Skip to main content
Evidence-based Complementary and Alternative Medicine : eCAM logoLink to Evidence-based Complementary and Alternative Medicine : eCAM
. 2017 Aug 21;2017:5748256. doi: 10.1155/2017/5748256

Medicinal Plants for the Treatment of Local Tissue Damage Induced by Snake Venoms: An Overview from Traditional Use to Pharmacological Evidence

Juliana Félix-Silva 1, Arnóbio Antônio Silva-Junior 1, Silvana Maria Zucolotto 2, Matheus de Freitas Fernandes-Pedrosa 1,*
PMCID: PMC5585606  PMID: 28904556

Abstract

Snakebites are a serious problem in public health due to their high morbimortality. Most of snake venoms produce intense local tissue damage, which could lead to temporary or permanent disability in victims. The available specific treatment is the antivenom serum therapy, whose effectiveness is reduced against these effects. Thus, the search for complementary alternatives for snakebite treatment is relevant. There are several reports of the popular use of medicinal plants against snakebites worldwide. In recent years, many studies have been published giving pharmacological evidence of benefits of several vegetal species against local effects induced by a broad range of snake venoms, including inhibitory potential against hyaluronidase, phospholipase, proteolytic, hemorrhagic, myotoxic, and edematogenic activities. In this context, this review aimed to provide an updated overview of medicinal plants used popularly as antiophidic agents and discuss the main species with pharmacological studies supporting the uses, with emphasis on plants inhibiting local effects of snake envenomation. The present review provides an updated scenario and insights into future research aiming at validation of medicinal plants as antiophidic agents and strengthens the potentiality of ethnopharmacology as a tool for design of potent inhibitors and/or development of herbal medicines against venom toxins, especially local tissue damage.

1. Introduction

Snakebites are a serious public health problem in many regions around the world, particularly in Africa, Asia, Latin America, and parts of Oceania [1]. Conservative data indicate that, worldwide, there are between 1.2 and 5.5 million snakebites every year, leading to 25,000 to 125,000 deaths [2]. Despite its significant impact on human health, this condition remains largely neglected by national and international health authorities, funding agencies, pharmaceutical companies, patients' organizations, and health advocacy groups [1]. Thus, snake envenomation is included since 2009 in World Health Organization (WHO) list of Neglected Tropical Diseases (NTDs) [3]. Envenoming and deaths resulting from snakebites are a particularly important public health problem in the rural tropics. Populations in these regions experience high morbidity and mortality because of poor access to health services, which are often suboptimal, as well as other NTDs, which are associated with poverty [3, 4].

Snakes with major clinical importance belong to the families Elapidae (African and Asian cobras, Asian kraits, African mambas, American coral snakes, Australian and New Guinean venomous snakes, and sea snakes) and Viperidae (Old World vipers, American rattlesnakes and pit vipers, and Asian pit vipers) [5]. After production, snake venom is injected in the victim via tubular or channeled fangs [6]. Biochemically, venoms are complex mixtures of pharmacologically active proteins and polypeptides, acting in concert to help in immobilizing the prey [7]. The most common toxins in snake venoms are snake venom metalloproteinases (SVMPs), phospholipases A2 (PLA2s), snake venom serine proteinases (SVSPs), acetylcholinesterase (AChE), L-amino acid oxidases (LAAOs), nucleotidases, and snake venom hyaluronidases (SVHs) [7].

Biological properties of snake venom components are peculiar to each species, but in general, the main clinical effects of snake envenomation are immediate and prominent local tissue damage (including myonecrosis, dermonecrosis, hemorrhage, and edema), coagulation disorders (consumption coagulopathy and spontaneous systemic bleeding), cardiovascular alterations (hypotension, hypovolemic shock, and myocardial damage), renal alterations (which could evolve into acute kidney injure), neurotoxic action (descending paralysis, progressing from ptosis and external ophthalmoplegia to bulbar, respiratory muscle, and total flaccid paralysis), generalized rhabdomyolysis with myoglobinuria, and intravascular haemolysis [5, 8].

The only available specific treatment is the antivenom serum therapy, which consists of a pool of neutralizing immunoglobulins, or immunoglobulin fragments, purified from the plasma of animals hyperimmunized against snake venoms or specific toxins. Its effectiveness consists in its ability to provide to the patient antibodies with a high affinity to snake venom, aiming to eliminate the toxins responsible for toxicity of the envenoming, mitigating the progress of toxic effects induced by snake venom components [9]. However, the antivenom has some limitations, such as poor ability to treat local effects, risk of immunological reactions, high cost, and difficult access in some regions [810]. If antivenom administration is initiated rapidly after envenomation, neutralization of systemic effects is usually achieved successfully; however, neutralization of local tissue damage is more difficult [8]. Furthermore, the availability and accessibility of antivenoms is limited in many regions, such as Sub-Saharan Africa, Asia, and, to a lesser extent, Latin America, which could aggravate even more this picture [1]. Thus, this inability to treat local effects, as well as the increased time between accident and treatment, is the main reason for the temporary or permanent disability observed in many victims, which can lead to serious social, economic, and health negative impacts, given that most victims live in rural areas [3].

In this context, the search for complementary therapies to treat snakebites is relevant and medicinal plants could be highlighted as a rich source of natural inhibitors and pharmacologically active compounds [6, 1113]. There are several reports of the popular use of medicinal plants against snakebites around the world, especially in tropical and subtropical regions such as Asia, Africa, and South America [14, 15]. The rural and tribal people living in remote areas greatly depend on folk medicines for the treatment of bites from any venomous creatures [16]. The use of medicinal plants against snakebites is a historical practice throughout the human history, and this knowledge has been transferred among the rural communities from generation after generation [17]. Nowadays, these herbal antidotes used in folk traditional medicine gained much attention by toxinologists worldwide as a tool for design of potent inhibitors against snake venom toxins. The potential advantages of antiophidic plants are their possible low cost, easy access, stability at room temperature, and ability to neutralize a broad spectrum of toxins, including the local tissue damage [12, 1517].

So, the objective of this review is to provide an updated overview of medicinal plants used popularly as antiophidic and discuss the main species with pharmacological studies supporting the uses, with emphasis on plants inhibiting local effects of snake envenomation, since this is a critical effect of snake venoms that could lead to relevant sequel to victims. A review of the main botanical families popularly used as antiophidic is presented, including the main species and forms of popular use of them. Then, studies supporting their popular use are discussed, as well as the advantages of this kind of approach for treatment of snake venom accident.

2. Methodology

An extensive review of the literature was undertaken in different scientific sources, such as PubMed (https://www.ncbi.nlm.nih.gov/pubmed), Science Direct (http://www.sciencedirect.com/), Scopus (https://www.scopus.com/), Web of Science (http://www.webofknowledge.com/), “Literatura Latino-Americana e do Caribe em Ciências da Saúde” (LILACS) (http://lilacs.bvsalud.org/), Scientific Electronic Library Online (SciELO) (http://www.scielo.org/), Google Scholar (https://scholar.google.com.br/), Cochrane Library (http://www.cochranelibrary.com/), and Centre for Reviews and Dissemination (CRD) (http://www.crd.york.ac.uk/CRDWeb).

The study database included original articles published in peer-reviewed journals, as well as books, thesis, dissertations, patents, and other reports covering antiophidic plants (ethnopharmacological surveys, original articles, or reviews), dated until December 2016. For the online search, where applicable, the following search strategy was employed: (“plant” OR “plants” OR “plant extract” OR “vegetal” OR “vegetal species” OR “vegetal extract” OR “traditional medicine” OR “alternative medicine” OR “complementary therapy” OR “natural medicine” OR “ethnopharmacology” OR “ethnobotany” OR “herbal medicine” OR “herb” OR “herbs” OR “decoction” OR “tea” OR “infusion” OR “macerate”) AND (“snake venom” OR “snake” OR “snakes” OR “snakebite” OR “snakebites” OR “antivenom” OR “antivenoms” OR “anti-venom” OR “anti-venoms” OR “antivenin” OR “antivenins” OR “anti-venin” OR “anti-venins” OR “antiophidian” OR “antiophidic” OR “snake envenomation” OR “antitoxin” OR “antitoxins” OR “snake antidote” OR “snake antidotes” OR “snake venom neutralization” OR “snake venom inhibition” OR “snake toxins inhibition” OR “snake toxins neutralization” OR “viper” OR “viperidae” OR “crotalinae” OR “viperinae” OR “elapidae” OR “pit-viper” OR “bothrops” OR “jararaca” OR “crotalus” OR “micrurus” OR “lachesis” OR “cobra” OR “naja” OR “bitis” OR “vipera” OR “daboia” OR “trimeresus”).

All abstracts and/or full-text data were considered, without language restriction. Then, the publications covering ethnobotanical and/or pharmacological studies of antiophidic plants were selected and carefully analyzed. With the information gathered in these studies, the actual scenario of the use of plants against snake venom was pointed out. Main botanical families used, main countries where antiophidic plants are reported, and mode of use mostly employed in folk medicine were described. Regarding studies of pharmacological evidence, the snake species that were most studied, which plant species were tested and presented positive results, correlating with those species that also presented record of ethnopharmacological use, were also reported.

The accepted botanical name of each medicinal plant listed was confirmed in at least 2 botanical databases among the following ones: Flora do Brasil (http://www.floradobrasil.jbrj.gov.br/), Tropicos (http://www.tropicos.org/), The Plant List (http://www.theplantlist.org/), and NCBI Taxonomy Browser (https://www.ncbi.nlm.nih.gov/taxonomy). In some cases, where the same species was considered as different ones (different synonyms used) in different papers, the accepted name according to the botanical databases mentioned above was used in the present review, bringing the synonym used in the original work between parenthesis.

3. Medicinal Plants as a Popular Source of Antidotes for Snakebites: Traditional Use

According to the literature search performed, a lot of ethnopharmacological studies showing medicinal plants claimed as antiophidic were found. A summary of these vegetal species can be observed in Table 1.

Table 1.

List of medicinal plants used against snakebites.

