: A Case Study from 
Northeastern Yunnan Province, 
China
Chunzhong Ni, Shitao Zhang, Zhong Chen, Yongfeng Yan & Yujian Li

This study describes the fractal dimensions of the spatial distributions of lineaments as an index of 
the complexity of faults, and the results could provide new insights into the migration of ore-bearing 
fluid. The Segment Tracing Algorithm method is employed to extract the lineaments in northeast 
Yunnan Province from a remote sensing image. Box-counting fractal and multifractal models are used 
to analyze the fractal and multifractal spatial distribution characteristics of the linear structures. The 
different directions of the linear structure fractal dimensions are similar in the study area. The fractal 
dimensions of all lineaments, northeast trending lineaments and northwest trending lineaments are 
1.98, 1.94 and 1.95, respectively. The dimensions of four large ore deposit fields, Kuangshanchang, 
Qilinchang, Maozu, and Lemachang, are 1.93, 1.92, 1.95, and 1.93, respectively. The fractal dimensions 
of these four fields are greater than those of the South China lineaments. The super-large and large ore 
deposits are consistent with fractal dimensions with high values. The scale index and the singular index 
show nonlinear relationships with any real number, and the fractal dimension spectrum has a unimodal 
curve. This study provides a useful reference for deposit exploration in areas with topographies similar 
to that in northeastern Yunnan.

A variety of methods are used to explore metal deposits, including geological mapping, geophysics, geochemistry, 
remote sensing geology, and tectonogeochemistry1–7. Tectonogeochemistry is a discipline used to describe the 
relationships among tectonic movement, evolution, and geochemical phenomena. Studies of faults (structures) 
represent an important focus of geochemistry studies, and these structures have been the subject of considerable 
research8–11.

Extensive faults are observed in the crust and develop when a rock or rock mass has experienced a significant 
displacement along the rupture surface. In the landform, large faults often form rifts and cliffs. Faults represent 
the connecting channel between the deep ore-forming substance and the ore body, and the spatial position of a 
fault can guide predictions of the ore body location. Researchers have studied the characteristics of faults using 
different methods. Fractal geometry is useful for studying fault systems, and the fractal dimensions of faults are 
widely used. Faults with high fractal dimensions are usually associated with mineral or hydrocarbon deposits12. 
Fractal geometry is used to analyze the relationship between the spatial distribution of fault systems and the 
distribution of oil in the southern part of the South China Sea13. The fractal dimensions of faults are also used to 
estimate the location of deposits and concluded that the known mineral deposits are located in high-value fractal 
dimension areas14. However, using faults for mineral exploration requires field measurements, which present high 
workforce and resource costs. Moreover, reliable data for specific types of terrain are difficult to obtain, and field 
measurements are often subjective. Therefore, an alternative method for mineral exploration is required.
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Lineaments are straight lines or approximately linear landforms that are distributed along the surface of the 
earth, and their presence can be inferred indirectly from their influence on topography and magmatic activ-
ity. Lineaments are closely related to unexposed faults15. Most large faults are directly interpreted from linea-
ments observed in remote sensing images, and this method is efficient and limits anthropogenic interference. At 
present, many scholars have used these advantages associated with lineaments to elaborate on the relationship 
between lineaments and mineral exploration. Many hydrothermal ore deposits display a spatial relationship with 
large-scale lineaments and crustal discontinuities16, 17. The roles of two major crustal lineaments can be deter-
mined based on the formation of different types of ore deposits18. The regional lineaments of Iran have been iden-
tified using geographic information system (GIS) software to explore metallic ore deposits16. Many hydrothermal 
ore deposits have been found to display a spatial relationship with large-scale lineaments and crustal discontinui-
ties17. The occurrence of banded iron formations in the Ogbomoso area of southwestern Nigeria was investigated 
using lineaments obtained from high-resolution aerial photos19. The potential trends of ores in Finland were 
analyzed using lineament data20. The prominent orientations of 206 fracture lineaments in the Ikom-Mamfe 
Basin of Nigeria were analyzed, and sphalerite, pyrite, and amethyst were found in the vein lineament21. Regions 
with high fractal dimensions represent zones with high probabilities of having well-connected faults and fluid 
pathways22. However, the current research on the relationship between lineaments and deposits is spatially qual-
itative. Current methods are unable to provide accurate quantitative forecasts of the spatial locations of mineral 
deposits and the size of ore bodies according to the spatial distribution characteristics of the lineament. Therefore, 
additional systematic research is required.

