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Modeling protein quaternary 
structure of homo- and hetero-
oligomers beyond binary 
interactions by homology
Martino Bertoni1,2, Florian Kiefer1,2, Marco Biasini1,2, Lorenza Bordoli1,2 & Torsten Schwede   1,2

Cellular processes often depend on interactions between proteins and the formation of macromolecular 
complexes. The impairment of such interactions can lead to deregulation of pathways resulting in 
disease states, and it is hence crucial to gain insights into the nature of macromolecular assemblies. 
Detailed structural knowledge about complexes and protein-protein interactions is growing, but 
experimentally determined three-dimensional multimeric assemblies are outnumbered by complexes 
supported by non-structural experimental evidence. Here, we aim to fill this gap by modeling 
multimeric structures by homology, only using amino acid sequences to infer the stoichiometry and 
the overall structure of the assembly. We ask which properties of proteins within a family can assist 
in the prediction of correct quaternary structure. Specifically, we introduce a description of protein-
protein interface conservation as a function of evolutionary distance to reduce the noise in deep 
multiple sequence alignments. We also define a distance measure to structurally compare homologous 
multimeric protein complexes. This allows us to hierarchically cluster protein structures and quantify 
the diversity of alternative biological assemblies known today. We find that a combination of 
conservation scores, structural clustering, and classical interface descriptors, can improve the selection 
of homologous protein templates leading to reliable models of protein complexes.

Macromolecular complexes are of central interest in structural biology1–3. Direct physical protein-protein inter-
actions (PPIs), as well as indirect ones, are essential for performing and regulating cellular activities such as sig-
nal transduction, cell-cycle, morphological differentiation, cell motility, transcription and translation. A precise 
description of proteins’ interactions and quaternary structure (QS) is fundamental to gain a detailed molecu-
lar understanding on how these interactions are mediated and regulated. While experimental information on 
interacting partners obtained with high-throughput methods4–6 such as two-hybrid screening (Y2H) or affin-
ity purification of complexes grows with an exponential trend7–10, the number of experimentally determined 
three-dimensional complexes and oligomeric structures is lagging behind. Shedding light on the atomic details of 
such interactions is challenging since the expression of protein complexes is often tightly regulated and obtaining 
sufficient concentrations of intact complexes for structure determination is often not trivial.

Aiming to fill this gap, several computational techniques to model protein interactions have been developed, 
which differ in type and amount of structural information required as starting point. One of the first approaches 
used to model interactions de novo, when structures of the individual components are available, was macromo-
lecular docking. The relative orientation of two proteins is sampled and scored by exploiting e.g. the compo-
nents’ shape11 or physicochemical complementarity12. Recently, amino acid co-evolution analysis (see ref. 13 
for a review) has been successfully applied to identify proximal residues in interfaces14 thus increasing the accu-
racy of the results. Docking approaches are generally more accurate when no significant conformational changes 
are required for interface formation, as documented by the regular CAPRI experiment (Critical Assessment of 
Prediction of Interactions)15. When some experimental details of the interaction are available (e.g. EM density 
maps, crosslinking, SAXS or NMR data, co-evolution analysis, etc.), different “hybrid-modeling” tools can be 
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used (e.g. the Integrative Modeling Platform (IMP)16, the Rosetta Suite17, or HADDOCK18) to apply experimental 
constrains when modeling sizable assemblies.

The number of ways proteins interact in nature is probably limited19, 20, and it has been observed that similar 
binding modes can be identified for almost all known protein-protein interactions21. Furthermore, Honig’s group 
noted that the location of the interface in structural homologs is often conserved22. These observations paved the 
way for homology modeling (aka comparative or template-based modeling) of protein complexes, where unchar-
acterized interactions are modeled using experimental structures of homologous interacting protomers (inter-
ologs) as templates. Approaches based on homology are scalable to full genomes and successfully reduced the gap 
between known interactions and those that are structurally characterized for several practical applications21, 23–25.

While some in silico docking techniques exploit information about the stoichiometry or the symmetry of 
the complex26–29 to predict multimeric assemblies, the majority of docking and homology based approaches are 
focused on dimeric interactions, bypassing higher-order quaternary structures. The importance of prediction 
of complex assemblies has been highlighted by the introduction of quaternary structure prediction assessment 
in the recent CASP XII (Critical Assessment of protein Structure Prediction)30, 31 and the CAMEO (Continuous 
Automated Model Evaluation)32 experiments. In this study, we propose an approach to identify the stoichiom-
etry and overall structure of protein complexes using amino acid sequences as starting point. We focus on effi-
ciently using the information on quaternary structures available in the PDB repository and encoded in multiple 
sequence alignments for extending the scope and automating homology modeling to appropriately address pro-
tein assemblies.

Overall, throughout a given protein family quaternary structure is less conserved than tertiary structure, i.e. 
while the fold of a polypeptide chain remains structurally similar the number of subunits forming the biologically 
relevant quaternary structure can vary significantly33, 34. However, if a specific interaction between two protein 
chains plays a structural or functional role, it is reasonable to expect that residues at the corresponding interface 
are less free to vary hence increasing evolutionary conservation in these regions35, 36. Here, we introduce a refined 
analysis of interface conservation which captures how interface conservation varies as a function of evolutionary 
distance within a protein family. We employ this analysis (which we refer to as Protein-Protein Interaction (PPI) 
fingerprints) for two critical tasks: first, the discrimination of crystal artifacts from biological contacts, which is a 
crucial step in determining the correct quaternary state of crystal structures to be used as templates in homology 
modeling; and second, the evaluation of interface quality in models to assess the confidence in the predicted 
quaternary structure.