Plant name Countries Parts used Use Reference(s)
Acanthaceae
Acanthus arboreus Sri Lanka ND I [18]
Andrographis echioides (syn. Indoneesiella echioides) India Shoot ND [19]
Andrographis lineata India Flower, leaf I [20]
Andrographis paniculata India Leaf, whole plant I, E [16, 2026]
Barleria cristata India, Pakistan Leaf, root, seed, whole plant E [17, 19, 25]
Barleria lupulina Sri Lanka ND I [18]
Blechum pyramidatum Nicaragua Leaf, whole plant I [27]
Blepharis maderaspatensis India Leaf I [28]
Clinacanthus nutans India Leaf E [20]
Dicliptera paniculata (syn. Peristrophe paniculata) India Root, whole plant I, E [24, 25]
Fittonia albivenis Peru Aerial parts E [29]
Hygrophila auriculata India, Sri Lanka Seed I [18, 23]
Justicia adhatoda (syn. Adhatoda vasica) India, Pakistan, Sri Lanka Flower, leaf, root I, E [1618, 30]
Justicia calyculata Kenya Aerial parts E [31]
Justicia gendarussa Bangladesh Leaf I [30, 32]
Justicia japonica (syn. Justicia simplex) India Leaf I [23]
Justicia pectoralis Brazil Leaf I [33]
Justicia procumbens Sri Lanka ND E [18]
Justicia secunda # Colombia Flower, leaf, root, whole plant I, E [34, 35]
Rhinacanthus nasutus India Leaf, root I, E [16, 28]
Thunbergia alata Colombia Flower, leaf E [34]
Trichanthera gigantea Colombia Leaf, root E [34]
Acoraceae
Acorus calamus Bangladesh, India, Pakistan, Sri Lanka Rhizome, root I, E [17, 18, 20, 22, 25, 32, 36]
Adoxaceae
Sambucus nigra Spain Flower E [37]
Amaranthaceae
Achyranthes aspera (syn. Achyranthes porphyristachya)# Bangladesh, Colombia, India Fruit, inflorescence, leaf, root, seed, stem, whole plant I, E [17, 20, 22, 23, 25, 28, 30, 32, 35, 3841]
Aerva lanata India, Sri Lanka Rhizome I [18, 20]
Aerva sanguinolenta Bangladesh Leaf ND [30]
Alternanthera albotomentosa Colombia Leaf E [34]
Alternanthera brasiliana Brazil Flower I [33]
Alternanthera sessilis Sri Lanka ND I [18]
Amaranthus blitum India Root I [25]
Amaranthus dubius Colombia Fruit peel, leaf, root, seed E [34]
Amaranthus polygonoides Sri Lanka ND E [18]
Amaranthus spinosus India Leaf, root, stem, whole plant E [17, 19, 32, 42]
Amaranthus viridis Bangladesh, India, Pakistan, Sri Lanka Leaf, stem, whole plant E [17, 18, 30, 42, 43]
Chenopodium album Bangladesh, India, Pakistan Fruit, root, whole plant E [17, 32, 41]
Cyathula tomentosa India Leaf ND [19]
Dysphania ambrosioides (syn. Chenopodium ambrosioides) Colombia Whole plant E [34]
Amaryllidaceae
Allium ascalonicum Sri Lanka ND I [18]
Allium cepa Bangladesh, Colombia, India, Kenya Bulb, latex, leaf E [20, 25, 31, 32, 34, 40]
Allium sativum Colombia, India, Sri Lanka, Spain Bulb, inflorescence, leaf I, E [18, 22, 23, 37, 44]
Ammocharis tinneana Kenya Latex ND [31]
Crinum asiaticum Sri Lanka ND E [18]
Crinum latifolium Sri Lanka ND E [18]
Hymenocallis littoralis Nicaragua Leaf, root I, E [27]
Anacardiaceae
Anacardium occidentale India, Nicaragua Bark, fruit, leaf, root I, E [27, 45]
Buchanania cochinchinensis (syn. Buchanania lanzan) India Bark E [24, 38]
Mangifera indica Bangladesh, Pakistan, Sri Lanka Leaf E [17, 18, 32]
Mangifera minor Papua New Guinea Bark I [46]
Pistacia chinensis Pakistan Gall E [17]
Pistacia chinensis subsp. integerrima India, Pakistan Gall, leaf E [17, 19]
Semecarpus anacardium India Root I [20]
Semecarpus coriacea Sri Lanka ND E [18]
Spondias dulcis Sri Lanka ND E [18]
Spondias mombin Peru Bark ND [29]
Tapirira guianensis Colombia Oil E [34]
Annonaceae
Annona montana # Brazil Leaf I [33, 47]
Annona muricata Brazil Leaf ND [48]
Annona senegalensis Kenya Leaf I, E [31]
Annona squamosa Bangladesh, India Bark, fruit I, E [23, 32]
Polyalthia longifolia Bangladesh Whole plant ND [30]
Uvaria scheffleri Kenya Leaf, root E [31]
Apiaceae
Centella asiatica Sri Lanka ND E [18]
Conium maculatum Spain Leaf E [37]
Coriandrum sativum Sri Lanka ND I [18]
Eryngium bourgatii Spain Aerial parts, root E [37]
Eryngium campestre Spain Aerial parts, root E [37]
Eryngium foetidum Nicaragua, Sri Lanka Leaf I, E [18, 27]
Steganotaenia araliacea Kenya Root E [31]
Trachyspermum ammi Sri Lanka ND I [18]
Trachyspermum roxburghianum Sri Lanka ND I [18]
Apocynaceae
Allamanda cathartica Colombia Aerial parts, branch, leaf, stem I, E [35, 44]
Alstonia scholaris Bangladesh, India, Sri Lanka Bark, flower, latex, leaf, root I, E [18, 19, 32]
Alstonia venenata Sri Lanka ND E [18]
Asclepias curassavica Nicaragua Bark, flower, latex, leaf, root, whole plant I, E [27]
Blepharodon mucronatum Nicaragua Leaf, whole plant I, E [27]
Calotropis acia Sri Lanka ND I, E [18]
Calotropis gigantea Bangladesh, India, Sri Lanka Latex, leaf, root I, E [16, 18, 20, 22, 23, 28, 32, 38, 49]
Calotropis procera Bangladesh, India, Pakistan Flower, latex, leaf, root, shoot I, E [17, 25, 32, 38, 40, 41]
Cascabela thevetia (syn. Thevetia peruviana) Brazil Bark, seed E [50]
Catharanthus roseus Bangladesh, Colombia Flower, leaf I, E [32, 34]
Cerbera floribunda Papua New Guinea Latex E [46]
Cerbera odollam Sri Lanka ND E [18]
Cryptolepis dubia (syn. Cryptolepis buchanani) India, Sri Lanka Root ND [18, 19]
Cynanchum viminale (syn. Sarcostemma viminale) India Whole plant E [38]
Dregea volubilis (syn. Wattakaka volubilis) India, Sri Lanka Root I, E [18, 23]
Echidnopsis dammanniana Ethiopia Stem E [51]
Echites umbellatus Nicaragua Root I [27]
Gymnema sylvestre India Leaf, root I, E [19, 20, 22, 23, 28, 52]
Hemidesmus indicus Bangladesh, India, Sri Lanka Root, whole plant I, E [18, 20, 22, 25, 28, 32, 38]
Holarrhena pubescens (syn. Holarrhena antidysenterica) Bangladesh, India Bark, root, stem I, E [24, 32, 38]
Hoya ovalifolia Sri Lanka ND I [18]
Hunteria zeylanica Sri Lanka ND E [18]
Ichnocarpus frutescens Bangladesh Root I [32]
Nerium oleander (syn. Nerium indicum)# India, Pakistan, Sri Lanka Leaf, root, seed E [17, 18, 20, 28, 41, 53]
Odontadenia puncticulosa Nicaragua Leaf I [27]
Pergularia daemia India, Namibia Leaf I [19, 28, 54]
Rauvolfia serpentina Bangladesh, India, Sri Lanka Flower, leaf, rhizome, root, seed I, E [18, 20, 22, 28, 30, 32]
Rauvolfia tetraphylla (syn. Rauvolfia canescens)# Bangladesh, India Root E [16, 30]
Tabernaemontana dichotoma Sri Lanka ND E [18]
Tabernaemontana divaricata Sri Lanka ND I [18]
Tabernaemontana sananho Peru Leaf E [29]
Tylophora indica Bangladesh, India Leaf I [23, 30, 32]
Tylophora longifolia India Flower, leaf ND [20]
Vincetoxicum hirundinaria India Root ND [19]
Willughbeia edulis Bangladesh Stem E [32]
Wrightia antidysenterica Sri Lanka ND E [18]
Wrightia arborea India Bark ND [19]
Wrightia tinctoria India Leaf ND [38]
Aponogetonaceae
Aponogeton crispus Sri Lanka ND E [18]
Araceae
Alocasia cucullata # Colombia Rhizome, root E [35, 44]
Amorphophallus commutatus India Tuber ND [55]
Amorphophallus paeoniifolius Sri Lanka ND I [18]
Anaphyllum beddomei India Rhizome E [16]
Anthurium marmoratum Colombia Branch, leaf, stem E [35]
Arisaema concinnum India Fruit, tuber ND [19]
Arisaema flavum Pakistan Rhizome ND [17]
Arisaema jacquemontii India, Pakistan Flower, leaf, tuber ND [17, 19, 56]
Arisaema tortuosum India Bulb, tuber I [38, 55]
Caladium bicolor Peru Tuber E [57]
Dieffenbachia longispatha # Colombia Whole plant I, E [35]
Dieffenbachia parlatorei Colombia Root E [44]
Dracontium croatii Colombia Rhizome I, E [35]
Dracontium spruceanum Colombia, Peru Stem, tuber, root E [29, 34, 44, 57]
Dracunculus vulgaris Spain Bulb, flower E [37]
Homalomena aromatica Bangladesh Rhizome E [32]
Homalomena peltata Colombia Leaf E [44]
Homalomena picturata Colombia Leaf E [34]
Lasia spinosa Sri Lanka ND E [18]
Philodendron deltoideum Peru Aerial parts I, E [29]
Philodendron hederaceum Nicaragua Leaf, stem I, E [27]
Philodendron heleniae Colombia Leaf E [44]
Philodendron megalophyllum Brazil Vine I [33]
Philodendron tripartitum Colombia Branch, leaf E [35]
Pothos scandens Sri Lanka ND I [18]
Rhodospatha oblongata Colombia Rhizome E [35]
Sauromatum venosum India, Pakistan Leaf, tuber I, E [17, 38]
Typhonium roxburghii Sri Lanka ND I [18]
Xanthosoma poeppigii Peru Stem E [57]
Araliaceae
Osmoxylon micranthum Papua New Guinea Latex E [46]
Arecaceae
Areca catechu Sri Lanka ND E [18]
Caryota urens Sri Lanka ND I [18]
Cocos nucifera Sri Lanka ND I [18]
Corypha umbraculifera Sri Lanka ND E [18]
Euterpe edulis Brazil Latex E [50]
Euterpe oleracea Brazil Fruit E [33]
Phoenix pusilla Sri Lanka ND I [18]
Syagrus coronata Brazil Bark ND [47]
Aristolochiaceae
Aristolochia birostris Brazil Whole plant I [47]
Aristolochia bracteolata India, Sri Lanka Fruit, leaf, whole plant I, E [18, 23, 38, 55]
Aristolochia clematitis Serbia Rhizome ND [58]
Aristolochia cordiflora Colombia Leaf, stem I, E [34, 44]
Aristolochia grandiflora # Colombia Whole plant I, E [35]
Aristolochia indica Bangladesh, India Leaf, root, whole plant I, E [16, 20, 22, 23, 28, 30, 32]
Aristolochia ovalifolia Mexico Root ND [59]
Aristolochia pilosa # Colombia Root I, E [35]
Aristolochia tagala India Whole plant I, E [16]
Aristolochia trilobata Brazil, Nicaragua Leaf, root, whole plant I, E [27, 50]
Thottea siliquosa India Leaf, root E [16, 26]
Asparagaceae
Asparagus racemosus Bangladesh, Sri Lanka Leaf, root E [18, 30, 32]
Drimia indica (syn. Urginea indica) India Bulb E [25]
Peliosanthes teta Bangladesh Root E [32]
Sansevieria parva Kenya Latex E [31]
Sansevieria roxburghiana India Rhizome I [23]
Sansevieria trifasciata Bangladesh, Colombia Aerial parts, whole plant E [30, 34, 60]
Sansevieria zeylanica Sri Lanka ND E [18]
Aspleniaceae
Asplenium dalhousiae (syn. Ceterach dalhousiae) Pakistan Leaf ND [17]
Asteraceae
Achillea millefolium India Whole plant I [20]
Acmella paniculata (syn. Spilanthes paniculata) Sri Lanka ND I [18]
Adenostemma fosbergii Ecuador Leaf I [61]
Adenostemma lavenia # Colombia Whole plant E [35]
Ageratum conyzoides # Colombia, India, Bangladesh Flower, leaf, root E [19, 24, 32, 34]
Ageratum houstonianum Pakistan Inflorescence, leaf E [17]
Ambrosia peruviana (syn. Ambrosia cumanensis) Colombia Aerial parts, whole plant I, E [34, 44]
Artemisia maritima Pakistan Whole plant E [17]
Artemisia scoparia India, Pakistan Whole plant E [17, 40]
Austroeupatorium inulifolium Colombia Leaf E [34, 44]
Ayapana triplinervis (syn. Eupatorium ayapana, Eupatorium triplinerve) Brazil Leaf I [33, 50]
Baccharis inamoena (syn. Baccharis trinervis) Colombia Aerial parts, whole plant E [34]
Baccharoides anthelmintica (syn. Centratherum anthelminticum) India Seed ND [26]
Bidens biternata India Leaf E [25]
Bidens pilosa Kenya Leaf E [31]
Blumea axillaris Sri Lanka ND I [18]
Blumea brevipes (syn. Laggera brevipes) Kenya Root ND [31]
Calendula officinalis India Flower I [20, 28]
Chromolaena odorata Colombia Whole plant E [34]
Clibadium sylvestre # Colombia Whole plant I, E [35]
Conyza sumatrensis Kenya Leaf I [31]
Cyanthillium cinereum Sri Lanka ND E [18]
Eclipta prostrata (syn. Eclipta alba) Bangladesh, India, Pakistan, Sri Lanka Leaf, whole plant I, E [17, 18, 20, 28, 30, 40]
Elephantopus scaber Sri Lanka ND E [18]
Emilia sonchifolia Bangladesh, Colombia, India, Sri Lanka Leaf, whole plant I, E [16, 18, 30, 34]
Erechtites valerianifolia # Colombia Branch, leaf, stem I, E [35]
Gnaphalium purpureum Sri Lanka ND I, E [18]
Gynura hispida Sri Lanka ND I [18]
Helianthus annuus India Seed E [20]
Inula helenium Serbia Root E [58]
Laggera alata Sri Lanka ND E [18]
Linzia glabra (syn. Vernonia glabra) Kenya Leaf E [31]
Microglossa pyrifolia Kenya Leaf E [31]
Mikania cordata Bangladesh Leaf E [32]
Mikania cordifolia Nicaragua Leaf, stem, whole plant I, E [27]
Mikania guaco # Colombia, Nicaragua Leaf, stem, whole plant I, E [27, 35, 44]
Neurolaena lobata Colombia, Nicaragua Aerial parts, branch, leaf, stem I, E [27, 35, 44]
Pentanema indicum India, Sri Lanka Leaf, root I [18, 23]
Pluchea indica India Flower, seed I, E [20]
Pseudelephantopus spicatus Colombia Whole plant E [44]
Saussurea simpsoniana India Flower ND [19]
Senecio chrysanthemoides Pakistan Whole plant E [17]
Seriphidium brevifolium (syn. Artemisia brevifolia) Pakistan Flower, leaf E [17]
Solanecio mannii Kenya Leaf E [31]
Sphaeranthus africanus Sri Lanka ND I [18]
Sphaeranthus indicus Sri Lanka ND I [18]
Sphagneticola trilobata Nicaragua Flower, leaf, stem, whole plant I [27]
Tagetes minuta Kenya Leaf E [31]
Taraxacum officinale Colombia, Pakistan Leaf, root, whole plant I, E [17, 34]
Tithonia diversifolia Colombia, Kenya Leaf, whole plant I, E [31, 34]
Tricholepis glaberrima India Root ND [19]
Verbesina gigantea Colombia Root, stem I, E [34]
Vernonanthura patens Colombia Whole plant E [34]
Vernonia zeylanicum Sri Lanka ND I, E [18]
Wedelia calendulacea India Leaf I [20]
Wollastonia biflora (syn. Wedelia biflora) Sri Lanka ND E [18]
Xanthium strumarium Pakistan Aerial parts E [17]
Balsaminaceae
Impatiens balsamina Colombia Flower I, E [34]
Begoniaceae
Begonia annulata (syn. Begonia barbata) Bangladesh Leaf, stem E [32]
Berberidaceae
Dysosma pleiantha China, Taiwan Rhizome ND [62]
Betulaceae
Betula alnoides India Bark, leaf ND [19]
Bignoniaceae
Crescentia cujete # Colombia Fruit I [35]
Dolichandra unguis-cati (syn. Macfadyena unguis-cati)# Colombia Whole plant E [35]
Handroanthus barbatus (syn. Tabebuia barbata) Brazil Leaf I [33]
Mansoa alliacea Peru Bark, root I [57]
Oroxylum indicum Bangladesh, Sri Lanka Bark E [18, 32]
Stereospermum chelonoides Sri Lanka ND I [18]
Stereospermum colais Sri Lanka ND E [18]
Tabebuia rosea Colombia Bark I, E [35]
Bixaceae
Bixa orellana Bangladesh, Colombia, Nicaragua Branch, fruit, latex, leaf, root, stem I, E [27, 32]
Cochlospermum vitifolium Colombia Aerial parts E [34]
Boraginaceae
Cordia dichotoma (syn. Cordia obliqua) Pakistan Bark, fruit ND [17]
Cordia spinescens (syn. Varronia spinescens) Colombia Leaf E [34]
Cynoglossum zeylanicum India Root I [63]
Echium vulgare Spain Aerial parts ND [37]
Ehretia microphylla (syn. Ehretia buxifolia) India, Sri Lanka Root I, E [18, 20]
Heliotropium europaeum Pakistan Whole plant E [17]
Heliotropium indicum # Nicaragua Leaf, whole plant I [27]
Tournefortia cuspidata # Colombia Branch, leaf, stem E [35]
Trichodesma indicum Pakistan Leaf, root ND [17]
Trichodesma zeylanicum India Root I, E [20]
Brassicaceae
Brassica juncea Sri Lanka ND E [18]
Brassica rapa (syn. Brassica campestris) India ND E [25]
Lepidium virginicum Colombia Whole plant E [34]
Bromeliaceae
Ananas comosus Nicaragua, Sri Lanka Flower, leaf, root I, E [18, 27]
Bromelia pinguin Nicaragua Leaf I, E [27]
Burseraceae
Boswellia serrata India Bark I [24]
Bursera simaruba Nicaragua Bark, whole plant I [27]
Canarium zeylanicum Sri Lanka ND E [18]
Cactaceae
Opuntia ficus-indica (syn. Opuntia vulgaris) India Root ND [25]
Pereskia bleo # Colombia Leaf, stem E [35]
Calophyllaceae
Calophyllum inophyllum Sri Lanka ND E [18]
Mesua ferrea Sri Lanka ND I, E [18]
Campanulaceae
Hippobroma longiflora Nicaragua Leaf, root, whole plant I, E [27]
Cannabaceae
Cannabis sativa India, Sri Lanka ND I [18, 40]
Cannaceae
Canna indica Sri Lanka ND E [18]
Capparaceae
Capparis decidua Pakistan Flower, shoot E [17]
Capparis moonii Sri Lanka ND I [18]
Capparis roxburghii Sri Lanka ND E [18]
Capparis zeylanica Sri Lanka ND I, E [18]
Carica papaya # India Fruit ND [41]
Crateva adansonii Sri Lanka ND I [18]
Crateva tapia (syn. Crateva benthamii)# Brazil Leaf E [33]
Cynophalla flexuosa (syn. Capparis flexuosa) Brazil Bark I [64]
Caprifoliaceae
Nardostachys jatamansi India Root ND [19]
Valeriana jatamansi Pakistan, Sri Lanka Root I, E [17, 18]
Celastraceae
Cassine glauca India, Sri Lanka Leaf I [18, 19]
Celastrus paniculatus India Bark, root, seed I [19, 38]
Gymnosporia emarginata Sri Lanka ND I [18]
Parnassia nubicola India Tuber ND [19]
Chrysobalanaceae
Parinari capensis Namibia Root ND [65]
Cleomaceae
Cleome gynandra Sri Lanka ND E [18]
Cleome viscosa Sri Lanka ND I [18]
Clusiaceae
Garcinia morella Sri Lanka ND I, E [18]
Garcinia xanthochymus Sri Lanka ND I, E [18]
Colchicaceae
Gloriosa superba India, Pakistan, Sri Lanka Tuber I, E [17, 18, 20, 28, 38, 40]
Combretaceae
Anogeissus latifolia Bangladesh, India Bark, whole plant I, E [25, 30, 38]
Combretum collinum Kenya Root E [31]
Combretum molle Kenya Bark, root I [31]
Getonia floribunda (syn. Calycopteris floribunda) Bangladesh Root E [32]
Terminalia arjuna Bangladesh, India Bark I, E [20, 32]
Terminalia bellirica Sri Lanka ND I [18]
Terminalia chebula Sri Lanka ND I [18]
Commelinaceae
Callisia gracilis Colombia Flower, leaf I, E [34]
Commelina benghalensis India, Sri Lanka Root ND [18, 42]
Connaraceae
Connarus favosus Brazil Bark I [33]
Connarus monocarpus Sri Lanka ND E [18]
Convolvulaceae
Argyreia nervosa (syn. Argyreia speciosa) India Root, seed ND [19]
Argyreia populifolia Sri Lanka ND I [18]
Cuscuta reflexa Sri Lanka ND E [18]
Dichondra repens Kenya Leaf E [31]
Evolvulus alsinoides India, Sri Lanka Root I [18, 23]
Ipomoea alba Sri Lanka ND E [18]
Ipomoea aquatica Bangladesh Leaf, whole plant ND [30]
Ipomoea asarifolia Sri Lanka ND I, E [18]
Ipomoea cairica # Colombia Branch, leaf, stem E [35]
Ipomoea mauritiana Nicaragua Leaf I, E [27]
Ipomoea pes-caprae Nicaragua Leaf, seed I [27]
Ipomoea pes-tigridis India, Sri Lanka Root I, E [18, 19, 24, 39]
Ipomoea setifera Nicaragua Leaf I, E [27]
Ipomoea triloba Sri Lanka ND I [18]
Operculina pteripes Nicaragua Leaf E [27]
Rivea hypocrateriformis India ND I [24]
Cornaceae
Alangium salviifolium India Bark I [20, 23]
Costaceae
Cheilocostus speciosus (syn. Costus speciosus) Bangladesh, India, Sri Lanka Bulb, leaf, stem, root, tuber I, E [18, 19, 32, 55]
Costus guanaiensis # Colombia Stem I, E [35]
Costus lasius Colombia Branch, leaf, stem I, E [35]
Costus lima Colombia Stem E [34]
Crassulaceae
Bryophyllum pinnatum (syn. Kalanchoe pinnata) India Leaf ND [22, 42]
Kalanchoe laciniata (syn. Kalanchoe brasiliensis) Brazil Leaf E [33]
Cucurbitaceae
Benincasa hispida Sri Lanka ND E [18]
Citrullus colocynthis India, Pakistan Fruit, root ND [17, 40, 41]
Coccinia grandis Pakistan, Sri Lanka Root I, E [17, 18]
Corallocarpus epigaeus India Tuber I [38]
Cucumis melo Sri Lanka ND I [18]
Cucurbita pepo Spain Flower E [37]
Diplocyclos palmatus India, Sri Lanka Leaf, tuber I, E [18, 23, 66]
Fevillea cordifolia Colombia, Nicaragua Seed, whole plant I, E [27, 35]
Lagenaria siceraria # Sri Lanka ND E [18]
Luffa acutangula India, Sri Lanka Fruit, whole plant I, E [18, 19, 38]
Momordica balsamina India ND ND [40]
Momordica charantia Colombia, India, Nicaragua, Sri Lanka Aerial parts, branch, flower, fruit, leaf, stem, whole plant I, E [18, 20, 27, 34, 35]
Momordica dioica Sri Lanka ND E [18]
Sicydium tamnifolium Mexico Root ND [59]
Trichosanthes cucumerina India, Sri Lanka Leaf I [18, 38]
Trichosanthes tricuspidata Bangladesh Root I
Cycadaceae
Cycas pectinata Bangladesh Flower E [32]
Cycas revoluta Bangladesh Whole plant ND [30]
Cyclanthaceae
Cyclanthus bipartitus Peru Heart E [57]
Cyperaceae
Cyperus kyllingia Sri Lanka ND I [18]
Cyperus rotundus Bangladesh, India, Pakistan, Sri Lanka Bulb, flower, leaf, rhizome, root, tuber I, E [17, 18, 20, 28, 32, 39]
Kyllinga odorata (syn. Kyllinga monocephala) India ND ND [40]
Dilleniaceae
Tetracera sarmentosa Sri Lanka ND I, E [18]
Dioscoreaceae
Dioscorea oppositifolia Sri Lanka ND I [18]
Dioscorea pentaphylla India Tuber I [38, 55]
Dipterocarpaceae
Dipterocarpus lowii Sri Lanka ND I [18]
Dipterocarpus zeylanicus Sri Lanka ND E [18]
Droseraceae
Drosera burmannii Sri Lanka ND I, E [18]
Drosera indica Sri Lanka ND E [18]
Ebenaceae
Diospyros kaki Malaysia Fruit I [67]
Diospyros melanoxylon India Seed E [25]
Diospyros montana India Root I [38]
Diospyros vera (syn. Maba buxifolia) Sri Lanka ND I, E [18]
Euclea racemosa Ethiopia Leaf I [51]
Elaeagnaceae
Elaeagnus latifolia Sri Lanka ND I, E [18]
Ericaceae
Gaultheria trichophylla India Leaf I [66]
Erythroxylaceae
Erythroxylum monogynum Sri Lanka ND E [18]
Euphorbiaceae
Acalypha aristata (syn. Acalypha arvensis) Nicaragua Leaf, whole plant I, E [27]
Acalypha fimbriata ND ND ND [68]
Acalypha indica Bangladesh, India, Sri Lanka Leaf, whole plant E [18, 20, 32]
Acalypha phleoides Mexico ND ND [68]
Acalypha wilkesiana (syn. Acalypha godseffiana) Sri Lanka ND E [18]
Agrostistachys hookeri Sri Lanka ND E [18]
Baliospermum solanifolium (syn. Baliospermum montanum) India Leaf, root, seed E [19, 32]
Cnidoscolus aconitifolius Colombia Leaf, whole plant I, E [34]
Croton tiglium Sri Lanka ND E [18]
Croton trinitatis Colombia Whole plant E [34]
Euphorbia antiquorum Sri Lanka ND E [18]
Euphorbia hirta Bangladesh, Brazil, India Latex, root, whole plant I [19, 20, 32, 47]
Euphorbia milii Bangladesh Whole plant ND [30]
Euphorbia neriifolia (syn. Euphorbia ligularia) India, Sri Lanka Latex, leaf, stem I, E [18, 19, 22, 38]
Euphorbia thymifolia Nicaragua Latex, leaf, whole plant I [27]
Euphorbia tirucalli Sri Lanka ND I [18]
Euphorbia tithymaloides (syn. Pedilanthus tithymaloides) Sri Lanka ND I, E [18]
Euphorbia tortilis Sri Lanka ND E [18]
Hura crepitans Peru Latex E [57]
Jatropha curcas Brazil, Nepal Latex, root, stem I [47, 64, 69, 70]
Jatropha gossypiifolia Bangladesh, Brazil Latex, leaf, stem I, E [32, 50]
Jatropha mollissima Brazil Latex ND [47, 64]
Jatropha multifida Sri Lanka ND E [18]
Jatropha podagrica Sri Lanka ND E [18]
Jatropha ribifolia Brazil Latex ND [47]
Mallotus repandus Sri Lanka ND E [18]
Manihot esculenta Brazil, Colombia, Nicaragua Branch, leaf, root I, E [27, 33, 34]
Melanolepis multiglandulosa Papua New Guinea Latex I [46]
Phyllanthus acuminatus # Colombia Branch, leaf I, E [35]
Ricinus communis Brazil, Pakistan, Sri Lanka Fruit, latex, leaf, root, seed I, E [17, 18, 69, 71, 72]
Spirostachys africana Namibia Stem ND [65]
Tragia involucrata India Whole plant I [20, 28]
Trewia nudiflora Bangladesh Leaf E [32]
Fabaceae
Abrus precatorius Bangladesh, India Leaf, root, stem I, E [20, 21, 28, 32, 38]
Abrus pulchellus Sri Lanka ND E [18]
Acacia caesia Sri Lanka ND I, E [18]
Acacia cornigera Mexico Root ND [59]
Acacia leucophloea India Bark I, E [20, 63]
Acacia mellifera Namibia ND ND [54]
Acacia nilotica India Leaf I, E [38]
Acacia torta India Bark I [63]
Acosmium panamense Mexico Bark ND [59]
Adenanthera pavonina Sri Lanka ND I, E [18]
Albizia lebbeck Bangladesh, India, Pakistan, Sri Lanka Bark, flower, fruit, leaf, seed I, E [1618, 23, 32, 40]
Albizia procera Bangladesh, Pakistan Juicy parts, leaf, root E [17, 32]
Alysicarpus vaginalis Sri Lanka ND I [18]
Amburana cearensis Brazil Seed ND [71]
Bauhinia divaricata (syn. Bauhinia retusa) India Bark, flower, leaf ND [19]
Bauhinia guianensis Nicaragua Bark, stem I, E [27]
Bauhinia purpurea India Bark, flower, leaf ND [19]
Bauhinia racemosa Sri Lanka ND E [18]
Bauhinia variegata Bangladesh, Sri Lanka Bulb, stem E [18, 32]
Brownea rosa-de-monte Colombia Bark I, E [35]
Butea monosperma India Bark, leaf, resin, seed I, E [24, 25, 38, 40, 41]
Caesalpinia bonduc India, Nicaragua, Sri Lanka Root, seed I, E [18, 20, 27, 38]
Caesalpinia coriaria Sri Lanka ND E [18]
Cajanus cajan Bangladesh Stem E [30, 32]
Canavalia gladiata Sri Lanka ND E [18]
Cassia fistula Bangladesh, Brazil, India, Sri Lanka Bark, fruit, leaf, root, seed I, E [18, 19, 24, 25, 32, 33, 38, 40]
Centrosema pubescens Colombia Whole plant E [34]
Clitoria ternatea Bangladesh, India, Sri Lanka Flower, leaf, root, seed I, E [16, 18, 19, 32, 38, 39, 42, 60]
Crotalaria laburnifolia Sri Lanka ND E [18]
Crotalaria verrucosa India Seed I [23]
Dalbergia melanoxylon India Bark I [20]
Deguelia amazonica (syn. Derris amazonica) Brazil Root ND [50]
Derris floribunda Brazil Root ND [50]
Desmodium adscendens # Colombia, Nicaragua Leaf, root, whole plant I, E [27, 35]
Desmodium gangeticum Bangladesh, India, Pakistan Root, whole plant I, E [17, 32, 55]
Desmodium triflorum Bangladesh, Sri Lanka Shoot I, E [18, 32]
Dipteryx odorata # Brazil Seed I [33, 50]
Entada leptostachya Kenya Latex E [31]
Entada rheedii (syn. Entada pursaetha) Bangladesh, India, Sri Lanka Leaf, seed I, E [18, 32, 49]
Erythrina americana Mexico Leaf, seed ND [59]
Erythrina excelsa India, Kenya Bark, latex ND [20, 31]
Erythrina fusca Sri Lanka ND I, E [18]
Erythrina subumbrans Sri Lanka ND I [18]
Erythrina variegata India Bark ND [19]
Gliricidia sepium Colombia Leaf, stem I, E [34]
Glycine max India Seed I [20]
Glycyrrhiza glabra Sri Lanka ND E [18]
Humboldtia decurrens India Root E [16]