The northeastern region of Yunnan Province consists of two prefecture-level cities, Qujing and Zhaotong, 
and lies approximately 250 km away from Kunming, the capital city. This region is characterized by rough terrain 
and presents an altitude difference of 2500 m between the highest and the lowest points. Because of the complex 
topography of this region, the spatial distribution of Pb and Zn deposits is complex. Using the northeastern 
region of Yunnan Province as an example, this study applied the fractal dimensions and spatial distributions 
of lineaments as an index of the complexity of faults to identify an efficient and straightforward approach for 
predicting the migration of ore-bearing fluid. Therefore, this study used fractal and multifractal models and 
calculated the lineament fractal dimensions. A dimension contour map and trend surface contour map of the 
lineaments were drawn. Afterward, the lineament fractal dimension values and the discovered mineral deposits 
in the investigated region were compared.

Results and Discussion
Fractal dimensions of lineament patterns. The mapped lineaments in the study area were extracted 
using the segment tracing algorithm (STA) method and Landsat-7 ETM satellite images of the study area23, 24.

The number of cells N(r) occupied by lineaments was counted in the raster map (Table 1). The values of D 
for all lineaments, NW-trending lineaments, and NE-trending lineaments were 1.98, 1.95, and 1.94, respectively, 
and the corresponding coefficients were 1, 0.999, and 0.999, respectively (Fig. 1). The results between r and N(r) 
exhibit a high correlation. The spatial distributions of lineaments in the study area are statistically similar. The 
zones with high indices of fractal dimensions are mainly located near Kuangshanchang, Qilingchang, Maozu 
and Lemachang. The fractal dimensions of the spatial distributions of lineaments in the four Pb-Zn deposits are 
1.93 (Kuangshanchang), 1.92 (Qilingchang), 1.95 (Maozu) and 1.93 (Lemachang) (Table 2). The four known ore 
deposits in the study area are located in zones with high fractal dimensions. The value of D for the map of all 
lineaments and the value of D for the four ore deposits are greater than the fractal dimension values of the linea-
ments in the Shuiyanba W-Sn ore field14. The fractal dimension values of the lineaments in the Dexing porphyry 
copper ore field and the Gaolong gold deposit are 1.60 and 1.66, respectively (Table 1). The fractal dimensions of 
the study area indicate that the faults have a more complex structure and stronger activity than those of the other 
three areas.

To further characterize the dimensional distribution of the lineaments in northeast Yunnan, the fractal 
dimensions of the lineaments in the digital image were calculated in 10 × 10 km2 grid cells in the study area using 
the box-counting fractal model. The 10 × 10 km2 grid cell size was selected for the extracted lineaments map 
according to the image scale (Fig. 2). The box sizes used for measuring the fractal dimensions in each 10 × 1 km2 
cell were 10, 5, 2.5, and 1.25 km. The analysis of the fractal dimension of each cell suggests that higher numbers 
and densities of lineaments correspond to higher fractal dimensions (Fig. 3). The calculated fractal dimensions of 
cells containing faults were then interpolated to obtain a contour map of the fractal dimensions (Fig. 4).

The contour map of the fractal dimensions of the study area shows that the fractal dimension of lineaments 
is closely related to the number of lineaments. Lineaments with high D values (D > 1.70) mainly occur in the 

All NE-trending NW-trending

Scale 
(km)

Grid 
number

Scale 
(km)

Grid 
number

Scale 
(km)

Grid 
number

5 420 5 385 5 392

6 293 6 277 6 280

10 108 10 107 10 106

15 48 15 48 15 48

30 12 30 12 30 12

Table 1. Results of the fractal statistics.
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NW-trending belt, with an average width of 10 km from Qilinchang to Maozu. The low-value area (D < 1.00) is 
primarily distributed in the northeast region of the study area, where deposits seldom occur. In addition, the area 
with high fractal dimensions is more conducive to mineralization based on the contour map.

Lineament fractal dimension trends. The trend analysis shows that the zones with high fractal dimen-
sions are well correlated with the deep faults in the contour maps of the fractal dimensions, indicating the 
potential existence of a deep fault that controls the development of the rock mass and ore-forming fluid migra-
tion (Fig. 5). The super-large and large deposits, such as the Qilinchang, Liujiagou, Yinchanggou, Lemachang, 
Luohong, Xiaohe, and Maozu deposits, are mainly located in the high fractal dimension area, which is near the 
NW-trending portion of the study area.