In parallel to these evolutionary considerations we also analyze the geometry of oligomers. Even at high 
sequence identity, proteins are often represented in multiple different conformations and quaternary structures 
in the PDB. Hence, selecting correct templates for homology modeling is essential. We define a distance measure 
(QS-score) that quantifies the similarity between interfaces as a function of shared interfacial contacts. QS-score 
thereby discriminates between alternative quaternary structures and binding modes. We use this distance meas-
ure to evaluate the diversity of quaternary conformations represented in experimental structures and for meas-
uring the accuracy of models.

Using a supervised machine learning approach, Support Vector Machines (SVM), we combine interface con-
servation, structural clustering and other template features to rank and automatically select templates that max-
imize the predicted interface quality for a specific protein of interest. Based on this approach we were able to 
assign the correct quaternary structure for the majority of proteins of our data set. Finally, the application of our 
approach is illustrated by the prediction of fructose bisphosphate aldolase (FBA) from Haloferax volcanii, which 
exemplifies the modeling challenges faced when homologs in closely related organisms assume a variety of oli-
gomeric conformations.

Results and Discussion
Interface conservation: PPI fingerprints.  Proteins acquire oligomeric organization for a variety of func-
tional and biophysical advantages: modular elements are less prone to coding errors, oligomeric regulation add an 
additional level of control, large structures are more stable and can perform their function cooperatively37. These 
and other processes are influencing the evolution of proteins’ interface formation34, 38. During evolution, different 
mechanisms can modify a proteins oligomeric state: direct mutations occurring at the subunit interface or indi-
rect mutations allosterically inducing a change in binding modes39. Several groups have analyzed the impact of 
evolutionary pressure on protein-protein interfaces36, 40, 41. These analyses rely on an estimation of conservation 
that is typically derived from a multiple sequence alignment (MSA) of homologous proteins. Residues participat-
ing in interfaces are subject to different evolutionary constraints than residues at the protein surface interacting 
with the solvent, which creates a confounding factor when proteins organized in different quaternary structures 
are included in the same alignment.

We expose this confounding factor in our conservation analysis by expressing the ratio between interface and 
surface residue entropy as a function of evolutionary distance as exemplified in Fig. 1 (see “Conservation Score” 
in Materials and Methods). For example, the fructose bisphosphate aldolase family consists of a mixture of dimers 
and tetramers (blue and green dots in Fig. 1A). The resulting conservation score curves (Fig. 1B) have values 
below zero indicating a higher mutation rate of surface residues compared to those at the interface, confirming 
the interface conservation of the protein family.

We refer to these family specific curves as PPI fingerprints as they capture the impact of evolutionary pressure 
on protein-protein interaction sites. The curves follow a characteristic pattern: when only very similar sequences 
are considered (80–90% sequence identity thresholds) the ratio is close to zero since the low variability in the 
MSA provides little information on the interface conservation. As we lower the inclusion threshold, the indication 
for a conserved interface is stronger and eventually reaches a minimum (at around 60% sequence identity in our 
example). When including remote homologs, the ratio tends back to zero, indicating that the signal is weakened 
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by poorly conserved residues in the interface due to inclusion of proteins with different arrangements. In the 
example shown in Fig. 1, when more remote homologs below 40% sequence identity are included, the dimers’ 
curve has a stronger conservation signal then the tetramers’ one, while including only close homologs (above 
60% sequence identity) the picture changes and the stronger evolutionary support is attributed to the tetramers. 
That is, alternative oligomeric states will have different PPI fingerprints and thus provide additional criterion for 
quaternary structure prediction.

A simple validation for our approach is to check whether PPI fingerprints help to discriminate between crystal 
contacts and biologically relevant protein interactions. Crystal contacts are protein-protein interfaces derived 
from the tight packing of proteins in crystals and should not carry any conservation signal. On the contrary, we 
expect evolutionary pressure to act on biological interfaces to maintain the function of the complex.

We computed the PPI fingerprint curves on a recent manually curated dataset of interactions43. This dataset is 
composed of the two classes of protein contacts: crystal artifacts (82 interfaces), and biological contacts (83 inter-
faces). The dataset was created with stringent crystallographic quality criteria, including only experimentally con-
firmed quaternary structures, and focusing on small interfaces (up to 2000 Å2) where the discrimination is more 
difficult. Our results indicate that PPI fingerprints calculated from the crystal contacts group have a constant 
median around zero, while in the biologically relevant class we clearly observe a significant shift towards negative 
values (Fig. 2). We compared the conservation score distributions for crystal and biological interfaces using the 
Mann-Whitney test: the p-values for distributions between 35–55% inclusion thresholds are significantly lower 
than those obtained using the full MSA, in agreement with the finding by Duarte et al.43.

Interface similarity: QS-score.  In order to measure the structural similarity of protein-protein interfaces, 
several methods have been developed in recent years15, 33, 44–51 (summarized in Supplementary Table S1). Distance 
metrics developed in the context of protein-protein docking are mainly focusing on binary interactions. However, 
decomposing the comparison of assemblies into binary interactions can result in a factorial number of compari-
sons and missing interfaces (e.g. comparing a dimer to a tetramer) remain unaccounted.