Humboldtia laurifolia Sri Lanka ND E [18]
Indigofera circinella Kenya Leaf E [31]
Indigofera suffruticosa Colombia, Nicaragua Aerial parts, seed, whole plant I, E [27, 34]
Indigofera tinctoria # India Root I [16]
Leucaena leucocephala Sri Lanka ND E [18]
Libidibia ferrea # Brazil Seed I [33]
Machaerium ferox Brazil Leaf E [33]
Macrotyloma uniflorum Sri Lanka ND I [18]
Mimosa pudica Bangladesh, India Leaf, root, whole plant I, E [16, 19, 20, 22, 23, 28, 32]
Mucuna pruriens # Bangladesh, India, Nepal, Sri Lanka Fruit, seed, stem, whole plant I, E [18, 19, 28, 32, 69]
Mucuna sloanei Ecuador Seed I [61]
Mucuna urens Nicaragua Seed E [27]
Parkinsonia aculeata Brazil Seed ND [47]
Pentaclethra macroloba Nicaragua Bark I, E [27]
Plathymenia reticulata Brazil Bark I [33]
Pongamia pinnata Sri Lanka ND I, E [18]
Pterocarpus santalinus Sri Lanka ND E [18]
Saraca asoca Sri Lanka ND I [18]
Senna alata (syn. Cassia alata) India, Nicaragua, Sri Lanka Flower, leaf, whole plant I, E [18, 20, 27, 28]
Senna auriculata Sri Lanka ND E [18]
Senna dariensis Colombia Whole plant I, E [35]
Senna hirsuta Bangladesh Leaf E [32]
Senna occidentalis (syn. Cassia occidentalis) Bangladesh, India, Nicaragua, Sri Lanka Leaf, root, whole plant I, E [18, 27, 32, 40]
Senna reticulata (syn. Cassia reticulata) Brazil, Nicaragua Leaf, root, whole plant I [27, 50]
Senna siamea Kenya Root ND [31]
Senna sophera (syn. Cassia sophera) Bangladesh Leaf, root I [30, 32]
Senna tora (syn. Cassia tora) Bangladesh, India Leaf, root, seed, stem I, E [20, 24, 25, 28, 32, 42]
Sesbania grandiflora Sri Lanka ND I, E [18]
Tadehagi triquetrum (syn. Desmodium triquetrum) India Whole plant ND [19]
Tamarindus indica Bangladesh, India, Sri Lanka Seed, whole plant I, E [18, 22, 25, 32, 38]
Tephrosia purpurea Bangladesh, India Root, whole plant I, E [19, 20, 24, 32]
Trigonella foenum-graecum Sri Lanka ND I [18]
Uraria lagopodioides India Bark I, E [49]
Uraria picta Bangladesh, India Root, whole plant I [24, 30]
Vigna luteola Colombia Whole plant E [34]
Vigna radiata Sri Lanka ND I [18]
Gentianaceae
Chelonanthus alatus (syn. Irlbachia alata)# Colombia Branch, leaf E [35]
Enicostema axillare India Whole plant I [23, 45]
Fagraea ceilanica Sri Lanka ND E [18]
Hoppea dichotoma India Shoot ND [19]
Huperzia phlegmaria Sri Lanka ND E [18]
Potalia amara Peru Aerial parts ND [29]
Gesneriaceae
Columnea pulcherrima # Colombia Whole plant I, E [35]
Columnea sanguinea (syn. Besleria sanguinea)# Colombia Whole plant I, E [35]
Episcia dianthiflora # Colombia Whole plant I, E [35]
Gleicheniaceae
Gleichenella pectinata Colombia Whole plant I [34]
Haemodoraceae
Xiphidium caeruleum # Colombia, Nicaragua, Peru Leaf, stem, whole plant I, E [27, 35, 44, 57]
Heliconiaceae
Heliconia curtispatha Colombia Rhizome E [35]
Hydroleaceae
Hydrolea zeylanica Sri Lanka ND I [18]
Hymenophyllaceae
Trichomanes elegans Colombia Whole plant E [35]
Hypoxidaceae
Curculigo orchioides Bangladesh, India Bulb, leaf, rhizome I [32, 73]
Iridaceae
Iris kemaonensis India Rhizome ND [66]
Sisyrinchium micranthum Colombia Whole plant E [34]
Lamiaceae
Aegiphila panamensis # Colombia Leaf, branch, stem E [35]
Anisochilus velutinus Sri Lanka ND E [18]
Anisomeles indica India, Sri Lanka Whole plant ND [18, 19]
Anisomeles malabarica Bangladesh, India Whole plant I [28, 30, 60]
Callicarpa tomentosa Sri Lanka ND E [18]
Clerodendrum cordatum (syn. Clerodendrum viscosum) Bangladesh Flower, leaf E [32]
Clerodendrum phlomidis Sri Lanka ND E [18]
Fuerstia africana Kenya Leaf I [31]
Gmelina arborea Bangladesh Root I [32]
Gmelina asiatica Sri Lanka ND I, E [18]
Hyptis capitata # Colombia Branch, leaf, stem I, E [35]
Hyptis suaveolens Bangladesh Leaf E [32]
Leonotis leonurus South Africa Flower, leaf I [74]
Leucas aspera Bangladesh, India Leaf, root, stem I [23, 24, 28, 30, 32]
Leucas cephalotes India Bark, leaf, whole plant I, E [19, 20, 40, 49]
Marsypianthes chamaedrys Brazil Leaf I [33]
Mentha × piperita Colombia Leaf E [34]
Mentha pulegium Colombia Leaf E [34]
Ocimum basilicum # Bangladesh, Colombia, India Branch, leaf, stem, whole plant I, E [20, 32, 35]
Ocimum campechianum (syn. Ocimum micranthum) Colombia, Nicaragua Aerial parts, leaf, whole plant I, E [27, 44]
Ocimum tenuiflorum (syn. Ocimum sanctum) India, Sri Lanka Leaf, root, whole plant I, E [16, 18, 20, 28, 40, 41]
Origanum vulgare Serbia Flower, leaf ND [58]
Plectranthus amboinicus Sri Lanka ND I [18]
Plectranthus hadiensis Sri Lanka ND I [18]
Plectranthus monostachyus Brazil Leaf I [33]
Pogostemon cablin Malaysia ND ND [75]
Pogostemon heyneanus Sri Lanka ND E [18]
Premna esculenta Bangladesh Leaf E [32]
Premna serratifolia (syn. Premna integrifolia) Bangladesh Leaf, root I, E [36]
Rosmarinus officinalis Colombia Whole plant E [34]
Rotheca serrata (syn. Clerodendrum serratum) India Leaf, root ND [19, 39]
Tectona grandis India Bark I [25]
Teucrium chamaedrys Serbia Flower ND [58]
Thymus vulgaris India, Spain Aerial parts, whole plant I, E [20, 37]
Vitex negundo Bangladesh, India, Sri Lanka Leaf, rhizome, root I, E [18, 20, 22, 32]
Vitex trifolia India Leaf I [28]
Volkameria eriophylla (syn. Clerodendrum eriophyllum) Kenya Leaf, root ND [76]
Lauraceae
Aniba parviflora (syn. Aniba fragrans) Brazil Bark I [33]
Cinnamomum verum Sri Lanka ND I, E [18]
Litsea glutinosa Sri Lanka ND E [18]
Litsea longifolia Sri Lanka ND I, E [18]
Persea macrantha Sri Lanka ND E [18]
Lecythidaceae
Careya arborea Sri Lanka ND E [18]
Couroupita guianensis Bangladesh Bark, leaf ND [30]
Linderniaceae
Lindernia diffusa # Colombia Whole plant E [35]
Loganiaceae
Strychnos nux-vomica India Bark, root, seed I, E [16, 20, 49]
Strychnos potatorum Sri Lanka ND E [18]
Strychnos xinguensis Colombia Stem E [35]
Loranthaceae
Struthanthus cassythoides Nicaragua Leaf, whole plant I, E [27]
Struthanthus orbicularis Colombia Branch, leaf E [35]
Lycopodiaceae
Huperzia pulcherrima Sri Lanka ND E [18]
Lygodiaceae
Lygodium heterodoxum Nicaragua Leaf I, E [27]
Lygodium venustum Colombia, Mexico, Nicaragua Aerial parts, leaf, stem, whole plant I, E [27, 34, 59]
Lythraceae
Lawsonia inermis India Bark ND [25]
Punica granatum India, Sri Lanka Whole plant I, E [18, 20, 28]
Trapa natans (syn. Trapa bispinosa) Sri Lanka ND I [18]
Magnoliaceae
Magnolia champaca (syn. Michelia champaca) Sri Lanka ND E [18]
Malpighiaceae
Bronwenia cornifolia (syn. Banisteriopsis cornifolia) Nicaragua Bark, leaf, stem E [27]
Byrsonima crassifolia Brazil, Nicaragua Bark, leaf I [27, 47]
Stigmaphyllon puberum Nicaragua Leaf, stem I, E [27]
Malvaceae
Abelmoschus moschatus Bangladesh, India, Sri Lanka Fruit, leaf, seed I, E [18, 32, 38]
Abroma augusta Bangladesh Leaf, root, stem E [32]
Abutilon hirtum (syn. Abutilon heterotrichum) Sri Lanka ND I, E [18]
Abutilon indicum India, Sri Lanka Fruit, leaf I [18, 20]
Ceiba pentandra Sri Lanka ND I [18]
Corchorus trilocularis Kenya Leaf E [31]
Firmiana simplex (syn. Sterculia urens) India Bark, latex I [38, 55]
Gossypium arboreum Sri Lanka ND E [18]
Gossypium herbaceum India Seed ND [41]
Gossypium hirsutum Brazil Leaf I [33]
Grewia damine Sri Lanka ND E [18]
Grewia nervosa (syn. Microcos paniculata) Sri Lanka ND E [18]
Helicteres isora Bangladesh, India Fruit, root I [23, 25, 32]
Hibiscus rostellatus (syn. Hibiscus furcatus) Sri Lanka ND E [18]
Hibiscus surattensis Sri Lanka ND E [18]
Hibiscus tiliaceus Mexico Seed ND [59]
Melochia corchorifolia Bangladesh, Sri Lanka Leaf, whole plant I, E [18, 32]
Sida acuta # Bangladesh, Colombia, India, Sri Lanka Leaf, whole plant I, E [18, 32, 35, 39, 44]
Sida cordata Sri Lanka ND I [18]
Sida cordifolia Bangladesh Leaf I [32]
Sida rhombifolia Bangladesh, Nicaragua, Sri Lanka Leaf, stem I, E [18, 27, 32]
Thespesia populnea Sri Lanka ND I [18]
Triumfetta rhomboidea Kenya Root E [31]
Urena lobata Bangladesh Root I [32]
Wissadula periplocifolia Bangladesh, Sri Lanka Leaf, root E [18, 30, 60]
Marantaceae
Ischnosiphon rotundifolius Brazil Leaf ND [47]
Martyniaceae
Martynia annua India, Sri Lanka Fruit E [18, 25]
Melastomataceae
Osbeckia octandra Sri Lanka ND E [18]
Bellucia dichotoma Brazil Bark I [33]
Melastoma malabathricum Bangladesh Leaf E [32]
Memecylon umbellatum India Leaf I [63]
Meliaceae
Azadirachta indica India, Sri Lanka Bark, flower, latex, leaf, seed I, E [18, 20, 22, 28, 3941]
Cipadessa baccifera India Leaf, root I [63]
Melia azedarach India, Sri Lanka Bark, leaf I, E [18, 41]
Munronia pinnata Sri Lanka ND I, E [18]
Menispermaceae
Cissampelos fasciculata Colombia Leaf I [44]
Cissampelos pareira Bangladesh, India, Mexico, Nicaragua, Sri Lanka Leaf, root, whole plant I, E [18, 19, 23, 25, 27, 32, 38, 55, 59]
Cocculus acuminatus India Stem E [16]
Cocculus hirsutus (syn. Cocculus villosus) India Leaf I [38, 40]
Coscinium fenestratum Sri Lanka ND I [18]
Cyclea peltata Sri Lanka ND I [18]
Odontocarya tenacissima # Colombia Whole plant I, E [35]
Tinospora cordifolia Bangladesh, India, Sri Lanka Fruit, root, stem I [18, 22, 23, 32]
Menyanthaceae
Nymphoides indica Nicaragua, Sri Lanka Leaf, root I, E [18, 27]
Monimiaceae
Hortonia angustifolia Sri Lanka ND E [18]
Moraceae
Artocarpus heterophyllus Sri Lanka ND E [18]
Artocarpus nobilis Sri Lanka ND I, E [18]
Broussonetia zeylanica Sri Lanka ND I, E [18]
Castilla elastica Colombia Branch, leaf, stem I, E [35]
Dorstenia contrajerva Mexico, Nicaragua Leaf, whole plant I, E [27, 59]
Ficus benghalensis India ND ND [40]
Ficus drupacea Sri Lanka ND E [18]
Ficus hispida Sri Lanka ND E [18]
Ficus nymphaeifolia Colombia Branch, leaf, stem I, E [35]
Ficus racemosa Bangladesh, India, Sri Lanka Bark, shoot I, E [18, 32, 38]
Ficus religiosa India, Sri Lanka Bark I, E [18, 49]
Morus alba India Leaf I [20]
Plecospermum spinosum Sri Lanka ND I, E [18]
Streblus asper Bangladesh Root E [32]
Moringaceae
Moringa oleifera # India, Sri Lanka Bark, root, seed I, E [16, 18, 20, 22, 24, 28]
Musaceae
Ensete ventricosum (syn. Ensete edule) Kenya Latex E [31]
Musa × paradisíaca Ecuador, India, Nicaragua, Sri Lanka Bark, flower, latex I, E [18, 20, 27, 28, 61]
Myristicaceae
Myristica fragrans Sri Lanka ND I [18]
Myrtaceae
Myrcia bracteata (syn. Eugenia bracteata) Sri Lanka ND I, E [18]
Syzygium aromaticum Sri Lanka ND I [18]
Syzygium caryophyllatum Sri Lanka ND E [18]
Syzygium cumini (syn. Eugenia jambolana) India, Pakistan, Sri Lanka Bark, leaf I [17, 18, 20]
Syzygium zeylanicum Sri Lanka ND E [18]
Nelumbonaceae
Nelumbo nucifera Sri Lanka ND I [18]
Nepenthaceae
Nepenthes distillatoria Sri Lanka ND E [18]
Nyctaginaceae
Boerhavia coccinea Pakistan Whole plant E [17]
Boerhavia diffusa Brazil, India, Sri Lanka Leaf, root, whole plant E [18, 24, 25, 39, 41, 50]
Boerhavia procumbens Pakistan Leaf E [17]
Mirabilis jalapa Bangladesh, Sri Lanka Leaf I, E [18, 32]
Nymphaeaceae
Nymphaea nouchali Sri Lanka ND E [18]
Nymphaea pubescens Sri Lanka ND I [18]
Ochnaceae
Ochna jabotapita Sri Lanka ND I [18]
Sauvagesia erecta Nicaragua Whole plant I, E [27]
Oleaceae
Jasminum officinale Sri Lanka ND E [18]
Jasminum sambac Sri Lanka ND E [18]
Nyctanthes arbor-tristis India, Sri Lanka Root I [18, 49]
Olea europaea Spain Oil ND [37]
Opiliaceae
Opilia amentacea Kenya Root E [31]
Orchidaceae
Vanda tessellata India Root E [25]
Zeuxine regia Sri Lanka ND E [18]
Oxalidaceae
Averrhoa carambola Sri Lanka ND I [18]
Biophytum reinwardtii Sri Lanka ND I [18]
Oxalis corniculata Bangladesh, Sri Lanka Leaf I, E [18, 32]
Pandanaceae
Pandanus kaida Sri Lanka ND I [18]
Pandanus odorifer (syn. Pandanus odoratissimus) India Root ND [19]
Papaveraceae
Argemone mexicana Bangladesh, India Leaf, root, seed, stem I, E [20, 32, 38, 42]
Papilionaceae
Desmodium elegans Pakistan Root E [17, 53]
Passifloraceae
Adenia hondala Sri Lanka ND E [18]
Passiflora quadrangularis Colombia Branch, leaf E [34, 35]
Phyllanthaceae
Antidesma bunius India Leaf ND [77]
Bridelia retusa Sri Lanka ND I, E [18]
Cleistanthus collinus Sri Lanka ND I [18]
Glochidion zeylanicum Sri Lanka ND I [18]
Margaritaria indica Sri Lanka ND I, E [18]
Phyllanthus acidus India Root ND [77]
Phyllanthus debilis Sri Lanka ND I [18]
Phyllanthus emblica (syn. Emblica officinalis) Bangladesh, India, Sri Lanka Bark, fruit, root I, E [18, 20, 22, 30]
Phyllanthus niruri India Flower E [20]
Phyllanthus reticulatus India Leaf I [20]
Phyllanthus urinaria Sri Lanka ND I, E [18]
Phytolaccaceae
Petiveria alliacea # Colombia, Nicaragua Branch, leaf, root, whole plant I, E [27, 34, 35]
Pinaceae
Pinus roxburghii Pakistan Oil, resin, wood E [17, 53]
Piperaceae
Peperomia elsana # Colombia Whole plant E [35]
Peperomia pellucida Nicaragua, Sri Lanka Whole plant I, E [18, 27]
Piper amalago Mexico, Nicaragua Leaf, root I [27, 59]
Piper arboreum Colombia Branch, leaf E [35]
Piper auritum # Colombia, Nicaragua Branch, leaf, stem, whole plant I, E [27, 34, 35, 44]
Piper betle Sri Lanka ND I, E [18]
Piper chuvya Sri Lanka ND E [18]
Piper confusionis Peru Leaf E [57]
Piper coruscans # Colombia Branch, leaf, stem I, E [35]
Piper hispidum # Colombia Branch, leaf, stem I, E [35]
Piper longivillosum # Colombia Whole plant E [35]
Piper longum Bangladesh, Sri Lanka Flower, fruit, Latex, root E [18, 30]
Piper marginatum # Brazil, Colombia Branch, leaf, root, stem I, E [35, 50]
Piper multiplinervium # Colombia Branch, leaf, stem I, E [35]
Piper nigrum Bangladesh, India, Sri Lanka Floral bud, flower, fruit, root I, E [18, 20, 28, 32, 52]
Piper peltatum # Colombia, Nicaragua Branch, leaf, stem, whole plant I, E [27, 35]
Piper pulchrum Colombia Branch, leaf, stem I, E [35]
Piper reticulatum # Colombia Branch, leaf, stem I, E [35]
Piper tricuspe # Colombia Branch, leaf, stem E [35]
Piper umbellatum Sri Lanka ND I, E [18]
Pittosporaceae
Pittosporum neelgherrense India Bark I, E [16]
Pittosporum tetraspermum India Bark I [26]
Plantaginaceae
Bacopa monnieri Bangladesh, India, Sri Lanka Leaf, root, whole plant I [18, 23, 32, 39, 41]
Plantago australis Colombia Whole plant E [34]
Plantago major Colombia Aerial parts, leaf I, E [44]
Scoparia dulcis # Colombia, Nicaragua Aerial parts, branch, leaf, root, whole plant I, E [27, 34, 35, 44]
Platanaceae
Platanus orientalis Pakistan Bark I, E [17]
Plumbaginaceae
Plumbago indica Sri Lanka ND I, E [18]
Plumbago zeylanica Bangladesh, India, Sri Lanka Root I, E [18, 23, 32]
Poaceae
Chrysopogon zizanioides (syn. Vetiveria zizanioides) India, Sri Lanka Root I, E [16, 18]
Cymbopogon citratus Colombia Leaf E [34]
Cynodon dactylon Bangladesh, India, Sri Lanka Leaf, root, whole plant E [18, 19, 32]
Drynaria quercifolia Sri Lanka ND I [18]
Eleusine coracana Sri Lanka ND I [18]
Gynerium sagittatum Nicaragua Leaf, root I [27]
Heteropogon contortus India, Sri Lanka Root I, E [18, 38, 55]
Isachne globosa Sri Lanka ND E [18]
Oryza punctata Sri Lanka ND I, E [18]
Oryza sativa Sri Lanka ND I [18]
Pogonatherum paniceum Sri Lanka ND E [18]
Saccharum arundinaceum Sri Lanka ND I [18]
Saccharum officinarum Colombia, Sri Lanka Stem I, E [18, 34, 44]
Polygalaceae
Polygala abyssinica Pakistan Root I [17]
Polygala crotalarioides India Leaf, root ND [19]
Polygala paniculata Brazil Root E [47]
Polygala spectabilis Brazil Root I, E [47]
Polygonaceae
Persicaria barbata (syn. Polygonum barbatum) India Leaf I, E [38]
Persicaria chinensis (syn. Polygonum chinense) Bangladesh Leaf E [32]
Persicaria ferruginea (syn. Polygonum ferrugineum) Colombia Aerial parts E [34]
Persicaria glabra (syn. Polygonum glabrum) India Root E [25]
Polypodiaceae
Pleopeltis percussa Colombia Branch, leaf, stem I, E [35]
Pyrrosia piloselloides Sri Lanka ND E [18]
Pontederiaceae
Monochoria hastata Sri Lanka ND I, E [18]
Portulacaceae
Portulaca pilosa Brazil Leaf I [33]
Primulaceae
Aegiceras corniculatum Sri Lanka ND E [18]
Anagallis arvensis Serbia Aerial parts ND [58]
Ardisia humilis Sri Lanka ND E [18]
Maesa lanceolata Kenya Root ND [31]
Myrsine coriacea Colombia Whole plant E [34]
Pteridaceae
Acrostichum aureum Nicaragua Leaf, root I, E [27]
Adiantum capillus-veneris Pakistan Frond E [17]
Pellaea viridis Kenya Leaf E [31]
Ranunculaceae
Clematis brachiata (syn. Clematis triloba) India Root E [25]
Delphinium denudatum India Root ND [19]
Delphinium vestitum India Whole plant ND [19]
Rhamnaceae
Alphitonia incana Papua New Guinea Oil E [46]
Ziziphus jujuba (syn. Ziziphus mauritiana) Sri Lanka ND E [18]
Ziziphus oenoplia India, Sri Lanka Leaf I, E [18, 49]
Rhizophoraceae
Rhizophora mangle Nicaragua Bark I, E [27]
Rosaceae
Crataegus monogyna Spain Thorn ND [37]
Potentilla sundaica India Root, stem ND [19]
Prunus persica Ethiopia Leaf I [51]
Prunus walkeri Sri Lanka ND E [18]
Pyrus communis Pakistan Fruit, leaf I [17]
Sanguisorba officinalis Serbia Rhizome ND [58]
Rubiaceae
Catunaregam spinosa (syn. Randia dumetorum) India Root I [23]
Ceriscoides turgida (syn. Gardenia turgida) India Bark, root I [24, 38]
Chiococca alba Brazil, Nicaragua Leaf, root I [27, 47]
Clausena dentata Sri Lanka ND E [18]
Gonzalagunia panamensis Colombia Branch, leaf, stem I, E [35]
Hamelia axillaris Nicaragua Leaf, whole plant I, E [27]
Hamelia barbata Nicaragua Leaf, whole plant I, E [27]
Hamelia patens Nicaragua Leaf, whole plant I, E [27]
Hamelia rovirosae Nicaragua Flower, leaf, stem I, E [27]
Hedyotis scandens Bangladesh Leaf, stem E [32]
Ixora coccinea Sri Lanka ND I, E [18]
Ixora cuneifolia Bangladesh Bark E [32]
Ixora pavetta (syn. Ixora arborea) India Leaf, rood, seed ND [19]
Mitragyna parvifolia India Bark, stem I, E [38, 63]
Morinda angustifolia Bangladesh Leaf I [32]
Morinda citrifolia Bangladesh Root ND [30]
Morinda coreia Sri Lanka ND I, E [18]
Morinda persicifolia Bangladesh Leaf E [32]
Mussaenda frondosa Sri Lanka ND I [18]
Mussaenda roxburghii Bangladesh Leaf E [32]
Nauclea orientalis Sri Lanka ND E [18]
Neonauclea purpurea (syn. Anthocephalus chinensis) Bangladesh Bark, leaf ND [30]
Oldenlandia diffusa India Whole plant E [20]
Oldenlandia umbellata India Leaf, root E [20]
Ophiorrhiza mungos India Root I [16, 20]
Paederia foetida Sri Lanka ND I, E [18]
Palicourea croceoides Colombia Bark I [34]
Pavetta indica Sri Lanka ND I, E [18]
Psychotria elata Nicaragua Flower, leaf, root, stem, whole plant I, E [27]
Psychotria flavida India Root I [63]
Psychotria poeppigiana # Colombia, Nicaragua, Sri Lanka Branch, leaf, stem, whole plant I, E [18, 27, 35]
Randia aculeata Mexico Fruit, whole plant I [59, 78]
Rubia cordifolia Nepal, Pakistan Leaf, root, stem I [17, 69]
Rubia manjith India Root, stem ND [19]
Spermacoce remota (syn. Borreria assurgens) Nicaragua Leaf, root I, E [27]
Tamilnadia uliginosa Sri Lanka ND I [18]
Wendlandia exserta India Root I [49]
Rutaceae
Acronychia pedunculata Sri Lanka ND E [18]
Aegle marmelos Bangladesh, India, Sri Lanka Bark, whole plant I, E [18, 20, 30, 32, 41]
Atalantia ceylanica Sri Lanka ND I, E [18]
Citrus aurantiifolia Sri Lanka ND I, E [18]
Citrus aurantium Sri Lanka ND I, E [18]
Citrus japonica (syn. Citrus madurensis) Sri Lanka ND I, E [18]
Citrus limon Colombia, India, Sri Lanka Fruit, leaf, root I, E [18, 20, 28, 34, 35]
Citrus maxima (syn. Citrus grandis) Sri Lanka ND I, E [18]
Glycosmis pentaphylla India Leaf I, E [16]
Limonia acidissima (syn. Feronia limonia) India, Sri Lanka Root I [18, 20]
Murraya koenigii India, Sri Lanka Bark, leaf I, E [18, 28]
Murraya paniculata Sri Lanka ND E [18]
Naringi crenulata India Fruit ND [19]
Pamburus missionis Sri Lanka ND E [18]
Ruta chalepensis Colombia Whole plant E [34]
Toddalia asiatica India, Sri Lanka Root I, E [18, 63]
Salicaceae
Casearia grandiflora ND Bark, leaf ND [79]
Casearia nigrescens (syn. Casearia elliptica) India Bark, leaf ND [19]
Casearia sylvestris Brazil Leaf, whole plant ND [47, 79]
Casearia tomentosa India Bark, root I, E [49, 79]
Flacourtia indica Bangladesh Leaf E [32]
Santalaceae
Santalum album Sri Lanka ND E [18]
Sapindaceae
Allophylus cobbe Sri Lanka ND I, E [18]
Cardiospermum halicacabum India, Sri Lanka Leaf I, E [18, 28]
Dodonaea viscosa India Leaf E [28]
Harpullia arborea Sri Lanka ND I, E [18]
Sapindus emarginatus India Bark I [20]
Sapindus mukorossi India, Pakistan Fruit, leaf, root, seed E [17, 25]
Sapotaceae
Madhuca longifolia (syn. Madhuca indica) India, Sri Lanka Bark, fruit, leaf, nut, root, seed I, E [18, 20, 23, 25, 32, 38]
Manilkara zapota Mexico Root ND [59]
Mimusops elengi Sri Lanka ND I [18]
Scrophulariaceae
Verbascum thapsus India Leaf ND [66]
Selaginellaceae
Selaginella articulata # Colombia Whole plant I, E [35]
Simaroubaceae
Ailanthus excelsa India Bark I [38]
Quassia amara # Colombia, Nicaragua Root, stem, whole plant I, E [27, 35]
Quassia indica Sri Lanka ND I [18]
Simaba cedron # Colombia Seed, whole plant I, E [34, 35, 44]
Siparunaceae
Siparuna gesnerioides Colombia Leaf, root I [34, 44]
Siparuna thecaphora Colombia Branch, leaf, stem I, E [35]
Smilacaceae
Smilax regelii Nicaragua Root I [27]
Smilax spinosa Nicaragua Root I [27]
Solanaceae
Atropa acuminata Pakistan Leaf, root E [17]
Capsicum annuum (syn. Capsicum frutescens) Bangladesh, Colombia, India, Sri Lanka Fruit, root I, E [18, 19, 25, 32, 34, 35]
Datura metel Bangladesh, Colombia, India, Sri Lanka Bark, flower, fruit, leaf, root, seed I, E [18, 22, 23, 25, 28, 30, 34]
Datura stramonium # India Root I, E [38]
Lycopersicon esculentum Colombia Leaf, stem, whole plant E [34]
Nicotiana tabacum Colombia, India, Nicaragua Leaf I, E [20, 27, 44]
Solanum allophyllum # Colombia Branch, leaf, stem I, E [35]
Solanum americanum (syn. Solanum nigrum) Colombia, India, Sri Lanka Fruit, leaf, whole plant I, E [18, 25, 34, 38]
Solanum capsicoides Bangladesh Seed ND [30]
Solanum incanum Kenya Fruit, stem E [31]
Solanum melongena Sri Lanka ND I [18]
Solanum nudum # Colombia Branch, fruit, leaf, stem I, E [35]
Solanum ochraceo-ferrugineum Mexico Whole plant ND [59]
Solanum torvum Bangladesh, India, Nicaragua Flower, leaf, root I, E [20, 27, 30, 32]
Solanum verbascifolium Mexico Whole plant ND [59]
Solanum virginianum (syn. Solanum xanthocarpum) India, Sri Lanka Root I [18, 41]
Withania somnifera Bangladesh, India, Sri Lanka Root I, E [18, 22, 32]
Sterculiaceae
Byttneria pilosa Bangladesh Leaf, stem E [32]
Symplocaceae
Symplocos cochinchinensis Sri Lanka ND E [18]
Symplocos racemosa Sri Lanka ND I, E [18]
Talinaceae
Talinum paniculatum Sri Lanka ND E [18]
Thymelaeaceae
Daphne papyracea Pakistan Leaf, root, stem ND [17]
Triuridaceae
Sciaphila purpurea Colombia Whole plant I, E [35]
Urticaceae
Boehmeria nivea Sri Lanka ND E [18]
Cecropia obtusifolia Nicaragua Leaf I [27]
Cecropia peltata Bangladesh, Nicaragua Leaf, whole plant I [27, 30]
Girardinia diversifolia Sri Lanka ND E [18]
Pouzolzia zeylanica (syn. Pouzolzia indica) Bangladesh, India Leaf, whole plant E [32, 42]
Verbenaceae
Aloysia triphylla Colombia Aerial parts E [34]
Lantana camara Bangladesh, Colombia, India, Sri Lanka Flower, leaf, root, stem I, E [18, 32, 34, 39, 41]
Lippia alba Colombia Aerial parts, leaf, whole plant I, E [34]
Lippia grandis Brazil Leaf I [33]
Stachytarpheta cayennensis Colombia Whole plant E [34]
Verbena litoralis Colombia Fruit peel, leaf, root, seed E [34]
Verbena officinalis Pakistan Root, whole plant E [17, 53]
Vitaceae
Ampelocissus latifolia India Root I [49]
Cayratia pedata (syn. Cissus pedata) Bangladesh Leaf ND [30]
Cayratia trifolia (syn. Vitis trifolia) Bangladesh, India Leaf, root I, E [36, 38]
Cissus adnata Bangladesh Leaf E [32]
Cissus javana Bangladesh Leaf, stem E [32]
Cissus quadrangularis # Sri Lanka ND E [18]
Leea indica Sri Lanka ND E [18]
Vitis heyneana (syn. Vitis lanata) Bangladesh Leaf E [32]
Xanthorrhoeaceae
Aloe harlana Ethiopia Leaf I [51]
Aloe littoralis Pakistan Whole plant E [17]
Aloe vera Nicaragua, Sri Lanka Leaf I, E [18, 27]
Zingiberaceae
Alpinia calcarata Sri Lanka ND I, E [18]
Alpinia galanga Sri Lanka ND I [18]
Alpinia nigra Sri Lanka ND E [18]
Alpinia purpurata Colombia Leaf E [44]
Curcuma angustifolia India Rhizome E [28]
Curcuma longa Bangladesh, India, Sri Lanka Rhizome I, E [16, 18, 20, 30]
Elettaria cardamomum Sri Lanka ND I [18]
Globba marantina (syn. Globba bulbifera) India Rhizome I [49]
Hedychium coronarium Colombia, Nicaragua Root, whole plant E [27, 34]
Renealmia alpinia Colombia Rhizome, stem I, E [34, 35]
Renealmia thyrsoidea Colombia Leaf, stem I [34]
Zingiber officinale Ecuador, Nicaragua, Sri Lanka Rhizome, root I, E [18, 27, 61]
Zygophyllaceae
Balanites aegyptiaca # India Bark, fruit E [38]