The high-step tendency maps of the fractal dimensions of the lineaments show that the zones with high indi-
ces exhibit NW and NS orientations, especially in the 6-step tendency map (Fig. 6). Few lineaments with nearly 
NE orientations are observed, which indicates that NW-trending lineaments are more complex and vigorous than 
those with other orientations.

Multifractal characteristics. To further describe the characteristics of lineaments in the investigated area, 
multifractal models are applied to the complexity of lineaments.

For the multifractal modeling of the spatial distribution of faults, a log–log plot of εx ( )q  and ε is obtained with 
straight lines for small ε (Fig. 7A). Values of τ q( ) were estimated from those straight lines using least squares fit-
ting with a standard error of less than 0.05 and an R2 value of greater than 0.99 (Fig. 7B). The singularity exponent 
α q( ) was then derived by the central numerical differentiation of τ q( ) (Fig. 7C and D). Finally, the multifractal 
spectrum αf ( ) was calculated from a Legendre transform (Fig. 7E).

In Fig. 7C and D, α −f q( )  and α −q q( )  do not exhibit simple linear relationships. The fractal dimension 
spectrum displays a curved distribution in Fig. 6E, which shows that the distribution of lineaments in the study 
area is multifractal and can be used to guide fluid migration and ore body prediction.

Conclusions
The lineaments in the northeastern region of Yunnan Province were extracted from images using the STA 
method, and both the fractal and multifractal features were used to map the spatial distribution and charac-
teristics of the lineaments in the study area. Many scholars have conducted fractal geometry research on faults, 
although few researchers have considered lineaments. Because of the close relationship between lineaments and 
faults, the spatial distributions of lineaments and mineral deposits were analyzed using fractal theory in this 
paper. This method is beneficial for preinvestigations of minerals in dangerous and execrable areas, and it pro-
vides a cost-effective and rapid method for mineral exploration.

The results show that the fractal dimensions of lineaments are directly related to the degree of development 
of fault structures and the spatial distribution of ore bodies. The lineaments in the four large deposits are fractal, 
and the fractal structure exhibits statistical self-similarity. The fractal dimensions of the four super-large ore 
deposits were high and suggest that a high fractal dimension corresponds to the occurrence of mineralization. 
The lineament fractal dimension contour map and trend surface contour map show that the linear structures of 

Figure 1. Log-log plots of cell size r versus the number of cells N(r) occupied by (A) all faults, (B) NE-trending 
faults, and (C) NW-trending faults.

Area Fractal dimension Data source

All lineaments 1.98 This study

The NW lineaments 1.95 This study

The NE lineaments 1.94 This study

Kuangshanchang Pb-Zn field 1.93 This study

Qilingchang Pb-Zn field 1.92 This study

Maozu Pb-Zn field 1.95 This study

Lemachang Pb-Zn field 1.93 This study

Shuiyanba W-Sn ore field 1.35 Liao et al. (2012)

Dexing porphyry copper ore field 1.60 Jin et al. (1998)

Gaolong gold deposit 1.66 Yang et al. (2005)

Table 2. Fractal characteristics of 1225 lineaments in the study area and other areas.
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the lineaments in the area are NW-trending and NS-trending; moreover, the ore bodies that have been identified 
in this region occur along these fractal dimensions in high-value areas. The multifractal charts illustrate that the 
local lineaments obey a multifractal distribution, which may lead to the migration of ore fluid with multifractal 
characteristics; therefore, the results can be used as an index for ore body prediction.

The method presented in this study is efficient and allows for the automation of lineament extraction, which 
can reduce the associated error margins.

Methods
Geological setting. The Pb-Zn metallogenic region in northeastern Yunnan Province (center coordinates: 
27 degrees north latitude and 103 degrees east longitude) is located in a passive continental margin of the Yangtze 
subplate. Multiphase tectonic and intrusive activities have generated unique Ge, Pb, and Zn concentrations in the 
area and formed the large Ge, Ag, Pb, Zn deposits.