For describing the diversity of quaternary structures represented in PDB we have developed QS-score as a 
distance measure, inspired by Q-score44, 45, which overcomes these limitations. QS-score considers the assem-
bly interface as a whole and is suitable for comparing homo- or hetero-oligomers with identical or different 
stoichiometries, alternative relative orientations of chains, and distinct amino acid sequences (i.e. homologous 
complexes). To unequivocally identify the residues of all protein chains in complexes, QS-score first establishes 
a mapping between equivalent polypeptide chains of the compared structures (see “QS-score Algorithm” in 
Materials and Methods). QS-score expresses the fraction of shared interface contacts (residues on different chains 
with a Cβ-Cβ distance < 12 Å) between two assemblies. When the QS-score is close to 1 it indicates that the 
compared interfaces are very similar, so the complexes have equal stoichiometry and a majority of the interfacial 
contacts are identical. On the other end, a QS-score close to 0 indicates a radically diverse quaternary structure, 
so the assemblies may have different stoichiometries and/or may represent alternative binding conformations.

We used QS-score to analyze the structural heterogeneity of all homo- and hetero-oligomeric assemblies 
deposited in the PDB. Sequences were clustered into groups sharing more than 90% sequence identity and for 

Figure 1.  PPI Fingerprint concept. (A) The idealized sequence space of fructose bisphosphate aldolase 
represented as a phylogenetic tree rooted on a specific sequence. In this family of proteins, we observe either 
dimeric (blue) or tetrameric quaternary structures (green). The red concentric circles represent the sequence 
identity thresholds used to calculate the interface conservation score (Cscore). (B) The PPI fingerprint curves of 
several homologs with dimeric (blue) or tetrameric (green) quaternary structures (standard error is used for the 
error area). The MSA is obtained running HHblits42 against the non-redundant (20% sequence identity) NCBI 
database with a threshold of 70% as minimum coverage. Considering the complete MSA (below 20% sequence 
identity threshold) the support for a conserved interface is stronger for dimers, while with more stringent 
threshold (50–60%) the tetrameric option has a stronger conservation signal.
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each sequence cluster we performed structural hierarchical clustering using different QS-score thresholds (see 
“PDB-wide QS clustering” in Material and Methods). Figure 3 shows the fraction of sequence clusters being 
homogeneous (with a single QS cluster) or heterogeneous (with two or more QS clusters). Even at this high 
level of sequence identity, the analysis shows that sequence neighbors do not always exhibit structurally identical 
interfaces. Using a QS-score threshold of 0.5, hence grouping structures having similar interfaces and identical 
stoichiometry, one third of the sequence clusters contain assemblies with interfaces different from each other.

This structural interface diversity between assemblies sharing high sequence identity represents a challenge 
for inferring the quaternary structure by homology considerations. All alternative QS options must be considered 
as potential templates in a protein structure homology modeling approach since a decision based on sequence 
similarity cannot distinguish between different oligomeric conformations. In order to choose the most suitable 
template for modeling, we analyzed several features of the target-template pairs as discussed in the following 
paragraphs.

Figure 2.  PPI fingerprints of the proteins in the Duarte et al. dataset. 83 biological interfaces (bio) are 
shown in blue, 82 crystal contacts (xtal) in grey. We see how the conservation score (y-axis), computed on 
MSAs generated with different sequence identity inclusion thresholds (x-axis), is helping to discriminate 
between crystal contacts and biological relevant interfaces. Using an inclusive MSA (0–25% sequence identity 
thresholds) the two non-normal distributions overlap to a large extent (Mann-Whitney p-values between 
8.12 × 10−7 and 3.82 × 10−8), while in the threshold range between 35–55% they are clearly separable (Mann-
Whitney p-values between 7.47 × 10−11 and 4.56 × 10−13).

Figure 3.  Heterogeneity of quaternary structures available in the Protein Data Bank (PDB). Assemblies from 
the PDB were clustered by sequence identity (90% sequence identity). All the assemblies within one sequence 
cluster were compared using QS-score. The resulting distance matrix was used to perform hierarchical 
clustering using different distance thresholds. With a distance threshold (x-axis) of 0 all assemblies are clustered 
together so that the fraction of sequence clusters (y-axis) having only one QS cluster is 100%. As the threshold 
is increased the structural heterogeneity of the sequence clusters is evident and the fraction of sequence clusters 
having multiple QS clusters (in shades of blue) increases.
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Homology modeling of oligomers.  Here, we aim to extend the classical protein structure homology 
approach, which is typically applied to model single protein chains based on a target-template sequence align-
ment, to a generic quaternary structure modeling method by exploiting structural information available from 
homologous complexes. To identify suitable templates for the target protein(s), we apply the following criteria: 
each target sequence must have at least one homologous chain in the template; different target sequences cannot 
refer to overlapping fragments of the same chain in the template; the heteromeric template must be topologically 
connected, i.e. chains must physically interact to form a complex.

We compiled a dataset (TARGET) of 807 non-redundant proteins with experimentally validated quaternary 
structures (see “TARGET Dataset” in Materials and Methods). This balanced dataset is composed of 362 homo- 
and 445 hetero-oligomers of varying stoichiometries as reported in Fig. 4. For each of the TARGET dataset pro-
teins we performed an extensive template search against the SWISS-MODEL template library52. To avoid bias 
introduced by close variants of the target proteins, we removed target-template pairs having a sequence identity 
higher than 95%. The largest fraction of complexes deposited in the PDB – which as of the time of this analy-
sis contains about 120,000 entries – is composed of homo-oligomers, with more than 40,000 entries, whereas 
hetero-complexes are scarcer, in the order of 14,000 structures. It is hence not surprising that for all homomeric 
targets at least one homologous template could be identified, while for 36% (161) of the heteromeric targets no 
homologous complex was identified.