In parentheses is the synonym used in the original work; out of the parentheses is the accepted name (in case of more than one paper treating the same species with different names); ND = information not described in the work; I = internal use; E = external use. Species evaluated on antiophidic activities in previous studies (see Tables 28) showing good inhibitory potential against venom induced local effects. #Species evaluated on antiophidic activities in previous studies, however, with poor inhibition potential against venom induced local effects.

Along our survey were found 150 botanical families containing plants with reputation against snakebites, among which the most cited ones were the families Fabaceae, Asteraceae, Apocynaceae, Lamiaceae, Rubiaceae, Euphorbiaceae, Araceae, Malvaceae, and Acanthaceae (Figure 1(a)). In a cross-cultural comparison of medicinal floras used against snakebites, Molander et al. [80] identified five countries with a high number of antiophidic plants and representing different cultures, geography, and floristic zones: Brazil, Nicaragua, Nepal, China, and South Africa. From these countries, some “hot” families were identified, which were Apocynaceae, Lamiaceae, Rubiaceae, and Zingiberaceae [80], similar to the present review, except for the Zingiberaceae family which was not so reported in our survey.

Figure 1.

Figure 1

“Hot families” with antiophidic potential. Main related botanical families in ethnopharmacological surveys as antiophidic (a) and main botanical families that were evaluated in antiophidic assay (inhibition of local tissue damage) and presented positive results (b).

Medicinal plants with reputation against snakebites are found all over the world, especially in tropical or subtropical regions of Asia, Americas, and Africa (Figure 2). This fact may be associated with richness of flora of these regions, as well as with relative need of complementary therapies to treat snakebites, considering geographical features that could limit the distribution and availability of the antivenoms in these areas.

Figure 2.

Figure 2

Distribution of medicinal plants used against snakebite around the world. World map highlighting the countries where antiophidic plants were related in ethnopharmacological surveys (a) and number of vegetal species per continent (b).

As observed in Figure 3(a), leaves and roots are the parts of plants most used in folk medicine. Regarding the mode of use, the most frequent one is the topical application of the vegetal products directly on the place of the bite (Figure 3(b)). This is interesting especially in snake venoms that cause serious local tissue damage, such as Bothrops and Daboia species. Since these snakes produce intense local tissue damage, which has a very rapid onset, a topical treatment could be interesting for a rapid inhibitory action. On the other hand, interestingly, the use of some plant species is made by internal and external routes simultaneously, while for some other species the route of administration could be chosen among internal or external use. However, since in several cases this information is not clear, this differentiation was not considered in data tables. Regarding the mode of preparation, in general, paste and decoction were the most cited forms of use. However, for most of the plants enlisted, the information of mode of preparation was missing or confusing.

Figure 3.

Figure 3

Mode of utilization of antiophidic plants reported by folk medicine. Main plant parts used (a) and Venn diagram showing the number of species enlisted having external use, internal use, or both (b).

It is important to emphasize that these plant species, in addition to their use as antiophidic agents, present a series of another popular uses (data not shown) in popular medicine, mainly anti-inflammatory activity. For example, Jatropha gossypiifolia (Euphorbiaceae) has antiophidic, anti-inflammatory, analgesic, antipyretic, healing, and antihemorrhagic uses, among others [81].

4. Antivenom Activities of Extracts of Medicinal Plants against Snake Venom Induced Local Tissue Damage

4.1. General Aspects

Until date, according to our database, only a few numbers (less than 20%) of the species with reputation against snakebites were tested in preclinical assays with different snake venoms, which shows that there is still a great road for the study of antiophidic plants. From these tested plants which have popular use documented in our database, more than a half (almost 60%) showed positive results, which shows that in fact ethnobotany could be a good tool for bioprospecting of plants with antiophidic activity. In addition, the fact that among the tested vegetal species very significative results were obtained strongly suggests the potentiality of these natural products as a future source for development of snake venom inhibitors.

The plant families with most vegetal species showing positive results in antiophidic tests were Fabaceae, Euphorbiaceae, Apocynaceae, Lamiaceae, Asteraceae, Malvaceae, Melastomaceae, and Sapindaceae (Figure 1(b)). Crossing the data of popular use (Figure 1(a)) and of positive activity (Figure 1(b)), we can highlight these families as “hot” ones, that is, families that might be preferred or prioritized in studies searching for antiophidic plants.

Snakes from the genus Naja, Bothrops, and Bitis were the most evaluated ones in these antiophidic assays. However, although Naja and Bitis comprise a large fraction of the studies, virtually most of them are only in vitro studies, dealing with the in vitro enzymatic inhibition of classes of venom toxins relevant to local tissue damage, such as phospholipases A2 (PLA2s), hyaluronidases (SVHs), and proteases. More particularly, the great majority of these studies with Naja and Bitis snakes are part of the work undertaken by Molander et al. [82], aiming to investigate whether plants used in traditional medicine systems would be active against necrosis-inducing enzymes of snake venoms, having tested a total of 226 extracts from 94 plants from the countries of Mali, Democratic Republic of Congo, and South Africa against PLA2, SVHs, and proteases from Bitis arietans and Naja nigricollis (see Tables 2 and 4). Studies evaluating the inhibitory action of medicinal plants against these enzymes are very relevant, since they are involved in several pathological mechanisms produced by snake venoms; however, in vivo preclinical assays or, even better, clinical assays are essential for giving even stronger evidences of the effectivity of the use of medicinal plants against snakebites. In this scenario, the study of anti-Bothrops plants is more advanced, since quantitatively a higher number of in vivo scientific evidences are found in literature. Going the same way, studies with plants inhibiting local tissue damage of Daboia/Vipera, Lachesis, and Crotalus snakes could be also highlighted. However, studies of antiophidic medicinal plants in humans are very scarce: only one clinical study was found in literature, evaluating the inhibitory properties of a polyherbal formulation against local effects from Chinese cobra bite (see Section 4.9).

Table 2.

List of medicinal plants with inhibitory potential against local effects induced by Naja snakes.

Plant name Part used Snake venom Inhibited activities Reference(s)
In vitro In vivo
Acanthaceae
Andrographis stenophylla Leaf N. naja Hemorrhage [83]
Amaranthaceae
Pupalia lappacea Herbal N. nigricollis SVH [82]
Amaryllidaceae
Allium cepa # Bulb N. n. karachiensis PLA2 [84]
Allium sativum # Bulb N. n. karachiensis PLA2 [84]
Anacardiaceae
Lannea acida Cortex N. nigricollis SVH [82]
Pistacia chinensis subsp.integerrima# Gall N. n. karachiensis PLA2 [84]
Sclerocarya birrea Cortex N. nigricollis SVH [82]
Spondias mombin # Cortex, radix N. nigricollis SVH [82]
Annonaceae
Annona senegalensis # Cortex N. nigricollis SVH [82]
Apiaceae
Cuminum cyminum Seed N. n. karachiensis PLA2 [84]
Apocynaceae
Acokanthera oppositifolia Radix N. nigricollis SVH
Calotropis procera # Flower, latex N. n. karachiensis PLA2 [84]
Strophanthus sarmentosus Folium N. nigricollis SVH [82]
Strophanthus speciosus Radix N. nigricollis SVH [82]
Tylophora indica # Leaf, root N. naja PLA2 Hemorrhage [85]
Araceae
Colocasia esculenta Tuber N. nigricollis SVH [82]
Araliaceae
Polyscias fulva Cortex N. nigricollis SVH [82]
Aristolochiaceae
Aristolochia bracteolata # Leaf, root N. naja PLA2 Hemorrhage [85]
Asteraceae
Callilepis laureola Radix N. nigricollis SVH [82]
Bignoniaceae
Kigelia africana Cortex, folium N. nigricollis SVH [82]
Tecoma stans (syn. Stenolobium stans) Root N. n. karachiensis PLA2 [84]
Bixaceae
Cochlospermum tinctorium Radix N. nigricollis SVH [82]
Boraginaceae
Cordia macleodii Bark N. naja Edema, hemorrhage, necrosis [86]
Trichodesma indicum # Whole plant N. n. karachiensis PLA2 [84]
Capparaceae
Capparis tomentosa Radix N. nigricollis SVH [82]
Colchicaceae
Gloriosa superba # Radix N. nigricollis SVH [82]
Combretaceae
Combretum molle # Folium N. nigricollis SVH [82]
Guiera senegalensis Radix N. nigricollis SVH [82]
Terminalia arjuna # Bark N. n. karachiensis PLA2 [84]
Convolvulaceae
Ipomoea rubens Seed N. nigricollis SVH [82]
Cucurbitaceae
Citrullus colocynthis # Fruit N. n. karachiensis PLA2 [84]
Luffa cylindrica (syn. Luffa aegyptiaca) Leaf N. nigricollis Proteolytic [87]
Momordica charantia # Fruit N. n. karachiensis PLA2 [84]
Ebenaceae
Diospyros mespiliformis Cortex N. nigricollis SVH [82]
Euphorbiaceae
Alchornea laxiflora Cortex N. nigricollis SVH [82]
Clutia cordata Radix N. nigricollis SVH [82]
Euphorbia hirta # Whole plant N. naja PLA2, proteolytic, SVH Edema [88]
Jatropha curcas # Leaf, root, stem N. naja PLA2 [89]
Jatropha gossypiifolia # Leaf, root, stem N. naja PLA2 [89]
Manihot foetida (syn. Jatropha foetida) Leaf, stem N. naja PLA2 [89]
Fabaceae
Abrus precatorius # Radix N. nigricollis SVH [82]
Argyrolobium stipulaceum Radix N. nigricollis SVH [82]
Bauhinia thonningii Cortex, radix N. nigricollis SVH [82]
Bauhinia variegata # Root N. n. karachiensis PLA2 [84]
Bobgunnia madagascariensis (syn. Swartzia madagascariensis) Folium, radix N. nigricollis SVH [82]
Burkea africana Cortex N. nigricollis SVH [82]
Cullen corylifolium (syn. Psoralea corylifolia) Seed N. n. karachiensis PLA2 [84]
Dichrostachys cinerea Folium N. nigricollis SVH [82]
Entada africana Radix N. nigricollis SVH [82]
Mimosa pudica # Root N. kaouthia, N. naja PLA2, proteolytic, SVH Edema, myotoxicity [9092]
Parkia biglobosa Cortex, stem bark N. nigricollis Cytotoxicity against muscle cells, SVH [82, 93]
Stylosanthes erecta Folium N. nigricollis SVH [82]
Tamarindus indica # Folium, radix N. nigricollis SVH [82]
Gentianaceae
Enicostema axillare (syn. Enicostema hyssopifolium)# Whole plant N. n. karachiensis PLA2 [84]
Hypericaceae
Psorospermum corymbiferum Cortex, radix N. nigricollis SVH [82]
Lamiaceae
Leucas aspera # Leaf, root, whole plant N. naja PLA2, proteolytic, SVH Hemorrhage [85, 94]
Leucas cephalotes (syn. Leucas capitata)# Whole plant N. n. karachiensis PLA2 [84]
Leucas martinicensis ND N. nigricollis SVH [82]
Ocimum tenuiflorum (syn. Ocimum sanctum)# Whole plant N. n. karachiensis PLA2 [84]
Rotheca myricoides (syn. Clerodendrum myricoides) Cortex N. nigricollis SVH [82]
Teucrium kraussii Aerial parts, cortex N. nigricollis SVH [82]
Volkameria glabra (syn. Clerodendrum glabrum) Radix N. nigricollis SVH [82]
Lauraceae
Cassytha filiformis Herbal N. nigricollis SVH [82]
Loganiaceae
Strychnos innocua Folium N. nigricollis SVH [82]
Strychnos nux-vomica# Seed N. kaouthia PLA2 [95]
Malvaceae
Althaea officinalis Root N. n. karachiensis PLA2 [84]
Dombeya quinqueseta Cortex N. nigricollis SVH [82]
Grewia mollis Cortex, folium, radix N. nigricollis SVH [82]
Sterculia setigera Cortex N. nigricollis SVH [82]
Waltheria indica Radix N. nigricollis SVH [82]
Menispermaceae
Cissampelos mucronata Herbal N. nigricollis SVH [82]
Moraceae
Ficus platyphylla Folium N. nigricollis SVH [82]
Olacaceae
Ximenia americana Folium N. nigricollis SVH [82]
Pedaliaceae
Ceratotheca sesamoides Herbal N. nigricollis SVH [82]
Peraceae
Clutia pulchella Radix N. nigricollis SVH [82]
Phyllanthaceae
Flueggea virosa (syn. Securinega virosa) Radix N. nigricollis SVH [82]
Pinaceae
Cedrus deodara Bark N. n. karachiensis PLA2 [84]
Pinus roxburghii # Oleoresin N. n. karachiensis PLA2 [84]
Poaceae
Cymbopogon schoenanthus Radix N. nigricollis SVH [82]
Primulaceae
Maesa lanceolata # Cortex N. nigricollis SVH [82]
Rhamnaceae
Ziziphus mucronata Radix N. nigricollis SVH [82]
Ziziphus spina-christi Cortex N. nigricollis SVH [82]
Rubiaceae
Crossopteryx febrifuga Cortex N. nigricollis SVH [82]
Pentanisia prunelloides Radix N. nigricollis SVH [82]
Pentas zanzibarica Folium N. nigricollis SVH [82]
Rubia cordifolia # Stem
Rutaceae
Citrus limon # Fruit N. n. karachiensis PLA2 [84]
Zanthoxylum capense Radix N. nigricollis SVH [82]
Sapindaceae
Paullinia pinnata Folium N. nigricollis SVH [82]
Sapindus mukorossi Fruit N. n. karachiensis PLA2 [84]
Solanaceae
Nicotiana rustica Leaf N. nigricollis Proteolytic [87]
Schwenckia americana Folium N. nigricollis SVH [82]
Thymelaeaceae
Gnidia anthylloides Radix N. nigricollis SVH [82]
Gnidia kraussiana Radix N. nigricollis SVH [82]
Gnidia splendens Radix N. nigricollis SVH [82]
Verbenaceae
Lantana trifolia Cortex N. nigricollis SVH [82]
Vitaceae
Cissus populnea Stem N. nigricollis SVH [82]
Zingiberaceae
Zingiber officinale # Rhizome N. n. karachiensis PLA2 [84]
Zygophyllaceae
Fagonia cretica Leaf, stem N. n. karachiensis PLA2 [84]

ND = information not described in the work; PLA2 = snake venom phospholipase A2; SVH = snake venom hyaluronidase. #Vegetal species with related folk use as antiophidic agents, as showed in Table 1. Studies where inhibitory activity was assessed only by preincubation of venom with extract (see Section 4.1 for details).

Table 4.

List of medicinal plants with inhibitory potential against local effects induced by Bitis snakes.

Plant name Part used Snake venom Inhibited activities Reference(s)
In vitro In vivo
Amaranthaceae
Pupalia lappacea Herbal B. arietans SVH [82]
Amaryllidaceae
Crinum jagus Bulb B. arietans Myotoxicity [167]
Anacardiaceae
Lannea acida Cortex B. arietans PLA2, proteolytic, SVH [82]
Sclerocarya birrea Cortex B. arietans PLA2, proteolytic, SVH [82]
Spondias mombin # Cortex, radix B. arietans PLA2, proteolytic, SVH [82]
Annonaceae
Annona senegalensis # Cortex B. arietans PLA2, proteolytic, SVH [82]
Apocynaceae
Strophanthus speciosus Radix B. arietans SVH [82]
Araliaceae
Polyscias fulva Cortex B. arietans SVH [82]
Bignoniaceae
Kigelia africana Cortex B. arietans PLA2, SVH [82]
Bixaceae
Cochlospermum tinctorium Radix B. arietans PLA2, proteolytic, SVH [82]
Capparaceae
Capparis tomentosa Radix B. arietans PLA2, proteolytic, SVH [82]
Colchicaceae
Gloriosa superba # Radix B. arietans SVH [82]
Combretaceae
Combretum molle # Folium B. arietans PLA2, proteolytic, SVH [82]
Guiera senegalensis Radix B. arietans PLA2, proteolytic, SVH [82]
Ebenaceae
Diospyros mespiliformis Cortex B. arietans PLA2, proteolytic, SVH [82]
Euphorbiaceae
Alchornea laxiflora Cortex B. arietans PLA2, proteolytic, SVH [82]
Fabaceae
Bauhinia thonningii Cortex, radix B. arietans PLA2, proteolytic, SVH [82]
Bobgunnia madagascariensis (syn. Swartzia madagascariensis) Folium, radix B. arietans PLA2, proteolytic, SVH [82]
Burkea africana Cortex B. arietans PLA2, proteolytic, SVH [82]
Dichrostachys cinerea Folium B. arietans PLA2, proteolytic, SVH [82]
Entada africana Radix B. arietans SVH [82]
Parkia biglobosa Cortex B. arietans PLA2, proteolytic, SVH [82]
Stylosanthes erecta Folium B. arietans SVH [82]
Tamarindus indica # Cortex, folium B. arietans PLA2, proteolytic, SVH [82]
Hypericaceae
Psorospermum corymbiferum Cortex, radix B. arietans PLA2, proteolytic, SVH [82]
Hypoxidaceae
Molineria capitulata (syn. Curculigo recurvata) Folium B. arietans SVH [82]
Lamiaceae
Rotheca myricoides (syn. Clerodendrum myricoides) Cortex B. arietans SVH [82]
Teucrium kraussii Aerial parts, cortex B. arietans SVH [82]
Volkameria glabra (syn. Clerodendrum glabrum) Cortex B. arietans PLA2, proteolytic, SVH [82]
Lauraceae
Cassytha filiformis Herbal B. arietans SVH [82]
Loganiaceae
Strychnos decussata Radix B. arietans Proteolytic [82]
Strychnos innocua Folium B. arietans Proteolytic, SVH [82]
Malvaceae
Dombeya quinqueseta Cortex B. arietans PLA2, proteolytic, SVH [82]
Grewia mollis Cortex, folium, radix B. arietans PLA2, proteolytic, SVH [82]
Sterculia setigera Cortex B. arietans PLA2, SVH [82]
Waltheria indica Radix B. arietans PLA2, proteolytic, SVH [82]
Menispermaceae
Cissampelos mucronata Herbal B. arietans Proteolytic, PLA2 [82]
Moraceae
Ficus platyphylla Folium B. arietans PLA2, SVH [82]
Olacaceae
Ximenia americana Folium B. arietans PLA2, proteolytic, SVH [82]
Phyllanthaceae
Flueggea virosa (syn. Securinega virosa) Radix B. arietans PLA2, proteolytic, SVH [82]
Primulaceae
Maesa lanceolata # Cortex B. arietans PLA2, proteolytic, SVH [82]
Rhamnaceae
Ziziphus mucronata Radix B. arietans PLA2, proteolytic, SVH [82]
Ziziphus spina-christi Cortex B. arietans PLA2, proteolytic, SVH [82]
Rubiaceae
Crossopteryx febrifuga Cortex B. arietans PLA2, SVH [82]
Pentanisia prunelloides Radix B. arietans PLA2, proteolytic, SVH [82]
Pentas zanzibarica Folium B. arietans PLA2 [82]
Rutaceae
Zanthoxylum capense Radix B. arietans PLA2, proteolytic [82]
Sapindaceae
Paullinia pinnata Folium, radix B. arietans PLA2, proteolytic, SVH [82]
Solanaceae
Schwenckia americana Folium B. arietans SVH [82]
Verbenaceae
Lantana trifolia Cortex B. arietans PLA2, SVH [82]
Vitaceae
Cissus populnea Stem B. arietans SVH [82]

PLA2 = snake venom phospholipase A2; SVH = snake venom hyaluronidase. #Vegetal species with related folk use as antiophidic agents, as showed in Table 1. Studies where inhibitory activity was assessed only by preincubation of venom with extract (see Section 4.1 for details).