Three faults are located within the metallogenic area of the province: the NS-trending crust-cutting deep 
fault of Xiaojiang, the NE-trending Shizong-Mile fault, and the NW-trending Kangding-Yiliang-Shuicheng fault. 
The Kangding-Yiliang-Shuicheng fault is located in the northwest part of the area and consists of a series of 
northwest-oriented fractures and fold structures. These northwest tectonic belts that stretch hundreds of kilom-
eters are major ore-control structures and display wide distributions of Pb-Zn deposits and mineral points. The 
nearly NS orientation of the Maoping-Qujing-Zhaotong conceals fault located in the center of the area and is also 
an important ore-controlling structure. There are also many NW orientated secondary faults and folds stretching 
for several kilometers, such as the Kuangshanchang-Luohong-Maozu fault and the Yinchang-Wuxingchang fault 
(fold), which are composed of a series of northwest fractures and folds. Many Pb-Zn deposits (points) are distrib-
uted along these tectonic belts.

Figure 2. Lineaments extracted from remote sensing images of the study area (plotted with MapGIS 6.5, based 
on the Landsat-7 ETM satellite image of the study area, http://www.gscloud.cn/sources/list_dataset/241?cdataid
=263&pdataid=10&datatype=L7slc-off#dlv=Wzg4LFswLDEwLDEsMF0sW1siZGF0YWRhdGUiLDBdXSxb
XSw5OV0%3D).
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The extrusive rock in the study area contains mid-subsiliceous rocks of the Mesoproterozoic Kunyang Group, 
Sinian volcanic tuff and Permian Emeishan basalt. Emeishan basalt is the main magmatic rock type (Fig. 8)25, and 
the Emeishan basalt extension is consistent with a series of striking thrusts.

Background theories. Box-counting fractal model. Many methods are used to calculate fracture fractal 
dimensions, such as circle covering, length-frequency statistics, sliding windows and box dimensions. One of the 
most commonly used methods is the box dimension method26–29.

When all of the extracted lineaments in the study area are identified in a raster map, statistical analyses of the 
fracture information are conducted using the initial cells with a side length L. Using a small square grid with a side 
length r equal to L/2n (where n is an integer), the fracture trace number N r( ) contained in the corresponding scale 
grid is obtained. When r is small enough, the required minimum number of cells between N r( ) and r satisfy the 
following formula:

∝ −N r kr( ) (1)D

where D is a box-counting fractal dimension from 0 to 2 in the two-dimensional map, k is a constant, r is a meas-
ure of unit size, N r( ) is the cumulative number of cells containing lineaments, D is a box-counting fractal dimen-
sion and ∝ represents a proportionality. By plotting −r N rlg lg ( ) on a graph in the coordinate system, a 
straight-line regression is obtained by least-squares fitting and the absolute value of the regression coefficient 
from the fractal dimension values of D. The determination coefficient R2 can be obtained simultaneously. R2 val-
ues closer to 1 indicate a better degree of fit and a greater conformance of the fractal graphics to the scale relation-
ship in equation (1).

Multifractal models. To further describe the characteristics of lineaments in the study area, multifractal models 
are applied to the complexity of lineaments. A box-counting fractal model is constructed by creating a square grid 
with a defined side length in the lineament raster map. When a lineament is located in the corresponding grid, the 
grid will be recorded. Thus, only grids that contain lineaments are involved in the calculation of the fractal 

Figure 3. Estimates of the fractal dimensions of the spatial distributions of faults in each 10 × 10 km2 cell in 
the study area (plotted with MapGIS 6.5, based on the Landsat-7 ETM satellite image of the study area and the 
current experiment).
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dimension, and the fractal dimension is not influenced by the number of lineaments in the grid. Multifractal 
models can describe the number of lineaments in each scale grid, and the scale index and the fractal dimension 
index represent a continuous change. When the lineament number in each grid is calculated, a log–log plot of the 
lineament number and the corresponding grid side length is produced with straight lines. Then, the mass expo-
nent can be deduced by least squares fitting. Finally, the multifractal characteristics of lineaments can be eluci-
dated based on the line shape and the multifractal spectrum. Evertsz and Mandelbrot argued that fractal analyses 
should be applied to the collection of objects and multifractal analyses should be applied to the measurement of 
objects30. Fractal sets can be measured by determining their presence or absence in collections of cells created by 
the partitioning of k-dimensional space Rk (k = 1, 2, or 3)31. This method assumes that µ L( ) represents the meas-
urement Rk in the set L. In this article, L is the linear structure and µ ⁎L( )  is the number of the linear structure. To 
study the multifractal properties of a linear structure, each fault map is converted into separate raster maps with 
different spatial resolutions ε. The number of lineaments in cell i with side lengths ε is µ ε( )i . The partition function 
can be then defined as follows:

∑ε µ=
ε

ε

=
xq( )

(2)i

N

i
q

1

( )
( )

where εN( ) is the total number of unit cells of size ε and q is any real number. If µ ε( ) satisfies the multifractal 
model, then the partition function εx ( )q  and the size ε satisfy a power-law relationship.