All potential templates were then used to generate models of the target protein and collected in our MODEL 
dataset (see “MODEL Dataset” in Materials and Methods). Since for each model, the experimental reference 
structure is known, we can directly compare and measure their QS-score to the native structure (i.e. the fraction 
of correctly modeled interface residues). The accuracy of the resulting models is reported in Fig. 5. Models with 
an incorrect stoichiometry have QS-scores consistently below 0.5 while correct stoichiometries distribute pref-
erentially toward high QS-scores values peaking at around 0.7. The number of completely incorrect models with 
very low QS-score is high, emphasizing the importance of ranking the templates and favoring those leading to 
correctly modeled interfaces.

Template ranking by quality prediction.  Machine learning techniques have been frequently adopted 
in the context of quaternary structure prediction and preeminently applied to the problem of discriminating 
crystal vs. biological contacts53–55 and for the prediction of PPI interfaces56. In this study, we employ a supervised 
learning approach using Support Vector Machines (SVM) to predict the expected model-target QS-score given 
a set of template features. SVMs are scalable to large datasets and they can capture non-linear relationships using 
kernel functions.

The complete dataset that will be used for machine learning is composed of more than 20,000 models for a 
total of 645 different complexes. Our aim is to identify which features of the obtained target-template alignment 
would aid in the selection of templates leading to a correct quaternary structure model. For this purpose we 
measure four kinds of properties: (1) sequence properties, (2) MSA properties, (3) QS consensus properties and 
(4) interface composition properties. Sequence properties include sequence identity and similarity (BLOSUM62 

Figure 4.  Stoichiometry of 807 target proteins in the TARGET dataset. Homo-oligomers are represented in 
shades of red, while hetero-oligomers in shades of blue. In shades of gray are the heteromeric targets for which 
no template could be identified. Each wedge of the pie chart is annotated with the fraction of the total dataset for 
the most common stoichiometries.
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based) of the target-template alignment, and an agreement measure of secondary structure and solvent acces-
sibility prediction. These features are computed considering the different structural regions of the template: (i) 
the entire structure, (ii) the template’s interface residues, (iii) the core residues, and (iv) the surface residues. 
The MSA properties are derived from the target’s family multiple sequence alignment. These include average 
profile entropy and the template e-value obtained from the HHblits42 run as well as the PPI fingerprint (see 
above). For the latter, we rely on the template interface fraction that is mapped on the target sequence for which 
we compute the PPI fingerprint curve. We represent the resulting PPI fingerprint curve by the minimum of 
the curve, its area, the absolute maximum, and the conservation score obtained considering the full MSA. To 
derive QS consensus properties, we first cluster templates hierarchically by (i) oligomeric state (i.e. being mono-
mers, homo- or hetero-oligomers), by (ii) stoichiometry and by (iii) geometry using the QS-score measure (see 
“Clustering Homologous Assemblies” in Materials and Methods). The QS consensus properties are then calcu-
lated as a template’s cluster size relative to the total number of homologs considering the different levels (i-iii) of 
clustering. Composition features are defined as in ref. 57 by comparing the relative hydrophobic and hydrophilic 
composition of interface and surface residues. The composition in terms of temperature factors (B-factors) is also 
considered as it was shown to have discriminative power between crystal contacts and biological interfaces58. All 
the different properties are weighted according to the coverage of the target sequence (i.e. the fraction of target 
residues mapped on the template). All features used in this study are explicitly defined in Supplementary Table S2.

Our dataset of models was divided in a train-test set (70%) and a validation set (30%). A 10-fold 
cross-validation in combination with a grid search was performed on the train-test set to fine-tune the SVM 
hyper-parameters and avoid overfitting. The resulting predictors were used to rank templates of the validation 
set. To assess the ability of the predicted QS-score to correctly rank the models we used an evaluation scheme in 
analogy to the one used in CAPRI15: the quality of models with a QS-score below 0.1 is deemed as “incorrect”, 
between 0.1 and 0.3 as “low”, between 0.3 and 0.7 as “medium”, and higher than 0.7 as “high”. For each validation 
target the model generated from the top scoring template, in terms of predicted QS-score, was compared to the 
reference structure and assigned to one of the quality categories.

The results are summarized in Fig. 6 where the SVM-predicted QS-score is compared to other ranking cri-
teria: (i) a physics-based docking score as described in ref. 59, (ii) a co-evolution based score representing the 
agreement between models and GREMLIN60 predicted contacts (see “Co-evolution Agreement” in Material and 
Methods), (iii) a sequence identity criteria that would always rank first the model whose template has the highest 
sequence identity to the target sequence, (iv) the QS-score criteria, that ranks models according to their distance 
from the native structure (i.e. the perfect but hypothetical ranker). Looking at the latter criterion, we observe 
that a considerable fraction of the validation targets can be modeled with high quality (median of 65%). Ranking 
models by docking interaction energy proved unsuccessful, selecting high quality models sporadically (median 
of 25%). Using contact predictions based on co-evolution has been shown to be useful in de novo modelling61 and 
discriminating interacting and non-interacting partners in multimeric complexes14. Here, however, we show that 
it is not providing enough information to choose between alternative quaternary structures (high quality fraction 
median of 30%) within a family of proteins. The naïve idea of selecting the models with highest sequence identity 

Figure 5.  QS-score distribution for all generated models compared to the native structure. For both, model 
with a correct (blue) or incorrect (yellow) stoichiometry, a sizable fraction of models have an interface different 
from the native one as they are based on a template having a different, i.e. incorrect quaternary structure.

http://S2
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provides high quality models in only 39% of the cases. Our SVM prediction approach improves the ranking 
significantly with a median of 52%. This improvement is highlighted by the lower fraction of incorrect models.