Hereafter, we describe the main plants with inhibitory potential against local tissue damage induced by snake venoms. It is important to emphasize that the focus of this review is plants against local tissue damage, mainly due to severity of these effects (which could cause permanent disabilities in victims) and the poor effectiveness of available antivenoms against them. So, studies with plants against systemic effects induced by snake were not considered; in addition some plants herein described possess inhibitory action upon systemic effects, although not stated here. For example, the vegetal species Jatropha gossypiifolia (Euphorbiaceae), a medicinal plant studied very much by our research group, had showed significative inhibitory action upon hemostatic disorders induced by B. jararaca snake venom [96]. So, the antiophidic potential of this species (as well as some others) lies beyond the capacity of inhibit local tissue damage provoked by B. jararaca venom, although not described in this review.

In addition, it is important to analyze critically some works dealing with antiophidic activity of plant extracts, since some of them have limitations that could reduce, at least partially, the potentiality of these species. The major limitation is that various studies, especially the early ones, make the evaluation of the plants using a preincubation approach, which consists in the previous inactivation of venom by preincubating it with different proportions of the tested extracts. Although scientifically valid and even recommended by WHO for assessing antiophidic antivenoms [97], this preincubation approach makes a scenario unlikely to be possible in the field, where the medicine would be delivered after the snakebite. In fact, a recent study evaluated the inhibitory action of the medicinal plant Bellucia dichotoma (Melastomataceae) against Bothrops atrox snake venom using different protocols: preincubation, pretreatment, and posttreatment [98]. The authors observed that while the extract was greatly active when preincubated, this inhibitory activity was drastically reduced or even lost when the extract was injected independently of venom, simulating traditional use. The authors observed that the extract has great amounts of tannins, which are compounds known to precipitate proteins. So, it was concluded that the “pseudo-inhibition” observed after preincubation may be due to the presence of these compounds, suggesting that the preincubation protocol overestimates inhibitory potential of medicinal plants, and for this reason, this kind of approach must be analyzed with caution for estimation of inhibitory potential of medicinal plants [13, 98]. In this sense, many recent studies have been done using protocols of pre- and/or posttreatment, to ensure the potentiality of antiophidic plants, and for most of them, positive results have been found [96, 98102]. For this reason, studies using preincubation protocol are marked in the tables, for a critical analysis.

Also, it is interesting to note that several of the plants with inhibitory potential against snake venom local toxicities also present other relevant pharmacological activities. This is interesting since it is often discussed in the literature that several antiophidic plants did not neutralize snake venoms per se, but could have antiophidic use once they could relieve some of the symptoms of snake envenoming, especially the local effects. It is related that the presence of tranquilizing, antioxidant, immunostimulating, and/or anti-inflammatory activities in certain plants could be of great interest in the alleviation of snake envenoming symptoms [103, 104]. For example, some studies have shown that anti-inflammatory drugs could inhibit the edematogenic and other snake venom effects related to inflammation, such as necrosis and myotoxicity, induced by Bothrops venoms [105, 106]. In fact, many medicinal plants with antiophidic activity also possess significant anti-inflammatory activity in vivo [83, 96, 107110]. Following the same reasoning, some plants with antioxidant activity also possess significant antiophidic effects [95, 96, 104, 111]. In fact, some authors suggest that molecules with antioxidant and/or anti-inflammatory effects could be interesting along with antivenom therapy, helping to reduce the occurrence of secondary/long term complication due to snakebites [112].

Bacterial infection secondary to snakebites is a common complication in envenomed victims [113, 114]. The main source of bacteria is the oral cavity of snakes, but the microbiota in the different layers of the victim's skin or even microorganisms from victim's clothes could also contribute [115, 116]. Abscess formation is a common complication found in patients bitten by Viperidae snakes, being a risk factor for amputation in these patients, and it may be associated with sepsis [113, 114, 117]. A large number of bacteria, including anaerobic species, aerobic gram-negative rods, and a small proportion of gram-positive cocci could be inoculated with snakebites and have been isolated from the abscesses of bitten patients [113, 114]. Microorganisms such as Staphylococcus, Pseudomonas, Salmonella, Escherichia, Providencia, Proteus, Enterococcus, and Bacillus were already identified in oral cavity of certain snakes [116]. The use of antibiotics following snakebites is often recommended, usually therapeutically than prophylactically, mainly to avoid complications due to infections [114, 118]. In this context, medicinal plants presenting antimicrobial activities, especially against those microorganisms usually detected in snakebite victims' abscesses, could be interesting [115].

Medicinal plants having antimicrobial activities in association with some of the pharmacological properties discussed above (such as anti-inflammatory and antioxidant, e.g.) could be of great value to relieve especially local effects induced by snake venom. In another point of view, it is possible that several related plants in folk medicine as antiophidic agents do not act directly upon venom toxins but indirectly on its symptoms. Anyway, some studies have shown the potentiality of some vegetal species acting in two ways: directly, neutralizing venom toxins, or indirectly, by having some of the pharmacological activities mentioned above. For example, Jatropha gossypiifolia (Euphorbiaceae), a plant species studied very much in our research group, showed significant antiophidic properties, inhibiting biological and enzymatic activities from Bothrops venoms [96, 119], and presented anti-inflammatory, antioxidant, anticoagulant, and antimicrobial properties in preclinical assays [81]. So, plants which possess these biological activities determined in previous studies might be preferred or prioritized in studies searching for antiophidic plants.

The mechanism by which medicinal plants neutralize the toxic venom constituents is still unknown, but many hypotheses have been proposed, such as protein precipitation, enzyme inactivation, proteolytic degradation, metal chelation, antioxidant action, and a combination of these mechanisms [15]. In this context, some improvements in this understanding have been achieved in the last years, through the use of in silico methods (e.g., docking simulations) to analyze the interaction of compounds isolated from plants and certain classes of snake venom toxins such as PLA2 and SVMP [120122].

The use of medicinal plants may present several advantages, such as low cost, being easily available, being stable at room temperature, and possibility of neutralization of a wide range of venom components [15]. In addition, since medicinal plants are an extremely complex mixture, it is possible that there may be a synergistic action of different compounds in plant, acting in distinct targets, inhibiting a broad spectrum of venom toxins [12, 15]. According to literature, interestingly, there are some plants in which the crude extract is more active than the isolated constituents [15], which supports the hypothesis of the synergistic action of plant components.

4.2. Plants Inhibiting Naja Snakes

A summary of active plants against Naja snakes local effects is presented in Table 2. Naja species are commonly called cobras. They typically occur in regions throughout Africa and Southern Asia. The outcomes of venom toxicity include nephro-, neuro-, and cardiotoxicity, respiratory and circulatory collapse, necrosis, hemorrhage, and edema [13]. A great number of the plants showed in this review were tested against Naja species. However, it is important to mention that only a very small number of these plants were assessed in vivo, and so the scientific evidences of antiophidic activities of these species are based on enzymatic in vitro assays, especially against SVHs, a class of toxin particularly relevant in cobras. The study of Molander et al. [82] presented several medicinal plants identified as potent inhibitors of N. nigricollis SVHs, PLA2, and proteases, which could indicate a potential rich source of inhibitors of necrosis induced by these venom, which must be evaluated in vivo later [82]. The same group, in a more recent study [123], investigated the skin permeation, ex vivo inhibition of venom induced tissue destruction, and wound healing potential of African plants used against snakebite, which included the most potent inhibitors identified in the previous work [82]. A total of 30 plant species were tested against Naja nigricollis and Bitis arietans employing in vitro and ex vivo models [123]. However, although plant extracts have showed potential in inhibiting snake venom enzymes, this study showed no effect against cell death and tissue damage.

4.3. Plants Inhibiting Bothrops Snakes

A summary of active plants against Bothrops snakes local effects is presented in Table 3. More than 90% of the snakebites reported every year in Latin America are caused by Bothrops species [8]. Envenomation by Bothrops snakes is characterized by a prominent and complex series of local pathological alterations, which appear rapidly after the bite in the anatomical site where venom is inoculated [168]. In a number of Bothrops bite cases, lack of neutralization of local effects results in permanent sequelae, with significative tissue loss [8]. So, the use of a therapeutic approach with high inhibitory potential and easy access and disponibility to victims, which could neutralize rapidly the onset of these local manifestations, is interesting. Most of the inhibitory studies with Bothrops snakes were performed in Brazil, which could be associated with richness of Brazilian flora as well as the epidemiological aspects of this country. The work performed by De Moura et al. [33] could be highlighted, where these authors performed an ethnopharmacological-guided screening of plants with reputation against snakebite in Santarém, Western Pará, Brazil. Twelve species were evaluated against Bothrops jararaca snake venom induced hemorrhage and some of them presented very significative results, showing, thus, the relevance of traditional knowledge in the survey of antiophidic plants [33].

Table 3.

List of medicinal plants with inhibitory potential against local effects induced by Bothrops snakes.

Plant name Part used Snake venom Inhibited activities Reference(s)
In vitro In vivo
Acanthaceae
Justicia pectoralis # Leaf B. jararaca Hemorrhage [33]
Amaranthaceae
Blutaparon portulacoides Aerial parts B. jararacussu Edema [109]
Anacardiaceae
Anacardium excelsum Leaf, twig B. asper PLA2 [111]
Annonaceae
Ephedranthus columbianus Leaf, twig B. asper PLA2 [111]
Sapranthus isae Leaf, twig B. asper PLA2 [111]
Apocynaceae
Allamanda cathartica # Branch, leaf, stem B. atrox Hemorrhage [124]
Fernaldia pandurata (syn. Mandevilla velutina) Leaf, stem, subterranean system B. alternatus, B. jararacussu, B. moojeni, B. pirajai PLA2 Edema, hemorrhage, myotoxicity [125]
Tabernaemontana catharinensis Root bark B. jararacussu Myotoxicity Myotoxicity∗∗ [126]
Araceae
Dracontium croatii # Rhizome B. asper Edema [127]
Philodendron megalophyllum # Liana, vine B. atrox, B. jararaca PLA2 Edema, hemorrhage [33, 128]
Philodendron tripartitum # Branch, leaf B. atrox Hemorrhage [124]
Asteraceae
Chaptalia nutans Leaf B. asper Edema [129]
Eclipta prostrata (syn. Eclipta alba)# Aerial parts B. jararaca, B. jararacussu Myotoxicity Myotoxicity [130]
Mikania glomerata Leaf B. jararaca Edema, hemorrhage, peritonitis [131, 132]
Neurolaena lobata # Branch, leaf, stem B. atrox Hemorrhage [124]
Pseudelephantopus spicatus # Whole plant B. atrox Hemorrhage [124]
Bignoniaceae
Fridericia chica (syn. Arrabidaea chica) Leaf B. atrox Edema [133]
Tabebuia aurea Stem bark B. neuwiedi H2O2 production by peritoneal macrophages Edema, hemorrhage, myonecrosis, peritonitis [110]
Tabebuia rosea # Stem bark B. asper, B. atrox PLA2 Edema∗∗, Hemorrhage [124, 127, 134]
Bixaceae
Bixa orellana # Branch, leaf B. asper, B. atrox PLA2 Edema∗∗, hemorrhage [124, 127, 134]
Boraginaceae
Cordia verbenacea Leaf B. jararacussu Edema [135]
Clusiaceae
Clusia fluminensis Fruit B. jararaca Proteolytic Hemorrhage∗∗ [136]
Combretaceae
Combretum leprosum Root B. jararaca, B. jararacussu Collagenase, myotoxicity, PLA2, proteolytic Edema, hemorrhage, myotoxicity∗∗ [99]
Connaraceae
Connarus favosus # Bark B. atrox, B. jararaca PLA2, proteolytic Edema, hemorrhage∗∗∗ [33, 115, 128]
Costaceae
Costus lasius # ND B. atrox PLA2 [134]
Costus spicatus Leaf B. atrox Edema, hyperalgesia [137]
Crassulaceae
Bryophyllum pinnatum (syn. Kalanchoe pinnata)# Leaf B. jararaca PLA2 Edema, hemorrhage [138]
Kalanchoe laciniata (syn. Kalanchoe brasiliensis)# Leaf B. jararaca PLA2 Edema, hemorrhage∗∗∗ [33, 138]
Dicranaceae
Dicranum frigidum Whole plant B. asper PLA2 [111]
Dilleniaceae
Davilla elliptica Leaf B. jararaca Hemorrhage [139]
Euphorbiaceae
Croton urucurana Stem bark B. jararaca Hemorrhage [140]
Hevea nitida Leaf, twig B. asper PLA2 [111]
Jatropha gossypiifolia # Leaf B. erythromelas, B. jararaca PLA2, proteolytic, SVH Edema, hemorrhage, myotoxicity [96, 119]
Jatropha mollissima # Leaf B. erythromelas, B. jararaca Edema, hemorrhage, myotoxicity, peritonitis [141]
Fabaceae
Abarema cochliacarpos Stem bark B. leucurus Decreased motor function, edema, hyperalgesia, myotoxicity [101]
Brownea ariza Bark, leaf B. asper PLA2, proteolytic [142]
Brownea rosa-de-monte# Leaf, stem bark B. asper, B. atrox PLA2, proteolytic Edema∗∗∗, hemorrhage∗∗∗ [124, 127, 134, 143]
Cassia fistula # Seed B. jararaca Hemorrhage [33]
Dipteryx alata Bark B. jararacussu Myotoxicity [144]
Pentaclethra macroloba # Bark B. alternatus, B. asper, B. atrox, B. jararaca, B. jararacussu, B. moojeni, B. neuwiedi, B. pirajai PLA2 Edema, hemorrhage, myotoxicity [145]
Plathymenia reticulata # Bark B. atrox, B. jararaca PLA2 Edema, hemorrhage [33, 128]
Schizolobium parahyba Leaf B. alternatus, B. moojeni, B. pauloensis PLA2 Hemorrhage, myotoxicity∗∗∗ [146, 147]
Senna dariensis # Whole plant B. atrox PLA2 Hemorrhage [124, 134]
Heliconiaceae
Heliconia curtispatha # Rhizome B. asper, B. atrox PLA2, proteolytic Edema∗∗∗, hemorrhage [124, 127, 134, 148]
Heliconia latispatha Rhizome B. asper PLA2, proteolytic [148]
Heliconia wagneriana Rhizome B. asper PLA2, proteolytic [148]
Hymenophyllaceae
Trichomanes elegans# Whole plant B. asper, B. atrox PLA2 Edema∗∗∗, hemorrhage [124, 127, 134]
Hypericaceae
Hypericum brasiliense Whole plant B. jararaca Proteolytic Edema, hemorrhage [149]
Icacinaceae
Casimirella ampla (syn. Humirianthera ampla) Root B. atrox, B. jararaca, B. jararacussu Myotoxicity, PLA2, proteolytic Edema∗∗∗, hemorrhage∗∗, myotoxicity [102]
Lamiaceae
Marsypianthes chamaedrys # Inflorescence, leaf B. atrox PLA2 Peritonitis [108]
Peltodon radicans Flower, leaf, stem B. atrox Edema [150]
Lauraceae
Aniba parviflora (syn. Aniba fragrans)# Bark, leaf B. atrox, B. jararaca PLA2 Edema, hemorrhage [33, 128]
Loasaceae
Nasa speciosa (syn. Loasa speciosa) Leaf B. asper Edema [129]
Loganiaceae
Strychnos pseudoquina Leaf B. jararaca Hemorrhage [139]
Strychnos xinguensis # ND B. atrox PLA2 [134]
Loranthaceae
Struthanthus orbicularis # Branch, leaf B. asper, B. atrox PLA2 Edema∗∗, hemorrhage [124, 127, 134]
Magnoliaceae
Magnolia espinalii (syn. Talauma espinalii) Leaf, twig B. asper PLA2 [111]
Magnolia guatapensis (syn. Dugandiodendron guatapense) Leaf, twig B. asper PLA2 [111]
Magnolia hernandezii (syn. Talauma hernandezii) Leaf, twig B. asper PLA2 [111]
Magnolia yarumalensis (syn. Dugandiodendron yarumalense) Leaf, twig B. asper PLA2 [111]
Malpighiaceae
Byrsonima crassa Leaf B. jararaca Hemorrhage
Malvaceae
Pachira glabra (syn. Bombacopsis glabra) Root bark B. pauloensis Hemorrhage [151]
Melastomataceae
Bellucia dichotoma # Bark B. atrox, B. jararaca PLA2 Edema∗∗∗, hemorrhage∗∗ [33, 98, 128, 152]
Mouriri pusa Leaf B. jararaca Hemorrhage [139]
Meliaceae
Carapa guianensis Leaf, twig B. asper PLA2 [111]
Cedrela odorata Leaf, twig B. asper PLA2 [111]
Swietenia humilis Leaf, twig B. asper PLA2 [111]
Swietenia macrophylla Leaf, twig B. asper PLA2 [111]
Swietenia mahagoni Leaf, twig B. asper PLA2 [111]
Menispermaceae
Cissampelos pareira # Leaf B. asper Hemorrhage [153]
Moraceae
Brosimum guianense Leaf B. atrox Hemorrhage, pain [154]
Castilla elastica # Branch, leaf, stem B. atrox Hemorrhage [124]
Ficus nymphaeifolia # Branch, leaf, stem B. asper, B. atrox Edema∗∗, hemorrhage [124, 127]
Musaceae
Musa × paradisíaca # Exudate B. jararacussu PLA2 Hemorrhage∗∗, myonecrosis∗∗ [155]
Myrtaceae
Myrcia guianensis Leaf B. jararaca PLA2 Hemorrhage [156]
Passifloraceae
Passiflora quadrangularis # Branch, leaf B. atrox Hemorrhage [124]
Piperaceae
Piper arboreum # Branch, leaf B. atrox PLA2 Hemorrhage [124, 134]
Piper pulchrum # Leaf, branch, stem B. atrox Hemorrhage [124]
Polypodiaceae
Pleopeltis percussa # Branch, leaf, stem, whole plant B. asper, B. atrox PLA2, proteolytic Edema∗∗, hemorrhage [124, 127, 134]
Rubiaceae
Gonzalagunia panamensis # Branch, leaf, stem B. asper, B. atrox PLA2 Edema∗∗, hemorrhage [124, 127, 134]
Randia aculeata # Fruit B. asper Myotoxicity [78]
Uncaria tomentosa Root B. asper Edema [129]
Rutaceae
Citrus limon # Ripe fruit B. asper, B. atrox Edema∗∗∗, hemorrhage [124, 127]
Murraya paniculata # Leaf, twig B. asper PLA2 [111]
Salicaceae
Casearia grandiflora # Leaf B. moojeni, B. neuwiedi PLA2 Myotoxicity [157]
Casearia sylvestris # Leaf B. asper, B. jararacussu, B. moojeni, B. neuwiedi, B. pirajai Myonecrosis, neuromuscular blockade Edema, hemorrhage, myotoxicity [158160]
Sapindaceae
Billia hippocastanum Leaf, twig B. asper PLA2 [111]
Cupania americana Leaf, twig B. asper PLA2 [111]
Sapindus saponaria In vitro cultivated callus, leaf, twig B. alternatus, B. asper, B. jararacussu, B. moojeni PLA2 Hemorrhage [111, 161]
Serjania erecta Aerial parts B. jararacussu PLA2 Edema, hemorrhage, myotoxicity [162]
Siparunaceae
Siparuna thecaphora # Branch, leaf, stem B. atrox Hemorrhage [124]
Solanaceae
Capsicum annuum (syn. Capsicum frutescens)# Ripe fruit B. atrox Hemorrhage [124]
Urticaceae
Urera baccifera Leaf B. asper Edema [129]
Velloziaceae
Vellozia squamata (syn. Vellozia flavicans) Leaf B. jararacussu Neuromuscular blockade and cell damage [163]
Zingiberaceae
Curcuma longa # Rhizome B. alternatus Edema, hemorrhage, necrosis [164]
Renealmia alpinia # Leaf, rhizome B. asper, B. atrox PLA2, proteolytic Edema∗∗, hemorrhage [107, 127, 134, 165, 166]

ND = information not described in the work; PLA2 = snake venom phospholipase A2; H2O2: hydrogen peroxide. #Vegetal species with related folk use as antiophidic agents, as showed in Table 1. Studies where inhibitory activity was assessed only by preincubation of venom with extract (see Section 4.1 for details). ∗∗Active in preincubation tests but inactive or only poorly active when extract was used independently of venom (pre-, co-, or posttreatment protocols). ∗∗∗Active in preincubation tests and when used independently of venom (pre-, co-, or posttreatment protocols).

4.4. Plants Inhibiting Bitis Snakes

A summary of active plants against Bitis snakes local effects is presented in Table 4. Snakes belonging to the genus Bitis are implicated in many accidents with humans in Africa. The envenomation by Bitis often results in severe local damage, hypotension, coagulopathy, thrombocytopenia, and spontaneous local bleeding and, in the absence of antivenom therapy, the accident can be fatal. Bitis arietans is one of the three species of snakes of medical importance in Africa and its venom is considered the most toxic venom of the viper group [169]. Regarding the plants with inhibitory action upon Bitis snakes, only one in vivo study of antiophidic activity was found until date. Although many works have been showing the potential of medicinal plants against several snake venoms, only three works were identified evaluating the action of plants against Bitis, from which two are the same screening studies of plants against Naja snake venom discussed before (Section 4.2) [82, 123].

4.5. Plants Inhibiting Daboia/Vipera Snakes

A summary of active plants against Daboia/Vipera snakes local effects is presented in Table 5. The Daboia genus is represented by a single species, named Daboia russelii, also popularly known as Russell's viper. This species is widespread in many parts of Asia and is responsible for large morbimortality due to snakebites in this continent [183, 184]. Russell's viper was formerly classified in Vipera genus and is therefore better known as Vipera russelii, since the new accepted nomenclature (Daboia russelii) is not yet universally followed [184]. For this reason, to avoid confounding, we use the term Daboia/Vipera in some occasions.

Table 5.

List of medicinal plants with inhibitory potential against local effects induced by Daboia/Vipera snakes.