ε ε= τx ( ) (3)q
q( )

Figure 4. Contour map of the fractal dimension of the lineaments in the study area (plotted with MapGIS 6.5, 
based on the Landsat-7 ETM satellite image of the study area and the current experiment).
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where τ q( ) is the mass exponent of order q. If the lineaments meet the multifractal assumption, then a series of 
straight lines occur on the ε ε−x loglog ( )q  graph.

Multiple fractal dimension values D q( ) can be calculated using τ q( ):

τ= −D q q( )/( 1) (4)q

If r is smaller, then self-similarity can be described as follows:

= αu r r( ) (5)

where α is a singular exponent. All of the cells with the same α compose a fractal set of f(α). In addition, α q( ) is a 
function of q and α equals α q( ) for multifractals with self-similarity. Formula (6) can then be obtained from (3) 
and (5)30.

α τ
=

∂
∂

q q
q

( ) ( )
(6)

The value of α q( ) is the same for all q in a single fractal, whereas for multiple fractals, the fractal dimension 
spectrum function f q( ) has the following form:

α τ= −f q q q q( ) ( ) ( ) (7)

where α q( ) is a decreasing function of q and f(α) is a convex function of α. The ranges of these two functions and 
the curvature of function τ q( ) indicate the degree of multifractality27.

Figure 5. Two-step tendency map of the fractal dimensions of the lineaments in the study area (plotted with 
MapGIS 6.5, based on the Landsat-7 ETM satellite image of the study area and the current experiment).
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Figure 6. Six-step tendency map of the fractal dimensions of the lineaments in the study area (plotted with 
MapGIS 6.5, based on the Landsat-7 ETM satellite image of the study area and the current experiment).

Figure 7. Results of the multifractal analysis: (A) log-log plots of χ ε( )q  versus ε; (B) estimates of τ q( ), including 
the slopes of the straight lines in A; (C) singularity α q( ) estimated from (B) using the central differentiation 
method; (D) multifractal spectrum αf ( ) estimated from τ q( ), α q( ), and q; and (E) plots of the multifractal 
spectrum αf ( ) versus α.
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Experimental procedure. The mapped lineaments in the study area (Fig. 2) are extracted using the 
Segment Tracing Algorithm method (STA) from a Landsat-7 ETM satellite image of the study area30, 31. A total 
of 1,463 lineaments were extracted from an ETM+ image covering the Xiaohe-Kuangshanchang region (Fig. 2). 
This image was acquired on February 28, 2003 and presents less than 5.7% cloud cover, and the orbit number is 
p129/r44. The map of the studied lineaments covers approximately 110 km2, and the fractal dimension D in every 
cell is calculated using the box-counting method. The fractal analyses were conducted separately for the map 
that includes all of the lineaments and the maps of the NW and NE-trending lineaments. Each lineament map is 
converted into a separate raster map with spatial resolutions (r) of 5, 6, 10, 15, and 30 km. In each raster map, the 
number of cells N(r) occupied by lineaments is counted. Then, a log-log plot of N(r) versus r for each lineament 
map is constructed. Finally, a fractal dimension contour map and a trend surface contour map are plotted using 
the calculated fractal dimension of each cell.

Verification. Fractal dimensions can reflect the degree of fracture of a rock mass, thereby directly indicat-
ing the migration of ore-bearing fluids according to the available research. Subsequent differentiation can cause 

Figure 8. Distribution of the mineral deposits, Emeishan basalt and the main lineament in the study area 
(plotted with MapGIS 6.5 and Excel, based on the Landsat-7 ETM satellite image of the study area and the 
current experiment).
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ore-bearing fluids to form deposits of different sizes. Therefore, higher fractal dimension values correspond to 
areas that are more conducive to the formation of ore bodies and indicate a higher likelihood of identifying large 
deposits in the area, which increases the prospects for ore exploration. The transition zone from a high fractal 
dimension to a low fractal dimension is often the site where the stress changes rapidly, and small amounts of 
minerals usually accumulate and deposit in these locations. Therefore, medium-sized deposits and small deposits 
within transition zones should be the focus of ore bodies predictions, which is verified by our results because a 
relationship was observed between mineralization points and fractal dimensions.
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