To characterize the relative importance of each feature we trained predictors using only single features 
(Supplementary Figure S2). Most of the descriptors based on sequence can correctly rank 45% of the validation 
targets, followed by PPI fingerprint features at 35%. Analyzing the correlation of the features (Supplementary 
Figure S3) it is clear that sequence derived features form a cluster which is not correlated to the PPI finger-
print features. This indicates that PPI fingerprint features are bringing novel information to the predictor. A 
minor optimization of the feature set is possible by selecting only the top performing features with univariate 
linear regression tests. Using the top 25 features gives the best performances in our cross-validation experiment 
(Supplementary Figure S4). Two out of three discarded features are about accessibility agreement (surface, and 
core regions) while the last one is the average profile entropy. The top five features selected are related to interface 
and its conservation: sequence identity, similarity and secondary structure agreement of the aligned interface 
fraction and the PPI fingerprint curve in terms of its area and absolute maximum. This confirms that PPI finger-
print analysis provides valuable information for quaternary conformations prediction.

An additional validation set is provided by the Continuous Automated Model EvaluatiOn performed 
by CAMEO32. The CAMEO server retrieves on a weekly basis the sequences of new PDB entries that will be 
released the following week. The sequences are submitted to several structure prediction servers and, when the 
actual structure is published, the models are evaluated. Not many publicly available servers perform quaternary 
structure prediction. We could analyze the quality of models produced by the classical SWISS-MODEL server52 
and Robetta62. A modified version of the SWISS-MODEL server including the pipeline presented in this study 
(SWISS-MODEL Oligo) was used for a retrospective analysis running the template search on corresponding 
previous releases of the PDB. We compared models produced by these servers from August 2015 to August 2016. 
The predictions of these three servers had a total of 111 common homo-oligomeric targets. The models produced 
by each server are compared to the native structure using QS-score and a structural-similarity based measure, 
TM-score, obtained using MM-align46 after the subunits were correctly mapped and chains renamed. The method 

Figure 6.  Fraction of top scoring models in each quality category using different ranking criteria. The 
evaluation scheme “incorrect” (QS-score < 0.1), “low” (0.1 ≤ QS-score < 0.3), “medium” (0.3 ≤ QS-score < 0.7) 
and “high” (QS-score > 0.7) resembles the scheme used in CAPRI measures. Five ranking criteria are 
considered: a physics-based docking score (Docking Score), the co-evolution predicted contact agreement 
(Co-evolution Agreement), the naïve sequence identity (Seq.Id.), our SVM prediction (Pred. QS-score) and 
the hypothetical “perfect” ranking based on the QS-score distance from the native structure (QS-score). The 
fraction of validation target is computed for the ten different cross-validation iterations.

http://S2
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we propose outperforms the other servers in terms of interface quality (QS-score) and in global structural simi-
larity (TM-score) without being explicitly trained on this last distance measure (Fig. 7). Our approach is also able 
to better detect whether to model an oligomer or a monomer, showing no tendencies to over-predict oligomers 
(Supplementary Table S3).

Application example: modeling of fructose bisphosphate aldolase complexes.  Fructose bisphos-
phate aldolase (FBA) is an enzyme catalyzing a central step in the glycolysis pathway by splitting the hexose ring 
of fructose 1,6-bisphosphate (FBP) into two triose sugars: glyceraldehyde 3-phosphate (GAP) and dihydroxy-
acetone phosphate (DHAP). FBAs are divided into two classes depending on their mechanism of action: class I 
aldolases form reaction intermediates by covalently linking the DHAP to a conserved lysine in the active site; class 
II aldolases instead rely on the presence of a metal cofactor63. The quaternary structure of class I aldolases (found 
mostly in eukaryotes) is homo-tetrameric, while class II aldolases (found in prokaryotes and lower eukaryotes) 
can assemble in different stoichiometries the most common being homo-dimer or homo-tetramer64–66.

We illustrate the application of our approach on the example of a class II FBA from Haloferax volcanii (UniProt 
AC: D4GYE0). No crystal structures of this specific enzyme or of homologs having closely related amino acid 
sequence are available. The result of structural template clustering is reported in Fig. 8A in a decision tree style. 
Sequence identity highlights two clusters of dimeric and tetrameric templates, but does not allow for a finer dif-
ferentiation as all the highlighted templates span the range between 25–35%. A more indicative feature is the PPI 
fingerprint curve for these two groups (Fig. 8B). The dimeric and tetrameric interfaces follow two different pat-
terns. The conservation score obtained using a complete MSA is almost equal for both the dimeric and tetrameric 
options, with tetramers being slightly more conserved. The minimum for both the curves is between 30% and 
40% sequence identity which is the typical distance between most of the FBAs. From this minimum to higher 
sequence identity thresholds the indication for dimeric interface conservation is stronger reaching lower absolute 
values. Even in absence of direct structural evidence, we can thus state that the dimeric interface is more con-
served than the tetrameric one among close homologs of the target protein. The SVM QS-score predictor is able 
to capture the discussed trend and assign a higher score to dimeric templates (predicted QS-score higher than 0.5 
are indicated by the green thread on the decision tree). This protein was indeed proven to be homo-dimeric67 by 
gel filtration chromatography and molecular weight consideration. Notably, no aldolases were included in train-
ing or validation set; nonetheless our predictor is able to generalize on this unseen protein family and correctly 
assigns high predicted QS-scores to dimeric templates. This example illustrates how the quaternary structure of 
proteins can be inferred with high confidence.