Plant name Part used Snake venom Inhibited activities Reference(s)
In vitro In vivo
Anacardiaceae
Anacardium occidentale # Bark D. russelli PLA2, proteolytic, SVH Edema, hemorrhage, myotoxicity [170]
Mangifera indica # Stem bark D. russelii LAAO, PLA2, SVH, proteolytic Edema, hemorrhage, myotoxicity [171]
Apocynaceae
Hemidesmus indicus # Root D. russelli Hemorrhage [172]
Tylophora indica # Leaf, root D. russelli PLA2 Hemorrhage [85]
Aristolochiaceae
Aristolochia bracteolata # Leaf, root D. russelli PLA2 Hemorrhage [85]
Aristolochia indica # Root D. russelii LAAO, proteolytic [173]
Asteraceae
Pluchea indica # Root D. russelli Hemorrhage [172]
Euphorbiaceae
Acalypha indica # Leaf D. r. russelli Hemorrhage, necrosis [174]
Fabaceae
Butea monosperma # Stem bark D. russelii SVH Hemorrhage [175]
Mimosa pudica # Root D. russelii Proteolytic, SVH [91]
Tamarindus indica # Seed D. r. siamensis, D. russelii LAAO, PLA2, SVH, proteolytic Edema, hemorrhage, myotoxicity [176, 177]
Lamiaceae
Leucas aspera # Leaf, root D. russelii PLA2 Hemorrhage [85]
Vitex negundo # Root D. russelii Edema, hemorrhage [178]
Loganiaceae
Strychnos nux-vomica# Seed D. russelii PLA2 Hemorrhage [95]
Moraceae
Morus alba # Leaf D. russelii Proteolytic, SVH Edema, hemorrhage, myotoxicity [179]
Phyllanthaceae
Phyllanthus emblica (syn. Emblica officinalis)# Root D. russelii Edema, hemorrhage [178]
Piperaceae
Piper longum # Fruit D. russelii Hemorrhage Edema, hemorrhage, myotoxicity, necrosis [104]
Rubiaceae
Ophiorrhiza mungos # Root D. russelii Hemorrhage [180]
Salvadoraceae
Azima tetracantha Leaf D. russelii SVH [181]
Vitaceae
Vitis vinifera Seed D. russelii Proteolytic, SVH Edema, hemorrhage, myonecrosis [182]

LAAO = L-amino acid oxidase; PLA2 = snake venom phospholipase A2; SVH = snake venom hyaluronidase. #Vegetal species with related folk use as antiophidic agents, as showed in Table 1. Studies where inhibitory activity was assessed only by preincubation of venom with extract (see Section 4.1 for details).

In humans, Russell's viper bite causes severe local tissue damage; more frequently the necrosis results in an irreversible loss of tissue and requires amputation of the affected limb [182, 183, 185]. As observed with Bothrops snakes, several studies have showed the inhibitory potential of medicinal plants against local effects of Russell's viper venom, including several preclinical in vivo studies.

4.6. Plants Inhibiting Lachesis Snakes

A summary of active plants against Lachesis snakes local effects is presented in Table 6. Lachesis muta is the longest venomous snake in the Americas and is distributed in the equatorial forests east of the Andes, ranging from eastern Ecuador, Colombia, Peru, northern Bolivia, and eastern and northern Venezuela, to Guyana, French Guyana, Surinam, and northern Brazil [100, 186]. L. muta snakebites are mainly characterized by systemic (generalized bleeding, coagulopathy, renal failure, and shock) and local effects (pain, hemorrhage, edema, and necrosis). In South America, Bothrops species has a higher incidence of accidents than L. muta, but, on the other hand, Lachesis bites led to more severe symptoms and have lethality indexes significantly higher than Bothrops [100, 186, 187]. Thus, the study of medicinal plants against these snakes, too, is of very much relevance. However, only a few studies were detected with plants against Lachesis snakes.

Table 6.

List of medicinal plants with inhibitory potential against local effects induced by Lachesis snakes.

Plant name Part used Snake venom Inhibited activities Reference(s)
In vitro In vivo
Apocynaceae
Fernaldia pandurata (syn. Mandevilla velutina) Root L. muta Proteolytic, PLA2 Hemorrhage [188]
Asteraceae
Eclipta prostrata (syn. Eclipta alba)# Aerial parts, root L. muta Myotoxicity, proteolytic, PLA2 Hemorrhage, myotoxicity [130, 188]
Mikania glomerata Root L. muta Proteolytic, PLA2 [188]
Erythroxylaceae
Erythroxylum ovalifolium Stem L. muta Proteolytic, PLA2 Edema∗∗∗, hemorrhage∗∗∗ [189]
Erythroxylum subsessile Stem L. muta Proteolytic, PLA2 Edema∗∗∗, hemorrhage∗∗∗ [189]
Euphorbiaceae
Jatropha elliptica Root, stem L. muta Proteolytic, PLA2 Hemorrhage [188]
Fabaceae
Pentaclethra macroloba # Bark L. muta Hemorrhage [145]
Stryphnodendron adstringens (syn. Stryphnodendron barbatimam) Root L. muta Proteolytic, PLA2 Hemorrhage [188]
Melastomataceae
Miconia albicans Stem L. muta Proteolytic, PLA2 Hemorrhage [188]
Miconia fallax Stem L. muta Proteolytic, PLA2 Hemorrhage [188]
Miconia sellowiana ND L. muta Proteolytic, PLA2 Hemorrhage [188]
Tibouchina stenocarpa Root L. muta Proteolytic, PLA2 Hemorrhage [188]
Salicaceae
Casearia sylvestris # Root L. muta Proteolytic Hemorrhage [188]
Sapotaceae
Manilkara subsericea Leaf, stem L. muta Proteolytic, PLA2 Edema∗∗, hemorrhage∗∗ [100]

ND = information not described in the work; PLA2 = snake venom phospholipase A2. #Vegetal species with related folk use as antiophidic agents, as showed in Table 1. Studies where inhibitory activity was assessed only by preincubation of venom with extract (see Section 4.1 for details). ∗∗Active in preincubation tests but inactive or only poorly active when extract was used independently of venom (pre-, co-, or posttreatment protocols). ∗∗∗Active in preincubation tests and when used independently of venom (pre-, co-, or posttreatment protocols).

4.7. Plants Inhibiting Crotalus Snakes

A summary of active plants against Crotalus snakes local effects is presented in Table 7. Snakes from Crotalus durissus complex, popularly known as rattlesnakes, are dispersed northward into North America and southward into South America. Species of the Crotalus durissus complex pose a serious medical problem in many parts of the America [199]. Crotalic venom is considered highly toxic and more lethal in comparison with that of the genus Bothrops, having three main actions: neurotoxic, myotoxic, and coagulant [200, 201]. The crotalic accident is characterized by local and systemic manifestations, but while the local alterations are only discrete, the systemic manifestations are severe, leading to high chances of death [201]. Probably due to this low local effect in envenomed victims, the inhibition of these effects by plants is, until now, little investigated, especially when compared to other species with characteristic severe local effects.

Table 7.

List of medicinal plants with inhibitory potential against local effects induced by Crotalus snakes.

Plant name Part used Snake venom Inhibited activities Reference(s)
In vitro In vivo
Apocynaceae
Fernaldia pandurata (syn. Mandevilla velutina) Leaf, stem, subterranean system C. d. terrificus PLA2 Edema, myotoxicity [125]
Mandevilla illustris Subterranean system C. d. terrificus PLA2 [190]
Asteraceae
Eclipta prostrata (syn. Eclipta alba)# Aerial parts C. d. terrificus Myotoxicity Myotoxicity [11]
Bignoniaceae
Fridericia chica (syn. Arrabidaea chica) Leaf C. d. ruruima Edema [133]
Fabaceae
Pentaclethra macroloba # Bark C. atrox Hemorrhage [145]
Schizolobium parahyba Leaf C. d. terrificus PLA2 Edema [146, 147]
Musaceae
Musa × paradisiaca# Exudate C. d. terrificus PLA2 [155]
Rubiaceae
Randia aculeata # Fruit C. simus Myotoxicity [78]
Sapindaceae
Sapindus saponaria In vitro cultivated callus C. d. terrificus PLA2 [161]

PLA2 = snake venom phospholipase A2. #Vegetal species with related folk use as antiophidic agents, as showed in Table 1. Studies where inhibitory activity was assessed only by preincubation of venom with extract (see Section 4.1 for details).

4.8. Plants Inhibiting Other Snakes

Besides the snakes discussed above, some other studies are found with plants inhibiting other snake species, such as those from Echis and Bungarus genus. For other snakes species such as Calloselasma rhodostoma, Philodryas olfersii, and Montivipera xanthina, only isolated studies with a single plant, in each one, were found. These plants are summarized in Table 8. Many reasons may be stated for this lack of studies, such as low level of local effects, incidence restricted to a small region of the world, and usual low efficacy of plant extracts due to possible extremely high toxicity. However, it is important to highlight that the lack of studies does not mean a lower medical relevance of these species. For example, the saw-scaled viper (Echis carinatus) and the common Indian krait (Bungarus caeruleus), along with spectacled cobra (Naja naja) and Russell's viper (Daboia russelii), are included among the referred “Big Four” venomous snakes of India, being responsible for the majority of morbid complications, characterized by persistent and progressive tissue necrosis even after treatment with antivenom [195, 202]. Therefore, future studies with plants aiming at the inhibition of the local effects induced by these snakes are encouraged.

Table 8.

List of medicinal plants with inhibitory potential against local effects induced by other snakes.

Plant name Part used Snake venom Inhibited activities Reference(s)
In vitro In vivo
Amaryllidaceae
Crinum jagus Bulb Echis ocellatus Hemorrhage Myotoxicity∗∗ [167, 191]
Asteraceae
Artemisia absinthium Aerial parts Montivipera xanthina Edema [192]
Mikania laevigata Leaf Philodryas olfersii Inflammation, myotoxicity [193]
Fabaceae
Albizia lebbeck # Seed Echis carinatus Proteolytic, SVH Hemorrhage, myotoxicity [194]
Mimosa pudica # Root Bungarus caeruleus, Echis carinatus PLA2, proteolytic, SVH Edema [91, 92]
Parkia biglobosa Stem bark Echis ocellatus Cytotoxicity against muscle cells, hemorrhage [93]
Pentaclethra macroloba # Bark Calloselasma rhodostoma Hemorrhage [145]
Senna auriculata (syn. Cassia auriculata) Leaf Echis carinatus PLA2, proteolytic, SVH Edema∗∗∗, hemorrhage∗∗∗, myotoxicity∗∗∗ [195]
Malvaceae
Hibiscus aethiopicus Whole plant Echis carinatus, Echis ocellatus Cytotoxicity against muscle cells, hemorrhage Edema∗∗∗, hemorrhage∗∗∗ [196, 197]
Salvadoraceae
Azima tetracantha Leaf Bungarus caeruleus PLA2 [181]
Vitaceae
Vitis vinifera Seed Echis carinatus Proteolytic, SVH Edema, hemorrhage, myotoxicity [198]

PLA2 = snake venom phospholipase A2; SVH = snake venom hyaluronidase. #Vegetal species with related folk use as antiophidic agents, as showed in Table 1. Studies where inhibitory activity was assessed only by preincubation of venom with extract (see Section 4.1 for details). ∗∗Active in preincubation tests but inactive or only poorly active when extract was used independently of venom (pre-, co-, or posttreatment protocols). ∗∗∗Active in preincubation tests and when used independently of venom (pre-, co-, or posttreatment protocols).

4.9. Studies in Humans

Along our antiophidic plants database, only one clinical study was found in literature, evaluating the inhibitory properties of a polyherbal formulation, externally applied, against soft-tissue necrosis after Naja atra (Chinese cobra) bite [203]. This polyherbal formulation, known in China as Jidesheng antivenom, is composed of the following ingredients: Ganchan (Succys Bufo), Dijincao (Herba Euphorbiae Humifusae), Chonglou (Rhizoma Paridis Chonglou), and Wugong (Scolopendra). This was a retrospective study performed with 126 patients with skin and soft-tissue necrosis due cobra bite, with the control group being treated externally with 40% glyceride magnesium sulfate (n = 52) and the treatment group performed by application of Jidesheng antivenom externally (n = 74). The authors observed statistically significant differences in maximum local necrotic area of skin and soft tissues, healing time, and skin-grafting rate between the control and treatment groups (P < 0.05), thus indicating that external application of Jidesheng antivenom may help to promote wound healing and reduce the skin-grafting rate in cases of skin and soft-tissue necrosis due to Chinese cobra bite [203]. Considering the composition of the Jidesheng antivenom, the authors discuss that each ingredient in this product may exert antipyretic, antidotal, antiphlogistic, and analgesic effects, according to previous results with each ingredient isolated, which could contribute to the inhibitory effect observed by the formulation [203]. The result obtained in this clinical study is very promising, since it shows that a plant-derived product showed significant results in humans, thus pointing to the potentiality of this kind of product in treatment of snake venom induced local effects. However, only one study is insufficient to ensure the potentiality of medicinal plants against snakebites, with performing more clinical studies, preferentially controlled and randomized ones, to bring more evidences of the viability of the approach for future safe and effective use in humans being necessary. So, more clinical studies, especially ones with those plants highlighted in this review and those presenting good preclinical in vivo evidences of antiophidic efficacy, are highly encouraged.

5. Concluding Remarks

The popular use of vegetal species does not necessarily imply efficacy, but it gives a selected list of medicinal plants that can be primarily studied in pharmacologic assays for possible antiophidic effects, directing future studies in this area. In fact, a great number of these species that have been evaluated against local tissue damage induced by several snake species showed inhibitory potential against hyaluronidase, phospholipase, proteolytic, hemorrhagic, myotoxic, and edematogenic activities, among others. Therefore, considering the limitations of conventional antivenom serotherapy, especially its poor efficacy against local effects, the treatment with medicinal plants may provide a potential adjuvant alternative to treat snakebites, being used to complement the activity and effectiveness of available snake venom therapy. The main potential advantages of antiophidic plants are their low cost, easy access, stability at room temperature, and ability to neutralize a broad spectrum of toxins, including the local tissue damage.

Interestingly, some studies have showed that the crude extracts are more powerful than the individual herbal compounds, which could, at a certain extent, justify the development of herbal products containing these plants instead of medicines containing isolated compounds, which in turn could be more rapidly available in market, after proof of safety, effectiveness, and quality of these products. However, despite the existence of many plants with great potential, no natural antiophidic product is available in market, which points to question of the need for further studies. Only a few numbers of patents regarding herbal products against snakebites were found in literature. Some patents regarding the use of Chinese medicinal plants against snake and bug bites were found. In our research group, two patents were deposited concerning the processes of obtaining extracts, fraction, isolated compounds, and pharmaceutical compositions of some plants studied by our group applied in the treatment of accidents with venomous animals (BR 10 2013 034046 4 A2 and BR 10 2012 026958 9 A2). Thus, the number of patents with antiophidic herbal products is still relatively small. For this reason, we encourage pharmacologists and toxinologists around the world to intensify studies with antiophidic plants, especially prioritizing those with the greatest number of indications in traditional medicine and emphasizing clinical studies with the most active plants in preclinical studies, given that the low number of human studies is one of the major obstacles for the future application of herbal products with antiophidic potential. No less important, toxicological studies are also extremely necessary to ensure the safety of these products.

In conclusion, the data presented in this review provides an updated scenario for and insights into future research aiming at validation of medicinal plants as antiophidic agents and, based on scientific evidences, strengthens the potentiality of medicinal plants and ethnopharmacological knowledge as a tool for design of potent inhibitors and/or herbal medicines against venom toxins.

Acknowledgments

Matheus de Freitas Fernandes-Pedrosa is CNPq fellowship-honored researcher. Juliana Félix-Silva acknowledges CAPES for the Ph.D. scholarship.

