Skip to main content
. 2017 Sep 5;7:10543. doi: 10.1038/s41598-017-09837-3

Table 1.

Methods which used the Intra-patient paradigm.

Work # Classes Feature set Classifier Effectiveness
Cristov & Bortonal, 200433 2 Heartbeat-Intervals, VCG NN Acc = 99%
Özbay et al., 200634 10 Raw-wave MLP, Fuzzy Cluster, FCNN Acc = 99%
Bortolan et al., 200735 2 VCG and Morphological hyperbox + GA Fuzzy Clustering Acc = 99%
Ubeyli, 200736 4 DWT SVM, ECOC Acc = 99%
Yu & Chen, 200712 5 ICA, RR-interval PNN Acc = 99%
Yu & Chen, 200712 6 Wavelet (statistics), RR-interval PNN Acc = 99%
Minhas & Arif, 200837 6 Wavelet, RR-interval, PCA kNN Acc = 99%
Asl et al., 200838 6 HVR, GDA SVM Acc = 100%
Chen et al., 20146 6 RR-intervals SVN, NN Acc = 100%
Mert et al., 201439 6 RR-intervals, HOS, Bagged Decision Tree Acc = 99%
2nd order LPC coeff.
Alickovic & Subasi, 201540 5 autoregressive (AR) modeling SVM, MLP, RBF, kNN Acc = 99%
Li et al., 201741 6 WPD GA-BPNN Acc = 99%

Neural Network (NN); Principal Component Analysis (PCA); Generalized Discriminant Analyses(GDA); Error correcting output codes (ECOC); Independent Component Analysis (ICA); Probabilistic neural Network (PNN); Continues Wavelet Transform (CWT); Discrete Wavelet Transform (DWT); Discrete Cosine Transform (DCT); Higher order statistics (HOS); Linear Discriminants (LD); wavelet packet decomposition (WPD). Abbreviations: Acc: Accuracy.