Figure 7.  Comparison of model quality for three servers participating in CAMEO. The approach described 
in the current study (SWISS-MODEL Oligo) is compared to the classic SWISS-MODEL and Robetta servers. 
Common set of 111 homo-oligomeric models produced by all servers is compared to the native structure using 
two distance measures: QS-score (representing interface accuracy) and TM-score (representing global fold 
accuracy).

http://S3
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Figure 8.  Quaternary structure analysis of H.volcanii fructose bisphosphate aldolase (FBA). (A) Structural 
clustering tree of H.volcanii FBA homologs with known structure. Each leaf is a template labeled with the 
PDB code and a bar indicating sequence identity and coverage (darker shades of blue refer to higher sequence 
identity). The decision tree follows the described levels of clustering: oligomeric state, stoichiometry (the 
topology of the complexes is also shown), and QS-score clustering. The green thread indicates templates with 
a predicted conserved QS. (B) The PPI fingerprint curves of the dimeric (green) and tetrameric (red) sets (the 
area plot spans between the 25th and 75th percentiles). The dimeric forms of FBA have a stronger interface 
conservation signal with respect to the tetrameric form. This stronger conservation is observable using different 
evolutionary distance thresholds, notably taking into account the entire MSA would not highlight a diverse 
conservation pattern.
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Conclusions
Developing a new protein interface distance measure which considers the entire complex interface allowed us to 
glance at the surprising heterogeneity of the multimeric protein structure space. Aloy et al.33 noted that binary 
domain-domain interactions are structurally conserved above 30–40% sequence identity and Levy et al.34 noted 
that the symmetry of the complexes is almost invariably conserved over 90% sequence identity. In agreement with 
these analyses we observe that the majority of close sequence neighbors retain the same quaternary structure and 
binding mode. Nonetheless, in one third of the cases where multiple different assemblies are observed for similar 
sequences, sequence similarity is not a safe proxy for similar quaternary structure. This highlights the necessity of 
explicitly considering all alternative quaternary structure conformations during the template identification step 
in homology-based modeling approaches.

Our findings on the behavior of interface conservation expressed as a function of evolutionary distance (PPI 
fingerprint) are in agreement with the results obtained by Duarte et al.43 where, for the purpose of discriminating 
crystal contacts and biological contacts, they identify a sequence identity threshold around 50–60%. Using the 
complete profile, however, provides a fine-grained description of protein family interaction landscape. This infor-
mation, orthogonal to interaction energy considerations, helps in the differentiation between biologically relevant 
interactions and crystal contacts. When the PPI fingerprint concept is applied to homology modeling, it provides 
additional criteria to support one quaternary structure hypothesis over another, as illustrated in the FBA example.

Comparative modeling of the complete architecture of homo- and hetero-oligomers starting only from their 
amino acid sequences is feasible and effective. To our knowledge, this is the first attempt to predict protein assem-
blies for a large scale curated dataset taking into account their entire quaternary structure beyond binary inter-
actions. The models produced with the described approach have a high-quality interface in 52% of the cases, 
which is halfway from the sequence identity baseline to the theoretical maximum given the current structural 
information in the PDB. The method we developed is publicly available at http://oligo.swissmodel.expasy.org and 
can aid molecular biologists and biochemists by providing an overview of homologs’ quaternary structural space 
along with the prediction made by our method. We are planning to extend the ranking approach presented here 
with single chain quality estimation in the next release of SWISS-MODEL.

The main limitation of our method is that of relying on available templates of homologous complexes. This is 
most evident in the case of hetero-oligomers where we could not identify templates for 20% of the initial dataset. 
Thanks to the large effort of structural biology, structures of macromolecular complex are continuously unveiled 
at unprecedented levels of detail. This will be reflected on our approach, enabling it to model more and more 
precise protein-protein interfaces and assemblies.

Methods
Conservation score.  Conservation is expressed as Relative Entropy35, 41, 68:

∑=RE p
p
p

log
(1)

c a a
a

ab
2

where pa is the probability of an amino acid a to be in the alignment column c and pab is the background amino 
acid a probability distribution computed over the entire alignment (gaps are excluded).

The Relative Entropy (RE) is computed for each column c of a multiple sequence alignment and normalized in 
the interval [0, 1] with 0 indicating less conserved residues and 1 more conserved residues. The MSA is obtained 
running HHblits42 against the non-redundant (20% sequence identity) NCBI database with a threshold of 70% as 
minimum coverage. The MSA alignment is divided using 20 sequence identity inclusion thresholds (from 0% to 
100% in steps of 5%). The column-wise RE is computed for each alignment.