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

  • 1.Gutiérrez J. M., Burnouf T., Harrison R. A., et al. A call for incorporating social research in the global struggle against snakebite. PLoS Neglected Tropical Diseases. 2015;9(9, article e0003960) doi: 10.1371/journal.pntd.0003960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Kasturiratne A., Wickremasinghe A. R., de Silva N., et al. The global burden of snakebite: a literature analysis and modelling based on regional estimates of envenoming and deaths. PLoS Medicine. 2008;5(11, article e218) doi: 10.1371/journal.pmed.0050218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Gutiérrez J. M., Warrell D. A., Williams D. J., et al. The need for full integration of snakebite envenoming within a global strategy to combat the neglected tropical diseases: the way forward. PLoS Neglected Tropical Diseases. 2013;7(6) doi: 10.1371/journal.pntd.0002162.e2162 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Harrison R. A., Hargreaves A., Wagstaff S. C., Faragher B., Lalloo D. G. Snake envenoming: a disease of poverty. PLoS Neglected Tropical Diseases. 2009;3(12, article e569) doi: 10.1371/journal.pntd.0000569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Warrell D. A. Venomous animals. Medicine. 2012;40(3):159–163. doi: 10.1016/j.mpmed.2011.12.001. [DOI] [Google Scholar]
  • 6.Guimarães C. L. S., Moreira-Dill L. S., Fernandes R. S., et al. Biodiversity as a source of bioactive compounds against snakebites. Current Medicinal Chemistry. 2014;21(25):2952–2979. doi: 10.2174/09298673113206660295. [DOI] [PubMed] [Google Scholar]
  • 7.Kang T. S., Georgieva D., Genov N., et al. Enzymatic toxins from snake venom: structural characterization and mechanism of catalysis. The FEBS Journal. 2011;278(23):4544–4576. doi: 10.1111/j.1742-4658.2011.08115.x. [DOI] [PubMed] [Google Scholar]
  • 8.GutiΘrrez J. M., Lomonte B. Local tissue damage induced by Bothrops snake venoms. A review. Memorias do Instituto Butantan. 1989;51(4):211–23. [Google Scholar]
  • 9.Gutiérrez J. M., León G., Burnouf T. Antivenoms for the treatment of snakebite envenomings: the road ahead. Biologicals. 2011;39(3):129–142. doi: 10.1016/j.biologicals.2011.02.005. [DOI] [PubMed] [Google Scholar]
  • 10.León G., Herrera M., Segura Á., Villalta M., Vargas M., Gutiérrez J. M. Pathogenic mechanisms underlying adverse reactions induced by intravenous administration of snake antivenoms. Toxicon. 2013;76:63–76. doi: 10.1016/j.toxicon.2013.09.010. [DOI] [PubMed] [Google Scholar]
  • 11.Mors W. B., do Nascimento M. C., Parente J. P., da Silva M. H., Melo P. A., Suarez-Kurtz G. Neutralization of lethal and myotoxic activities of south american rattlesnake venom by extracts and constituents of the plant Eclipta prostrata (Asteraceae) Toxicon. 1989;27(9):1003–1009. doi: 10.1016/0041-0101(89)90151-7. [DOI] [PubMed] [Google Scholar]
  • 12.Santhosh M. S., Hemshekhar M., Sunitha K., et al. Snake venom induced local toxicities: plant secondary metabolites as an auxiliary therapy. Mini-Reviews in Medicinal Chemistry. 2013;13(1):106–123. doi: 10.2174/138955713804484730. [DOI] [PubMed] [Google Scholar]
  • 13.Shabbir A., Shahzad M., Masci P., Gobe G. C. Protective activity of medicinal plants and their isolated compounds against the toxic effects from the venom of Naja (cobra) species. Journal of Ethnopharmacology. 2014;157:222–227. doi: 10.1016/j.jep.2014.09.039. [DOI] [PubMed] [Google Scholar]
  • 14.Dey A., de J. N. Phytopharmacology of antiophidian botanicals: A review. International Journal of Pharmacology. 2012;8(2):62–79. doi: 10.3923/ijp.2012.62.79. [DOI] [Google Scholar]
  • 15.Gomes A., Das R., Sarkhel S., et al. Herbs and herbal constituents active against snake bite. Indian Journal of Experimental Biology. 2010;48(9):865–878. [PubMed] [Google Scholar]
  • 16.Sulochana A., Raveendran D., Krishnamma A., Oommen O. Ethnomedicinal plants used for snake envenomation by folk traditional practitioners from Kallar forest region of South Western Ghats, Kerala, India. Journal of Intercultural Ethnopharmacology. 2015;4(1):p. 47. doi: 10.5455/jice.20141010122750. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Butt M. A., Ahmad M., Fatima A., et al. Ethnomedicinal uses of plants for the treatment of snake and scorpion bite in Northern Pakistan. Journal of Ethnopharmacology. 2015;168:164–181. doi: 10.1016/j.jep.2015.03.045. [DOI] [PubMed] [Google Scholar]
  • 18.Dharmadasa R. M., Akalanka G. C., Muthukumarana P. R. M., Wijesekara R. G. S. Ethnopharmacological survey on medicinal plants used in snakebite treatments in Western and Sabaragamuwa provinces in Sri Lanka. Journal of Ethnopharmacology. 2016;179:110–127. doi: 10.1016/j.jep.2015.12.041. [DOI] [PubMed] [Google Scholar]
  • 19.Kala C. P. Herbal treatment for snakebites in Uttarakhand state of India. Indian Journal of Natural Products and Resources. 2015;6(1):56–61. [Google Scholar]
  • 20.Samy R. P., Thwin M. M., Gopalakrishnakone P., Ignacimuthu S. Ethnobotanical survey of folk plants for the treatment of snakebites in Southern part of Tamilnadu, India. Journal of Ethnopharmacology. 2008;115(2):302–312. doi: 10.1016/j.jep.2007.10.006. [DOI] [PubMed] [Google Scholar]
  • 21.Rajadurai M., Vidhya V. G., Ramya M., Bhaskar A. Ethno-medicinal plants used by the traditional healers of pachamalai hills, Tamilnadu, India. Studies on Ethno-Medicine. 2009;3(1):39–41. [Google Scholar]
  • 22.Sarkhel S. Ethnobotanical survey of folklore plants used in treatment of snakebite in Paschim Medinipur district, West Bengal. Asian Pacific Journal of Tropical Biomedicine. 2014;4(5):416–420. doi: 10.12980/APJTB.4.2014C1120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Penchalapratap G., Sudarsanam G., Pushpan R., Prasad G. P. Herbal remedies for snake bites in ethnic practices of Chittoor District, Andhra Pradesh. Ancient Science of Life. 2010;29(4):13–16. [PMC free article] [PubMed] [Google Scholar]
  • 24.Singh A. K., Raghubanshi A. S., Singh J. S. Medical ethnobotany of the tribals of Sonaghati of Sonbhadra district, Uttar Pradesh, India. Journal of Ethnopharmacology. 2002;81(1):31–41. doi: 10.1016/S0378-8741(02)00028-4. [DOI] [PubMed] [Google Scholar]
  • 25.Kadel C., Jain A. K. Folklore claims on snakebite among some tribal communities of Central India. Indian Journal of Traditional Knowledge. 2008;7(2):296–299. [Google Scholar]
  • 26.Yesodharan K., Sujana K. A. Ethnomedicinal knowledge among Malamalasar tribe of Parambikulam wildlife sanctuary. Indian Journal of Traditional Knowledge. 2007;6(3):481–85. [Google Scholar]
  • 27.Coe F. G., Anderson G. J. Snakebite ethnopharmacopoeia of eastern Nicaragua. Journal of Ethnopharmacology. 2005;96(1-2):303–323. doi: 10.1016/j.jep.2004.09.026. [DOI] [PubMed] [Google Scholar]
  • 28.Prabu M., Kumuthakalavalli R. Folk remedies of medicinal plants for snake bites, scorpion stings and dog bites in Eastern Ghats of Kolli Hills, Tamil Nadu, India. International Journal of Research in Ayurveda and Pharmacy. 2012;3(5):696–700. doi: 10.7897/2277-4343.03523. [DOI] [Google Scholar]
  • 29.Sanz-Biset J., Campos-de-la-Cruz J., Epiquién-Rivera M. A., Cañigueral S. A first survey on the medicinal plants of the Chazuta valley (Peruvian Amazon) Journal of Ethnopharmacology. 2009;122(2):333–362. doi: 10.1016/j.jep.2008.12.009. [DOI] [PubMed] [Google Scholar]
  • 30.Hasan M. N., Azam M. N. K., Ahmed M. N., Hirashima A. A randomized ethnomedicinal survey of snakebite treatment in southwestern parts of Bangladesh. Journal of Traditional and Complementary Medicine. 2015;6(4):337–342. doi: 10.1016/j.jtcme.2015.03.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Owuor B. O., Kisangau D. P. Kenyan medicinal plants used as antivenin: a comparison of plant usage. Journal of Ethnobiology and Ethnomedicine. 2006;2(1, article 7) doi: 10.1186/1746-4269-2-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Kadir M. F., Karmoker J. R., Alam M. R., Jahan S. R., Mahbub S., Mia M. M. K. Ethnopharmacological survey of medicinal plants used by traditional healers and indigenous people in Chittagong Hill Tracts, Bangladesh, for the treatment of snakebite. Evidence-Based Complementary and Alternative Medicine. 2015;2015:23. doi: 10.1155/2015/871675.871675 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.De Moura V. M., Freitas De Sousa L. A., Cristina Dos-Santos M., et al. Plants used to treat snakebites in Santarém, western Pará, Brazil: an assessment of their effectiveness in inhibiting hemorrhagic activity induced by Bothrops jararaca venom. Journal of Ethnopharmacology. 2015;161:224–232. doi: 10.1016/j.jep.2014.12.020. [DOI] [PubMed] [Google Scholar]
  • 34.Vásquez J., Alarcón J. C., Jiménez S. L., et al. Main plants used in traditional medicine for the treatment of snake bites n the regions of the department of Antioquia, Colombia. Journal of Ethnopharmacology. 2015;170:158–166. doi: 10.1016/j.jep.2015.04.059. [DOI] [PubMed] [Google Scholar]
  • 35.Otero R., Fonnegra R., Jiménez S. L., et al. Snakebites and ethnobotany in the northwest region of Colombia. Part I: traditional use of plants. Journal of Ethnopharmacology. 2000;71(3):493–504. doi: 10.1016/S0378-8741(00)00243-9. [DOI] [PubMed] [Google Scholar]
  • 36.Rahmatullah M., Hasan A., Parvin W., et al. Medicinal plants and formulations used by the Soren clan of the Santal tribe in Rajshahi District, Bangladesh for treatment of various ailments. African Journal of Traditional, Complementary and Alternative Medicines. 2012;9(3):350–359. doi: 10.4314/ajtcam.v9i3.8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Rigat M., Vallès J., Dambrosio U., Gras A., Iglésias J., Garnatje T. Plants with topical uses in the Ripollès district (Pyrenees, Catalonia, Iberian Peninsula): Ethnobotanical survey and pharmacological validation in the literature. Journal of Ethnopharmacology. 2015;164:162–179. doi: 10.1016/j.jep.2015.01.055. [DOI] [PubMed] [Google Scholar]
  • 38.Jain A., Katewa S. S., Sharma S. K., Galav P., Jain V. Snakelore and indigenous snakebite remedies practiced by some tribals of Rajasthan. Indian Journal of Traditional Knowledge. 2011;10(2):258–268. [Google Scholar]
  • 39.Shukla A. N., Srinivastan S., Rawat A. K. S. An ethnobotanical study of medicinal plants of Rewa district, Madhya Pradesh. Indian Journal of Traditional Knowledge. 2010;9(1):191–202. [Google Scholar]
  • 40.Panghal M., Arya V., Yadav S., Kumar S., Yadav J. P. Indigenous knowledge of medicinal plants used by Saperas community of Khetawas, Jhajjar District, Haryana, India. Journal of Ethnobiology and Ethnomedicine. 2010;6, article 4 doi: 10.1186/1746-4269-6-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Khan A. V., Ahmed Q. U., Khan M. W., Khan A. A. Herbal cure for poisons and poisonous bites from Western Uttar Pradesh, India. Asian Pacific Journal of Tropical Disease. 2014;4(1):S116–S120. doi: 10.1016/S2222-1808(14)60425-4. [DOI] [Google Scholar]
  • 42.Sikdar M., Dutta U. Traditional phytotherapy among the Nath people of Assam. Studies on Ethno-Medicine. 2008;2(1):39–45. [Google Scholar]
  • 43.Khan M. A., Khan S. A., Quresh M. A., et al. Ethnobotany of some useful plants of poonch valley azad kashmir. Journal of Medicinal Plant Research. 2011;5(26):6140–6151. doi: 10.5897/JMPR11.045. [DOI] [Google Scholar]
  • 44.Vásquez J., Jiménez S. L., Gómez I. C., et al. Snakebites and ethnobotany in the eastern region of Antioquia, Colombia—the traditional use of plants. Journal of Ethnopharmacology. 2013;146(2):449–455. doi: 10.1016/j.jep.2012.12.043. [DOI] [PubMed] [Google Scholar]
  • 45.Sivasankari B., Anandharaj M., Gunasekaran P. An ethnobotanical study of indigenous knowledge on medicinal plants used by the village peoples of Thoppampatti, Dindigul district, Tamilnadu, India. Journal of Ethnopharmacology. 2014;153(2):408–423. doi: 10.1016/j.jep.2014.02.040. [DOI] [PubMed] [Google Scholar]
  • 46.Mebs D. Notes on the traditional use of plants to treat snake bite in northern Papua New Guinea. Toxicon. 2000;38(2):299–302. doi: 10.1016/S0041-0101(99)00148-8. [DOI] [PubMed] [Google Scholar]
  • 47.Agra M. D. F., Silva K. N., Basílio I. J. L. D., De Freitas P. F., Barbosa-Filho J. M. Survey of medicinal plants used in the region Northeast of Brazil. Brazilian Journal of Pharmacognosy. 2008;18(3):472–508. doi: 10.1590/S0102-695X2008000300023. [DOI] [Google Scholar]
  • 48.Ritter R. A., Monteiro M. V. B., Monteiro F. O. B., et al. Ethnoveterinary knowledge and practices at Colares island, Pará state, eastern Amazon, Brazil. Journal of Ethnopharmacology. 2012;144(2):346–352. doi: 10.1016/j.jep.2012.09.018. [DOI] [PubMed] [Google Scholar]
  • 49.Murthy K. S., Sharma P. C., Kishore P. Tribal remedies for snakebite from Orissa. Ancient Science of Life. 1986;6(2):122–123. [PMC free article] [PubMed] [Google Scholar]
  • 50.Di Stasi L. C., Hiruma-Lima C. A. Plantas medicinais na Amazônia e na Mata Atlântica. 2nd. São Paulo, Brazil: UNESP; 2002. [Google Scholar]
  • 51.Belayneh A., Bussa N. F. Ethnomedicinal plants used to treat human ailments in the prehistoric place of Harla and Dengego valleys, eastern Ethiopia. Journal of Ethnobiology and Ethnomedicine. 2014;10, article 18 doi: 10.1186/1746-4269-10-18. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Ayyanar M., Ignacimuthu S. Ethnobotanical survey of medicinal plants commonly used by Kani tribals in Tirunelveli hills of Western Ghats, India. Journal of Ethnopharmacology. 2011;134(3):851–864. doi: 10.1016/j.jep.2011.01.029. [DOI] [PubMed] [Google Scholar]
  • 53.Haq F., Ahmad H., Alam M. Traditional uses of medicinal plants of Nandiar Khuwarr catchment (District Battagram), Pakistan. Journal of Medicinal Plants Research. 2011;5(1):39–48. [Google Scholar]
  • 54.Cheikhyoussef A., Shapi M., Matengu K., Ashekele H. M. Ethnobotanical study of indigenous knowledge on medicinal plant use by traditional healers in Oshikoto region, Namibia. Journal of Ethnobiology and Ethnomedicine. 2011;7, article 10 doi: 10.1186/1746-4269-7-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Jain A., Katewa S. S., Galav P. K., Sharma P. Medicinal plant diversity of Sitamata wildlife sanctuary, Rajasthan, India. Journal of Ethnopharmacology. 2005;102(2):143–157. doi: 10.1016/j.jep.2005.05.047. [DOI] [PubMed] [Google Scholar]
  • 56.Dutt H. C., Bhagat N., Pandita S. Oral traditional knowledge on medicinal plants in jeopardy among Gaddi shepherds in hills of northwestern Himalaya, J&K, India. Journal of Ethnopharmacology. 2015;168:337–348. doi: 10.1016/j.jep.2015.03.076. [DOI] [PubMed] [Google Scholar]
  • 57.Odonne G., Valadeau C., Alban-Castillo J., Stien D., Sauvain M., Bourdy G. Medical ethnobotany of the Chayahuita of the Paranapura basin (Peruvian Amazon) Journal of Ethnopharmacology. 2013;146(1):127–153. doi: 10.1016/j.jep.2012.12.014. [DOI] [PubMed] [Google Scholar]
  • 58.Jankovic M. Communication and shared information. Philosophical Studies. An International Journal for Philosophy in the Analytic Tradition. 2014;169(3):489–508. doi: 10.1007/s11098-013-0205-8. [DOI] [Google Scholar]
  • 59.Hernandez M. R., Avila-Bello C. H., Morales-Mavil J. E. Etnobotánica y ecología de plantas utilizadas por tres curanderos contra la mordedura de serpiente en la región de Acayucan, Veracruz, México. Boletin de la Sociedad Botanica de Mexico. 2007;81:89–100. [Google Scholar]
  • 60.Rahmatullah M., Ferdausi D., Mollik M. A. H., Jahan R., Chowdhury M. H., Haque W. M. A survey of medicinal plants used by Kavirajes of Chalna area, Khulna district, Bangladesh. African Journal of Traditional, Complementary and Alternative Medicines. 2010;7(2):91–97. doi: 10.4314/ajtcam.v7i2.50859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Giovannini P. Medicinal plants of the Achuar (Jivaro) of Amazonian Ecuador: ethnobotanical survey and comparison with other Amazonian pharmacopoeias. Journal of Ethnopharmacology. 2015;164:78–88. doi: 10.1016/j.jep.2015.01.038. [DOI] [PubMed] [Google Scholar]
  • 62.Karuppaiya P., Tsay H. S. Therapeutic values, chemical constituents and toxicity of Taiwanese Dysosma pleiantha: a review. Toxicology Letters. 2015;236(2):90–97. doi: 10.1016/j.toxlet.2015.05.004. [DOI] [PubMed] [Google Scholar]
  • 63.Kshirsagar R. D., Singh N. P. Some less known ethnomedicinal uses from Mysore and Coorg districts, Karnataka state, India. Journal of Ethnopharmacology. 2001;75(2-3):231–238. doi: 10.1016/S0378-8741(01)00199-4. [DOI] [PubMed] [Google Scholar]
  • 64.De Albuquerque U. P., Andrade L. D. H. C. Uso de recursos vegetais da caatinga: O caso do agreste do Estado de Pernambuco (Nordeste do Brasil) Interciencia. 2002;27(7):336–346. [Google Scholar]
  • 65.Cheikhyoussef A., Embashu W. Ethnobotanical knowledge on indigenous fruits in Ohangwena and Oshikoto regions in Northern Namibia. Journal of Ethnobiology and Ethnomedicine. 2013;9(1, article 34) doi: 10.1186/1746-4269-9-34. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66.Shah A., Bharati K. A., Ahmad J., Sharma M. New ethnomedicinal claims from Gujjar and Bakerwals tribes of Rajouri and Poonch districts of Jammu and Kashmir, India. Journal of Ethnopharmacology. 2015;166:119–128. doi: 10.1016/j.jep.2015.01.056. [DOI] [PubMed] [Google Scholar]
  • 67.Ong H. C., Nordiana M. Malay ethno-medico botany in Machang, Kelantan, Malaysia. Fitoterapia. 1999;70(5):502–513. doi: 10.1016/S0367-326X(99)00077-5. [DOI] [Google Scholar]
  • 68.Seebaluck R., Gurib-Fakim A., Mahomoodally F. Medicinal plants from the genus Acalypha (Euphorbiaceae): a review of their ethnopharmacology and phytochemistry. Journal of Ethnopharmacology. 2015;159:137–157. doi: 10.1016/j.jep.2014.10.040. [DOI] [PubMed] [Google Scholar]
  • 69.Sharma P., Devi U. Ethnobotanical uses of biofencing plants in Himachal Pradesh, Northwest Himalaya. Pakistan Journal of Biological Sciences. 2013;16(24):1957–1963. doi: 10.3923/pjbs.2013.1957.1963. [DOI] [PubMed] [Google Scholar]
  • 70.Coelho-Ferreira M. Medicinal knowledge and plant utilization in an Amazonian coastal community of Marudá, Pará State (Brazil) Journal of Ethnopharmacology. 2009;126(1):159–175. doi: 10.1016/j.jep.2009.07.016. [DOI] [PubMed] [Google Scholar]
  • 71.Oliveira F. C. S., Barros R. F. M., Moita Neto J. M. Medicinal plants used in rural communities from Oeiras Municipality, in the semi-arid region of Piauí State (PI), Brazil. Revista Brasileira de Plantas Medicinais. 2010;12(3):282–301. doi: 10.1590/S1516-05722010000300006. [DOI] [Google Scholar]
  • 72.Crepaldi C. G., Campos J. L. A., Albuquerque U. P., Sales M. F. Richness and ethnobotany of the family Euphorbiaceae in a tropical semiarid landscape of Northeastern Brazil. South African Journal of Botany. 2016;102:157–165. doi: 10.1016/j.sajb.2015.06.010. [DOI] [Google Scholar]
  • 73.Murugesan M., Balasubramaniam V., Arthi H. Ethno medical knowledge of plants used by Irula Tribes, Chengal Combai, the Nilgiris, Tamilnadu. Ancient Science of Life. 2005;24(4):179–82. [PMC free article] [PubMed] [Google Scholar]
  • 74.Nsuala B. N., Enslin G., Viljoen A. “Wild cannabis”: a review of the traditional use and phytochemistry of Leonotis leonurus. Journal of Ethnopharmacology. 2015;174:520–539. doi: 10.1016/j.jep.2015.08.013. [DOI] [PubMed] [Google Scholar]
  • 75.Swamy M. K., Sinniah U. R. A Comprehensive review on the phytochemical constituents and pharmacological activities of Pogostemon cablin Benth.: an Aromatic Medicinal Plant of Industrial Importance. Molecules. 2015;20(5):8521–8547. doi: 10.3390/molecules20058521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 76.Gakuya D. W., Itonga S. M., Mbaria J. M., Muthee J. K., Musau J. K. Ethnobotanical survey of biopesticides and other medicinal plants traditionally used in Meru central district of Kenya. Journal of Ethnopharmacology. 2013;145(2):547–553. doi: 10.1016/j.jep.2012.11.028. [DOI] [PubMed] [Google Scholar]
  • 77.Hazarika T. K., Lalramchuana, Nautiyal B. P. Studies on wild edible fruits of Mizoram, India used as ethno-medicine. Genetic Resources and Crop Evolution. 2012;59(8):1767–1776. doi: 10.1007/s10722-012-9799-5. [DOI] [Google Scholar]
  • 78.Gallardo-Casas C. A., Guevara-Balcázar G., Morales-Ramos E., et al. Ethnobotanic study of Randia aculeata (Rubiaceae) in Jamapa, Veracruz, Mexico, and its anti-snake venom effects on mouse tissue. Journal of Venomous Animals and Toxins Including Tropical Diseases. 2012;18(3):287–294. doi: 10.1590/S1678-91992012000300006. [DOI] [Google Scholar]
  • 79.Xia L., Guo Q., Tu P., Chai X. The genus Casearia: a phytochemical and pharmacological overview. Phytochemistry Reviews. 2014:1–37. doi: 10.1007/s11101-014-9336-6. [DOI] [Google Scholar]
  • 80.Molander M., Saslis-Lagoudakis C. H., Jäger A. K., Rønsted N. Cross-cultural comparison of medicinal floras used against snakebites. Journal of Ethnopharmacology. 2012;139(3):863–872. doi: 10.1016/j.jep.2011.12.032. [DOI] [PubMed] [Google Scholar]
  • 81.Félix-Silva J., Giordani R. B., Silva-Jr A. A. D., Zucolotto S. M., Fernandes-Pedrosa M. D. F. Jatropha gossypiifolia L. (Euphorbiaceae): a review of traditional uses, phytochemistry, pharmacology, and toxicology of this medicinal plant. Evidence-Based Complementary and Alternative Medicine. 2014;2014:32. doi: 10.1155/2014/369204.369204 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82.Molander M., Nielsen L., Søgaard S., et al. Hyaluronidase, phospholipase A2 and protease inhibitory activity of plants used in traditional treatment of snakebite-induced tissue necrosis in Mali, DR Congo and South Africa. Journal of Ethnopharmacology. 2014;157:171–180. doi: 10.1016/j.jep.2014.09.027. [DOI] [PubMed] [Google Scholar]
  • 83.Thangavel N., Gupta J. K. Anti-inflammatory and anti-snake venom activity of Andrographis stenophylla leaf. Asian Journal of Chemistry. 2007;19(2):1307–1312. [Google Scholar]
  • 84.Asad M. H. H. B., Razi M. T., Durr-e-Sabih, et al. Anti-venom potential of Pakistani medicinal plants: inhibition of anticoagulation activity of Naja naja karachiensis toxin. Current Science. 2013;105(10):1419–1424. [Google Scholar]
  • 85.Sakthivel G., Dey A., Nongalleima K., et al. In vitro and in vivo evaluation of polyherbal formulation against Russell's viper and cobra venom and screening of bioactive components by docking studies. Evidence-Based Complementary and Alternative Medicine. 2013;2013:12. doi: 10.1155/2013/781216.781216 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86.Soni P., Bodakhe S. H. Antivenom potential of ethanolic extract of Cordia macleodii bark against Naja venom. Asian Pacific Journal of Tropical Biomedicine. 2014;4:S449–S454. doi: 10.12980/APJTB.4.2014C1048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87.Ibrahim M. A., Aliyu A. B., Abusufiyanu A., Bashir M., Sallau A. B. Inhibition of naja nigricolis (Reinhardt) venom protease activity by Luffa egyptiaca (Mill) and Nicotiana rustica (Linn) extracts. Indian Journal of Experimental Biology. 2011;49(7):552–554. [PubMed] [Google Scholar]
  • 88.Gopi K., Renu K., Sannanaik Vishwanath B., Jayaraman G. Protective effect of Euphorbia hirta and its components against snake venom induced lethality. Journal of Ethnopharmacology. 2015;165:180–190. doi: 10.1016/j.jep.2015.02.044. [DOI] [PubMed] [Google Scholar]
  • 89.Rathnakar Reddi K. V. N., Rajesh S. S., Narendra K., et al. In vitro anti-venom potential of various Jatropha extracts on neutralizing cytotoxic effect induced by phospholipase A2 of crude venom from Indian cobra (Naja naja) Bangladesh Journal of Pharmacology. 2014;9(1):22–28. doi: 10.3329/bjp.v9i1.17410. [DOI] [Google Scholar]
  • 90.Mahanta M., Mukherjee A. K. Neutralisation of lethality, myotoxicity and toxic enzymes of Naja kaouthia venom by Mimosa pudica root extracts. Journal of Ethnopharmacology. 2001;75(1):55–60. doi: 10.1016/S0378-8741(00)00373-1. [DOI] [PubMed] [Google Scholar]
  • 91.Girish K. S., Mohanakumari H. P., Nagaraju S., Vishwanath B. S., Kemparaju K. Hyaluronidase and protease activities from Indian snake venoms: Neutralization by Mimosa pudica root extract. Fitoterapia. 2004;75(3-4):378–380. doi: 10.1016/j.fitote.2004.01.006. [DOI] [PubMed] [Google Scholar]