We define the degree of conservation of an interface with respect to the surface using log-ratio of the average 
entropy of interface residues S i(weighted by relative solvent accessible surface area, rASA) over the average of 
those lying in the rest of the surface S s:
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A negative interface-surface ratio (IS) between interface entropy distribution and surface entropy distribu-
tion indicates that residues placed in the interface are less prone to mutate when compared to surface residues. 
Eventually, the interface-surface ratio is normalized by the number of interfaces involved.

To test the significance of the observed interface conservation we randomly sample “patches” of surface resi-
dues and compute their conservation (excluding the original interface residues). We define an adjacency graph of 
surface residues considering neighboring residues to have at least one atom within N Å apart each other (where N 
is dynamically set in order to obtain a connected graph). A surface residue is randomly picked and neighbors are 
added until the number of residues of the patch equals that of the interface. This process is iterated n times (where 
n is proportional to the original surface size). At each iteration, surface residues not included in the patch are used 
to evaluate the interface-surface ratio, resulting in a distribution X = (x1, …, xn) of ratios. We can estimate the 
P-value of the original interface as:

http://oligo.swissmodel.expasy.org
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where IS is the native interface’s interface-surface ratio and f̂h is a kernel density estimated probability density 
function with a bandwidth parameter h computed using Silverman’s rule of thumb.

Finally the conservation score is:

= −C IS P(1 ) (5)score

where the original interface-surface ratio IS is weighted by the P-value complement. So when an interface is close 
to the random patch distribution the score will tend to 0. The curve is numerically described by four features: i) 
the minimum (lowest value), ii) the absolute maximum (the highest value independently if negative or positive), 
iii) the value of the curve considering the full MSA, and iv) the area of the curve (computed as integral using the 
composite trapezoidal rule).

QS-score Algorithm.  The number of possible mappings between two complexes A and B having a different 
number of subunits is ( )n

n
A

B
 where nA is the number of chains in the larger complex A and nB those of the smaller 

complex B. In the worst case of two equally sized complexes the number of possible mappings is n!. This becomes 
untreatable when comparing big complexes such as viral capsids. However, when symmetry information is avail-
able in the PDB coordinate information or can be deduced from the complex geometry, the problem can be 
reduced to the identification of the mapping between symmetry related groups, which are typically containing a 
number of treatable subunits. To our knowledge, this currently is the only algorithm taking into account the 
problem of chain mapping. The steps performed by the QS-score algorithm are the following:

	 1.	 Polypeptide chains within each complex are grouped by their chemical equivalence (e.g. the two α chains 
in human hemoglobin)

	 2.	 Equivalent entities between the two assemblies to be compared, are identified by global sequence align-
ment (e.g. hemoglobin chains α in two different structures)

	 3.	 Symmetry or pseudo-symmetry of each complex is calculated and chains which can be roto-translated re-
producing the full assembly are grouped in symmetry groups (e.g. in hemoglobin two pairs of α-β chains)

	 4.	 The chain mapping between two symmetry groups in different assemblies is identified by superposition. 
This symmetry group mapping is applied to all symmetry groups.

	 5.	 For each symmetry group of step 3 all possible pairs are considered

	 a.	 A symmetry group pair is used as base to superpose complexes
	 b.	 The lowest global RMSD highlight the correct mapping
	 6.	 Equivalent residues between the assemblies are indexed by sequence alignment.

From the inter-complex chain mapping we can deduce also the inter-complex residue mapping by aligning 
the sequences of each chain in the complexes. Each residue in the first complex that can be mapped to a residue 
in the second complex (and vice-versa) is included the set of “mapped” residues. We consider an interface contact 
to occur when Cβ atoms (Cα for Glycine) of pair of residues belonging to different chains are at most 12 Å apart. 
This definition of contact is inspired by Q-score and it allows us to compare structures not having identical side 
chains. Pairs of contacts (one for oligomer A and one for oligomer B) are defined as “shared” when all residues 
involved are “mapped”. Residue pairs that form contacts but are not “mapped” or that are “mapped” but form 
contacts only in one of the oligomers, are defined as “non-shared”.

QS-score is then defined as follow:
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∑ −
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− −
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where d is the Euclidean Cβ distance between the residues, the second term at the numerator is the relative error 
(considering 12 Å as maximal error) and w the weighting function:
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which expresses the probability of a side-chain interaction given the Cβ distance as derived by Xu et al.44 fitting 
a half-gaussian model to observed sidechain contacts. If oligomer A and oligomer B have only “shared” contacts 
and all the distances are identical, QS-score is 1, indicating identical interfaces. When the distances are not equal, 
the relative error factor will push the QS-score towards 0 proportionally to the difference in the distances. The 
same happens in case of “non-shared” contacts.

Interface definition.  We compute the accessible surface area (ASA) of the monomer and the buried surface 
area (BSA) of the assembly with the Naccess implementation of the Lee-Richards algorithm69. Following the 
definitions of interface core and surface residues in ref. 70, we define surface residues as those having a relative 
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accessibility (rASA) larger than 25% considering the monomer; interface residues are those whose relative buried 
surface area (rBSA) is higher than 25% and that have a rASA below 25% when considering the assembly; the 
remaining residues are considered as protein’s core residues.

PDB-wide QS clustering.  All homo- and hetero-oligomeric structures deposited in the PDB where con-
sidered. Chains consisting of small peptides (below 20 amino acids) or Cα traces were excluded, and in case only 
a single chain remained after filtering, this was also ignored. This resulted in 90,764 assemblies for 63,902 PDB 
entries and 356,585 polypeptide chains. The chain sequences where clustered using CD-HIT71 (90% sequence 
identity). To properly handle heteromeric structures (different chains of a PDB entry may appear in different clus-
ters), a sequence cluster is defined as the set of chain clusters IDs to which each chains of the complex is belong-
ing. This resulted in 24,272 clusters of which 13,896 (57%) included multiple assemblies and were hence further 
analyzed. The assemblies in each sequence cluster were compared using QS-score and the resulting distance 
matrix was used to perform a hierarchical/agglomerative clustering using complete linkage. 491 clusters (3% of 
the total number of clusters) were excluded mostly due to incompatible symmetry groups between the compared 
assemblies which led to an intractable number of possible mappings.

TARGET Dataset.  The homo-oligomer dataset is derived from the PiQSi database72. PiQSi comprises 
~20,000 annotated biological units which we reduced culling the sequences with PISCES73 on a 25% sequence 
identity basis. We visually inspected entries with multiple binding modes to select those which are described 
in the respective paper. For hetero-oligomers we started from the complete list of PDB entries annotated as 
hetero-complexes. As an initial filter we removed complexes which are marked as hetero-oligomers because 
of their interaction with antibodies or short peptides (below 20 amino acids). We filtered out complexes with 
an average per interaction BSA below 250 Å2 and having unconnected components. We then culled the set in 
order to get high quality representatives of unique interactions (with a resolution of at least 3.0 A). To reduce the 
redundancy we clustered the subunits’ sequences by a 30% sequence identity threshold using CD-HIT71 and we 
grouped complexes whose chains belonged to the same set of clusters. We kept only the most inclusive assemblies 
(i.e. sub-complexes were discarded). Finally, we structurally clustered the complexes using CATH74 domains 
annotation retaining only those which had a unique set of domains at the topological level.

MODEL Dataset.  This dataset consists of homology models based on the alignment of the target sequence 
to template structures generated with PROMOD3 (Studer et al., in preparation), a comparative modelling engine 
based on OpenStructure75. The loop candidates are selected with a database approach and are then adapted to 
the environment using CCD76 and a final candidate gets selected using statistical potentials of mean force. The 
sidechain modelling is inspired by SCWRL477. A final energy minimization is performed using the OpenMM 
molecular mechanics library78. Each model is annotated with the QS-score to the native structure and the set of 
features described in the text. To ensure an un-biased learning step, all models are grouped by target. This way, 
during cross-validation, the set of targets can be randomly divided in testing and validation sets avoiding similar 
models of a same target to be used at the same time for testing and validation.

Clustering homologous assemblies.  Several databases45, 47, 79–82 target the problem of grouping similar 
interactions. For example, in the ProtCID47 database interfaces are grouped depending on PFAM domains archi-
tectures. While ProtCID is a great tool to compare interface of homologous proteins found in different crystal 
forms, it accounts only for binary interactions. The first database which specifically addresses entire assemblies 
is 3D Complex79. The classification implemented in 3D Complex is based on the reduced representation of bio-
logical assemblies as graphs and it relies on SCOP domain architecture to define similar interactions. Our aim 
is to cluster homologous assemblies, which are expected to be redundant in terms of domain architecture, but 
which can be diverse from an atomistic point of view. Hence, we defined a hierarchical clustering scheme aware 
of entire complex topology as well as interatomic contacts occurring at the interface. The clustering is based on 
hierarchical levels which represent structural organization of biological complexes. The fraction of templates in 
each cluster (compared to the total number of identified templates) is measured in the consensus features.

The first level describes the nature of the interacting subunits and is characterized by three possible states: 
we distinguish templates composed by a single polypeptide chain, labeled as “mono”; templates composed by 
two or more different chains, labeled as “hetero”; templates with two or more identical chains, labeled as “homo”. 
The second level is based on the stoichiometry of the complex, so the amount of chains with a specific sequence. 
Finally, the last level clusters templates using a greedy hierarchical clustering approach based on QS-score dis-
tance measure.

Co-evolution agreement.  GREMLIN60 was used to predict contacts by co-evolution analysis. We com-
puted a co-evolution score in the form of an agreement score between the predicted inter-chain contacts and the 
models we generated. The co-evolution score is computed as the number of predicted contact found in a model 
(Cβ-Cβ distance < 7 Å, Cα for glycine) over the total number of predicted contacts (maximum 1.5 times the 
length of the target sequence/s). Hence, a co-evolution agreement close to 1 indicates a perfect agreement while 
a value close to 0 indicates that no predicted contacts are found in the model. Following the GREMLIN proto-
col, we were not able to obtain alignments of sufficient depth for every protein sequence in our dataset. Out of a 
total of 818 unique possible binary interactions (362 homomeric, 456 heteromeric) in our dataset, we obtained a 
contact prediction in 549 cases (290 homomeric, 259 heteromeric). While for homomeric targets an inter-chain 
contact prediction is very likely to succeed (99% of the cases), inter-chain contacts prediction were not always 
available for heteromers (34% of the cases). For heteromeric multimers all the pairwise combinations of paired 
alignments were performed as done by Ovchinnikov et al.83.
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Data availability statement.  Data sets generated and analysed during this study are included in this pub-
lished article and its Supplementary Information files. Intermediate data (alignments, models) of current study 
are available from the corresponding author on reasonable request15, 48–51.
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