  • 92.Meenatchisundaram S., Priyagrace S., Vijayaraghavan R., Velmurugan A., Parameswari G., Michael A. Antitoxin activity of Mimosa pudica root extracts against Naja naja and Bangarus caerulus venoms. Bangladesh Journal of Pharmacology. 2009;4(2):105–109. doi: 10.3329/bjp.v4i2.2276. [DOI] [Google Scholar]
  • 93.Asuzu I. U., Harvey A. L. The antisnake venom activities of Parkia biglobosa (Mimosaceae) stem bark extract. Toxicon. 2003;42(7):763–768. doi: 10.1016/j.toxicon.2003.10.004. [DOI] [PubMed] [Google Scholar]
  • 94.Gopi K., Renu K., Jayaraman G. Inhibition of Naja naja venom enzymes by the methanolic extract of Leucas aspera and its chemical profile by GC-MS. Toxicology Reports. 2014;1:667–673. doi: 10.1016/j.toxrep.2014.08.012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 95.Chatterjee I., Chakravarty A. K., Gomes A. Antisnake venom activity of ethanolic seed extract of Strychnos nux vomica Linn. Indian Journal of Experimental Biology. 2004;42(5):468–475. [PubMed] [Google Scholar]
  • 96.Félix-Silva J., Souza T., Menezes Y. A. S., et al. Aqueous leaf extract of Jatropha gossypiifolia L. (Euphorbiaceae) inhibits enzymatic and biological actions of Bothrops jararaca snake venom. PLoS ONE. 2014;9(8) doi: 10.1371/journal.pone.0104952.e104952 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 97.WHO. Guidelines for the Production, Control and Regulation of Snake Antivenom Immunoglobulins. Geneva, Switzerland: WHO Press; 2010. [DOI] [PubMed] [Google Scholar]
  • 98.Mourão De Moura V., Serra Bezerra A. N., Veras Mourão R. H., et al. A comparison of the ability of Bellucia dichotoma Cogn. (Melastomataceae) extract to inhibit the local effects of Bothrops atrox venom when pre-incubated and when used according to traditional methods. Toxicon. 2014;85:59–68. doi: 10.1016/j.toxicon.2014.04.009. [DOI] [PubMed] [Google Scholar]
  • 99.Fernandes F. F. A., Tomaz M. A., El-Kik C. Z., et al. Counteraction of Bothrops snake venoms by Combretum leprosum root extract and arjunolic acid. Journal of Ethnopharmacology. 2014;155(1):552–562. doi: 10.1016/j.jep.2014.05.056. [DOI] [PubMed] [Google Scholar]
  • 100.De Oliveira E. C., Fernandes C. P., Sanchez E. F., Rocha L., Fuly A. L. Inhibitory effect of plant Manilkara subsericea against biological activities of Lachesis muta snake venom. BioMed Research International. 2014;2014 doi: 10.1155/2014/408068.408068 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 101.Saturnino-Oliveira J., Santos D. D. C., Guimarães A. G., et al. Abarema cochliacarpos extract decreases the inflammatory process and skeletal muscle injury induced by bothrops leucurus venom. BioMed Research International. 2014;2014:9. doi: 10.1155/2014/820761.820761 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 102.Strauch M. A., Tomaz M. A., Monteiro-Machado M., et al. Antiophidic activity of the extract of the Amazon plant Humirianthera ampla and constituents. Journal of Ethnopharmacology. 2013;145(1):50–58. doi: 10.1016/j.jep.2012.10.033. [DOI] [PubMed] [Google Scholar]
  • 103.Houghton P. J., Osibogun I. M. Flowering plants used against snakebite. Journal of Ethnopharmacology. 1993;39(1):1–29. doi: 10.1016/0378-8741(93)90047-9. [DOI] [PubMed] [Google Scholar]
  • 104.Shenoy P. A., Nipate S. S., Sonpetkar J. M., Salvi N. C., Waghmare A. B., Chaudhari P. D. Anti-snake venom activities of ethanolic extract of fruits of Piper longum L. (Piperaceae) against Russell's viper venom: characterization of piperine as active principle. Journal of Ethnopharmacology. 2013;147(2):373–382. doi: 10.1016/j.jep.2013.03.022. [DOI] [PubMed] [Google Scholar]
  • 105.Araújo S. D., de Souza A., Nunes F. P. B., Gonçalves L. R. C. Effect of dexamethasone associated with serum therapy on treatment of Bothrops jararaca venom-induced paw edema in mice. Inflammation Research. 2007;56(10):409–413. doi: 10.1007/s00011-007-7054-x. [DOI] [PubMed] [Google Scholar]
  • 106.Patrão-Neto F. C., Tomaz M. A., Strauch M. A., et al. Dexamethasone antagonizes the in vivo myotoxic and inflammatory effects of Bothrops venoms. Toxicon. 2013;69:55–64. doi: 10.1016/j.toxicon.2013.01.023. [DOI] [PubMed] [Google Scholar]
  • 107.Gómez-Betancur I., Benjumea D., Patiño A., Jiménez N., Osorio E. Inhibition of the toxic effects of Bothrops asper venom by pinostrobin, a flavanone isolated from Renealmia alpinia (Rottb.) MAAS. Journal of Ethnopharmacology. 2014;155(3):1609–1615. doi: 10.1016/j.jep.2014.08.002. [DOI] [PubMed] [Google Scholar]
  • 108.Magalhães A., Santos G. B. D., Verdam M. C. D. S., et al. Inhibition of the inflammatory and coagulant action of Bothrops atrox venom by the plant species Marsypianthes chamaedrys. Journal of Ethnopharmacology. 2011;134(1):82–88. doi: 10.1016/j.jep.2010.11.062. [DOI] [PubMed] [Google Scholar]
  • 109.Pereira I. C., Barbosa A. M., Salvador M. J., et al. Anti-inflammatory activity of Blutaparon portulacoides ethanolic extract against the inflammatory reaction induced by Bothrops jararacussu venom and isolated myotoxins BthTX-I and II. Journal of Venomous Animals and Toxins Including Tropical Diseases. 2009;15(3):527–545. doi: 10.1590/S1678-91992009000300013. [DOI] [Google Scholar]
  • 110.Reis F. P., Senna Bonfa I. M., Cavalcante R. B., et al. Tabebuia aurea decreases inflammatory, myotoxic and hemorrhagic activities induced by the venom of Bothrops neuwiedi. Journal of Ethnopharmacology. 2014:352–357. doi: 10.1016/j.jep.2014.10.045. [DOI] [PubMed] [Google Scholar]
  • 111.Pereañez J. A., Lobo-Echeverri T., Rojano B., et al. Correlation of the inhibitory activity of phospholipase A2 snake venom and the antioxidant activity of Colombian plant extracts. Brazilian Journal of Pharmacognosy. 2010;20(6):910–916. doi: 10.1590/S0102-695X2010005000030. [DOI] [Google Scholar]
  • 112.Sunitha K., Hemshekhar M., Thushara R. M., et al. Inflammation and oxidative stress in viper bite: an insight within and beyond. Toxicon. 2015;98:89–97. doi: 10.1016/j.toxicon.2015.02.014. [DOI] [PubMed] [Google Scholar]
  • 113.Saravia-Otten P., Gutiérrez J. M., Arvidson S., Thelestam M., Flock J.-I. Increased infectivity of Staphylococcus aureus in an experimental model of snake venom-induced tissue damage. Journal of Infectious Diseases. 2007;196(5):748–754. doi: 10.1086/520537. [DOI] [PubMed] [Google Scholar]
  • 114.Jorge M. T., Ribeiro L. A. Infections in the bite site after envenoming by snakes of the Bothrops genus. Journal of Venomous Animals and Toxins. 1997;3(2):264–272. doi: 10.1590/S0104-79301997000200002. [DOI] [Google Scholar]
  • 115.Silva T. P. D., Moura V. M. D., Souza M. C. S. D., et al. Connarus favosus Planch.: An inhibitor of the hemorrhagic activity of Bothrops atrox venom and a potential antioxidant and antibacterial agent. Journal of Ethnopharmacology. 2016;183:166–175. doi: 10.1016/j.jep.2016.02.043. [DOI] [PubMed] [Google Scholar]
  • 116.Dehghani R., Sharif M. R., Moniri R., Sharif A., Kashani H. H. The identification of bacterial flora in oral cavity of snakes. Comparative Clinical Pathology. 2016;25(2):279–283. doi: 10.1007/s00580-015-2178-9. [DOI] [Google Scholar]
  • 117.Hearn P., Miliya T., Hor S., Sar V., Turner P. Necrotizing fasciitis complicating snakebite in Cambodia. IDCases. 2015;2(3, article 70):86–87. doi: 10.1016/j.idcr.2015.09.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 118.Palappallil D. S. Pattern of use of antibiotics following snake bite in a tertiary care hospital. Journal of Clinical and Diagnostic Research. 2015;9(8):OC05–OC09. doi: 10.7860/JCDR/2015/14753.6322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 119.Félix-Silva J., Gomes J. A., Xavier-Santos J. B., et al. Inhibition of local effects induced by Bothrops erythromelas snake venom: assessment of the effectiveness of Brazilian polyvalent bothropic antivenom and aqueous leaf extract of Jatropha gossypiifolia. Toxicon. 2017;125:74–83. doi: 10.1016/j.toxicon.2016.11.260. [DOI] [PubMed] [Google Scholar]
  • 120.Fernandes C. A. H., Cardoso F. F., Cavalcante W. G. L., et al. Structural basis for the inhibition of a phospholipase A2-like toxin by caffeic and aristolochic acids. PLoS ONE. 2015;10(7) doi: 10.1371/journal.pone.0133370.e0133370 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 121.Srinivasa V., Sundaram M. S., Anusha S., et al. Novel apigenin based small molecule that targets snake venom metalloproteases. PLoS ONE. 2014;9(9) doi: 10.1371/journal.pone.0106364.e106364 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 122.Pereañez J. A., Patiño A. C., Núñez V., Osorio E. The biflavonoid morelloflavone inhibits the enzymatic and biological activities of a snake venom phospholipase A2. Chemico-Biological Interactions. 2014;220:94–101. doi: 10.1016/j.cbi.2014.06.015. [DOI] [PubMed] [Google Scholar]
  • 123.Molander M., Staerk D., Mørck Nielsen H., et al. Investigation of skin permeation, ex vivo inhibition of venom-induced tissue destruction, and wound healing of African plants used against snakebites. Journal of Ethnopharmacology. 2015;165:1–8. doi: 10.1016/j.jep.2015.02.014. [DOI] [PubMed] [Google Scholar]
  • 124.Otero R., Núñez V., Barona J., et al. Snakebites and ethnobotany in the northwest region of Colombia—Part III: Neutralization of the haemorrhagic effect of Bothrops atrox venom. Journal of Ethnopharmacology. 2000;73(1-2):233–241. doi: 10.1016/S0378-8741(00)00321-4. [DOI] [PubMed] [Google Scholar]
  • 125.Biondo R., Pereira A. M. S., Marcussi S., Pereira P. S., França S. C., Soares A. M. Inhibition of enzymatic and pharmacological activities of some snake venoms and toxins by Mandevilla velutina (Apocynaceae) aqueous extract. Biochimie. 2003;85(10):1017–1025. doi: 10.1016/S0300-9084(03)00138-X. [DOI] [PubMed] [Google Scholar]
  • 126.Veronese E. L. G., Esmeraldino L. E., Trombone A. P. F., et al. Inhibition of the myotoxic activity of Bothrops jararacussu venom and its two major myotoxins, BthTX-I and BthTX-II, by the aqueous extract of Tabernaemontana catharinensis A. DC. (Apocynaceae) Phytomedicine. 2005;12(1-2):123–130. doi: 10.1016/j.phymed.2003.07.010. [DOI] [PubMed] [Google Scholar]
  • 127.Núñez V., Otero R., Barona J., et al. Neutralization of the edema-forming, defibrinating and coagulant effects of Bothrops asper venom by extracts of plants used by healers in Columbia. Brazilian Journal of Medical and Biological Research. 2004;37(7):969–977. doi: 10.1590/s0100-879x2004000700005. [DOI] [PubMed] [Google Scholar]
  • 128.de Moura V. M., de Sousa L. A. F., de Oliveira R. B., et al. Inhibition of the principal enzymatic and biological effects of the crude venom of Bothrops atrox by plant extracts. Journal of Medicinal Plants Research. 2013;7(31):2330–2337. doi: 10.5897/JMPR2013.5148. [DOI] [Google Scholar]
  • 129.Badilla B., Chaves F., Mora G., Poveda L. J. Edema induced by Bothrops asper (Squamata: Viperidae) snake venom and its inhibition by Costa Rican plant extracts. Revista de Biologia Tropical. 2006;54(2):245–252. doi: 10.15517/rbt.v54i2.13865. [DOI] [PubMed] [Google Scholar]
  • 130.Melo P. A., Nascimento M. C. D., Mors W. B., Suarez-Kurtz G. Inhibition of the myotoxic and hemorrhagic activities of crotalid venoms by Eclipta prostrata (Asteraceae) extracts and constituents. Toxicon. 1994;32(5):595–603. doi: 10.1016/0041-0101(94)90207-0. [DOI] [PubMed] [Google Scholar]
  • 131.Mourao V. B., Giraldi G. M., Neves L. M. G. Anti-hemorrhagic effect of hydro-alcoholic extract of the leaves of Mikania glomerata in lesions induced by Bothrops jararaca venom in rats. Acta Cirurgica Brasileira. 2014;29(1):30–37. doi: 10.1590/S0102-86502014000100005. [DOI] [PubMed] [Google Scholar]
  • 132.Motta Y. P., Sakate M., Nogueira R. M. B., et al. Quantification of cytokines in serum and paw homogenate of experimental intoxication for venom of the Bothropoides jararaca in Wistar rats treated with antivenom and Mikania glomerata. Arquivo Brasileiro de Medicina Veterinaria e Zootecnia. 2014;66(5):1413–1418. doi: 10.1590/1678-6829. [DOI] [Google Scholar]
  • 133.Oliveira D. P. C., Borrás M. R. L., Ferreira L. C. D. L., López-Lozano J. L. Atividade antiinflamatória do extrato aquoso de Arrabidaea chica (Humb. & Bonpl.) B. Verl. sobre o edema induzido por venenos de serpentes amazônicas. Revista Brasileira de Farmacognosia. 2009;19(2B):643–49. [Google Scholar]
  • 134.Otero R., Núñez V., Jiménez S. L., et al. Snakebites and ethnobotany in the northwest region of Colombia. Part II: Neutralization of lethal and enzymatic effects of Bothrops atrox venom. Journal of Ethnopharmacology. 2000;71(3):505–511. doi: 10.1016/S0378-8741(99)00197-X. [DOI] [PubMed] [Google Scholar]
  • 135.Ticli F. K., Hage L. I. S., Cambraia R. S., et al. Rosmarinic acid, a new snake venom phospholipase A2 inhibitor from Cordia verbenacea (Boraginaceae): Antiserum action potentiation and molecular interaction. Toxicon. 2005;46(3):318–327. doi: 10.1016/j.toxicon.2005.04.023. [DOI] [PubMed] [Google Scholar]
  • 136.De Oliveira E. C., Anholeti M. C., Domingos T. F., et al. Inhibitory effect of the plant Clusia fluminensis against biological activities of Bothrops jararaca snake venom. Natural Product Communications. 2014;9(1):21–25. [PubMed] [Google Scholar]
  • 137.Picanço L. C. D. S., Bittencourt J. A. H. M., Henriques S. V. C., et al. Pharmacological activity of Costus spicatus in experimental Bothrops atrox envenomation. Pharmaceutical Biology. 2016;54(10):2103–2110. doi: 10.3109/13880209.2016.1145703. [DOI] [PubMed] [Google Scholar]
  • 138.Fernandes J. M., Félix-Silva J., Da Cunha L. M., et al. Inhibitory effects of hydroethanolic leaf extracts of kalanchoe brasiliensis and kalanchoepinnata (crassulaceae) against local effects induced by bothropsjararaca snake venom. PLoS ONE. 2016;11(12) doi: 10.1371/journal.pone.0168658.e0168658 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 139.Nishijima C. M., Rodrigues C. M., Silva M. A., Lopes-Ferreira M., Vilegas W., Hiruma-Lima C. A. Anti-hemorrhagic activity of four brazilian vegetable species against Bothrops jararaca venom. Molecules. 2009;14(3):1072–1080. doi: 10.3390/molecules14031072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 140.Esmeraldino L. E., Souza A. M., Sampaio S. V. Evaluation of the effect of aqueous extract of Croton urucurana Baillon (Euphorbiaceae) on the hemorrhagic activity induced by the venom of Bothrops jararaca, using new techniques to quantify hemorrhagic activity in rat skin. Phytomedicine. 2005;12(8):570–576. doi: 10.1016/j.phymed.2004.01.012. [DOI] [PubMed] [Google Scholar]
  • 141.Gomes J. A. D. S., Félix-Silva J., Morais Fernandes J., et al. Aqueous Leaf Extract of Jatropha mollissima (Pohl) Bail Decreases Local Effects Induced by Bothropic Venom. BioMed Research International. 2016;2016:13. doi: 10.1155/2016/6101742.6101742 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 142.Mack-Wen V. L., Rico L. B., Alarc J. C., Perea J. A., Alarcón J. C. Inhibición in vitro del veneno de Bothrops asper con extractos etanólicos de Brownea ariza B. (Caesalpiniaceae) Vitae. 2011;18(1):43–48. [Google Scholar]
  • 143.Salazar M., Chérigo L., Acosta H., Otero R., Martínez-Luis S. Evaluation of anti-Bothrops asper venom activity of ethanolic extract of Brownea rosademonte leaves. Acta Pharmaceutica. 2014;64(4):475–483. doi: 10.2478/acph-2014-0033. [DOI] [PubMed] [Google Scholar]
  • 144.Nazato V. S., Rubem-Mauro L., Vieira N. A. G., et al. In vitro antiophidian properties of Dipteryx alata Vogel bark extracts. Molecules. 2010;15(9):5956–5970. doi: 10.3390/molecules15095956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 145.Da Silva J. O., Coppede J. S., Fernandes V. C., et al. Antihemorrhagic, antinucleolytic and other antiophidian properties of the aqueous extract from Pentaclethra macroloba. Journal of Ethnopharmacology. 2005;100(1-2):145–152. doi: 10.1016/j.jep.2005.01.063. [DOI] [PubMed] [Google Scholar]
  • 146.Vale L. H. F., Mendes M. M., Hamaguchi A., Soares A. M., Rodrigues V. M., Homsi-Brandeburgo M. I. Neutralization of pharmacological and toxic activities of Bothrops snake venoms by Schizolobium parahyba (Fabaceae) aqueous extract and its fractions. Basic and Clinical Pharmacology and Toxicology. 2008;103(1):104–107. doi: 10.1111/j.1742-7843.2008.00248.x. [DOI] [PubMed] [Google Scholar]
  • 147.Mendes M. M., Oliveira C. F., Lopes D. S., et al. Anti-snake venom properties of Schizolobium parahyba (caesalpinoideae) aqueous leaves extract. Phytotherapy Research. 2008;22(7):859–866. doi: 10.1002/ptr.2371. [DOI] [PubMed] [Google Scholar]
  • 148.Perea J. A., Jimenez S. L., Quintana J. C., Pereañez J. A. Inhibición de las actividades proteolítica, coagulante y hemolítica indirecta inducidas por el veneno de Bothrops asper por extractos etanólicos de tres especies de heliconias. Vitae. 2008;15(1):157–164. [Google Scholar]
  • 149.Assafim M., Coriolano E. C., Benedito S. E. Hypericum brasiliense plant extract neutralizes some biological effects of Bothrops jararaca snake venom. Journal of Venom Research. 2011;2:11–16. [PMC free article] [PubMed] [Google Scholar]
  • 150.Costa H. N., Santos M. C., Alcântara A. F., Silva M. C., França R. C., Piló-Veloso D. Constituintes químicos e atividade antiedematogênica de Peltodon radicans (Lamiaceae) Química Nova. 2008;31(4):744–750. doi: 10.1590/S0100-40422008000400006. [DOI] [Google Scholar]
  • 151.Mendes M. M., Vieira S. A. P. B., Gomes M. S. R., et al. Triacontyl p-coumarate: an inhibitor of snake venom metalloproteinases. Phytochemistry. 2013;86:72–82. doi: 10.1016/j.phytochem.2012.10.007. [DOI] [PubMed] [Google Scholar]
  • 152.de Moura V. M., de Souza L. Y., da Costa Guimarães N., et al. The potential of aqueous extracts of Bellucia dichotoma Cogn. (Melastomataceae) to inhibit the biological activities of Bothrops atrox venom: A comparison of specimens collected in the states of Pará and Amazonas, Brazil. Journal of Ethnopharmacology. 2017;196:168–177. doi: 10.1016/j.jep.2016.12.031. [DOI] [PubMed] [Google Scholar]
  • 153.Badilla B., Chaves F., Jiménez S., Rodríguez G., Poveda L. J. Effects of an extract of Cissampelos pareira on the hemorrhagic and proteolytic activities from Bothrops asper venom. Pharmacognosy Magazine. 2008;4(13):27–31. [Google Scholar]
  • 154.Bittencourt J. A. H. M., de Oliveira N. K. S., Cabral M. S., et al. Antiophidian activity of Brosimum guianense (AUBL) Huber. American Journal of Pharmacology and Toxicology. 2014;9(2):148–156. doi: 10.3844/ajptsp.2014.148.156. [DOI] [Google Scholar]
  • 155.Borges M. H., Alves D. L. F., Raslan D. S., et al. Neutralizing properties of Musa paradisiaca L. (Musaceae) juice on phospholipase A2, myotoxic, hemorrhagic and lethal activities of crotalidae venoms. Journal of Ethnopharmacology. 2005;98(1-2):21–29. doi: 10.1016/j.jep.2004.12.014. [DOI] [PubMed] [Google Scholar]
  • 156.Sousa L. A. F., Moura V. M., Raposo J. D. A. The effect of the aqueous extract of Myrcia guianensis (AubL) DC and its fractions against the hemorrhagic activity of Bothrops jararaca venom. Journal of Medicinal Plants Research. 2013;7(42):3139–46. [Google Scholar]
  • 157.Freitas F. G., Silva T. A., Oliveira F. Toxicidade aguda e propriedades antiofídicas do extrato aquoso de Casearia grandiflora (Flacourtiaceae): atividades fosfolipásica A2, miotóxica e letal de peçonhas de B. moojeni e B. neuwiedi. Bioscience Journal. 2005;21(2):95–103. [Google Scholar]
  • 158.Cintra-Francischinelli M., Silva M. G., Andréo-Filho N., et al. Antibothropic action of casearia sylvestris Sw. (flacourtiaceae) extracts. Phytotherapy Research. 2008;22(6):784–790. doi: 10.1002/ptr.2365. [DOI] [PubMed] [Google Scholar]
  • 159.Borges M. H., Soares A. M., Rodrigues V. M., et al. Neutralization of proteases from Bothrops snake venoms by the aqueous extract from Casearia sylvestris (Flacourtiaceae) Toxicon. 2001;39(12):1863–1869. doi: 10.1016/S0041-0101(01)00169-6. [DOI] [PubMed] [Google Scholar]
  • 160.Da Silva S. L., Calgarotto A. K., Chaar J. S., Marangoni S. Isolation and characterization of ellagic acid derivatives isolated from Casearia sylvestris SW aqueous extract with anti-PLA2 activity. Toxicon. 2008;52(6):655–666. doi: 10.1016/j.toxicon.2008.07.011. [DOI] [PubMed] [Google Scholar]
  • 161.Da Silva M. L., Marcussi S., Fernandes R. S., et al. Anti-snake venom activities of extracts and fractions from callus cultures of Sapindus saponaria. Pharmaceutical Biology. 2012;50(3):366–375. doi: 10.3109/13880209.2011.608072. [DOI] [PubMed] [Google Scholar]
  • 162.Fernandes R. S., Costa T. R., Marcussi S., et al. Neutralization of pharmacological and toxic activities of Bothrops jararacussu snake venom and isolated myotoxins by Serjania erecta methanolic extract and its fractions. Journal of Venomous Animals and Toxins Including Tropical Diseases. 2011;17(1):85–93. doi: 10.1590/S1678-91992011000100011. [DOI] [Google Scholar]
  • 163.Tribuiani N., da Silva A. M., Ferraz M. C., et al. Vellozia flavicans Mart. ex Schult. hydroalcoholic extract inhibits the neuromuscular blockade induced by Bothrops jararacussu venom. BMC Complementary and Alternative Medicine. 2014;14, article 48 doi: 10.1186/1472-6882-14-48. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 164.Melo M. M., Lúcia M., Habermehl G. G. Plant extracts for topic therapy of Bothrops alternatus envenomation. Brazilian Journal of Pharmacognosy. 2007;17(1):29–34. doi: 10.1590/S0102-695X2007000100007. [DOI] [Google Scholar]
  • 165.Fernández M., Ortiz W. F., Pereáñez J. A., Martínez D. Evaluación de las propiedades antiofídicas del extracto etanólico y fracciones obtenidas de Renealmia alpinia(Rottb) Mass (Zingiberaceae) cultivada in vitro. Vitae. 2010;17(1):75–82. [Google Scholar]
  • 166.Patiño A. C., López J., Aristizábal M., Quintana J. C., Benjumea D. Evaluation of the inhibitory effect of extracts from leaves of renealmia alpinia rottb. maas(Zingiberaceae) on the venom of bothrops asper (mapaná) Biomedica. 2012;32(3):365–374. doi: 10.7705/biomedica.v32i3.591. [DOI] [PubMed] [Google Scholar]
  • 167.Ode O. J., Asuzu I. U. The anti-snake venom activities of the methanolic extract of the bulb of Crinum jagus (Amaryllidaceae) Toxicon. 2006;48(3):331–342. doi: 10.1016/j.toxicon.2006.06.003. [DOI] [PubMed] [Google Scholar]
  • 168.Gutiérrez J. M., Rucavado A., Chaves F., Díaz C., Escalante T. Experimental pathology of local tissue damage induced by Bothrops asper snake venom. Toxicon. 2009;54(7):958–975. doi: 10.1016/j.toxicon.2009.01.038. [DOI] [PubMed] [Google Scholar]
  • 169.Paixão-Cavalcante D., Kuniyoshi A. K., Portaro F. C. V., da Silva W. D., Tambourgi D. V. African Adders: Partial Characterization of Snake Venoms from Three Bitis Species of Medical Importance and Their Neutralization by Experimental Equine Antivenoms. PLoS Neglected Tropical Diseases. 2015;9(2) doi: 10.1371/journal.pntd.0003419.e0003419 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 170.Ushanandini S., Nagaraju S., Nayaka S. C., Kumar K. H., Kemparaju K., Girish K. S. The anti-ophidian properties of Anacardium occidentale bark extract. Immunopharmacology and Immunotoxicology. 2009;31(4):607–615. doi: 10.3109/08923970902911909. [DOI] [PubMed] [Google Scholar]
  • 171.Dhananjaya B. L., Zameer F., Girish K. S., D'Souza C. J. M. Anti-venom potential of aqueous extract of stem bark of Mangifera indica L. against Daboia russellii (Russell's viper) venom. Indian Journal of Biochemistry and Biophysics. 2011;48(3):175–183. [PubMed] [Google Scholar]
  • 172.Alam M. I., Auddy B., Gomes A. Viper venom neutralization by Indian medicinal plant (Hemidesmus indicus and Pluchea indica) root extracts. Phytotherapy Research. 1996;10(1):58–61. doi: 10.1002/(SICI)1099-1573(199602)10:1&#x0003c;58::AID-PTR775&#x0003e;3.0.CO;2-F. doi: 10.1002/(SICI)1099-1573(199602)10:1&#x0003c;58::AID-PTR775&#x0003e;3.0.CO;2-F. [DOI] [Google Scholar]
  • 173.Bhattacharjee P., Bhattacharyya D. Characterization of the aqueous extract of the root of Aristolochia indica: evaluation of its traditional use as an antidote for snake bites. Journal of Ethnopharmacology. 2013;145(1):220–226. doi: 10.1016/j.jep.2012.10.056. [DOI] [PubMed] [Google Scholar]
  • 174.Shirwaikar A., Rajendran K., Bodla R., Kumar C. D. Neutralization potential of Viper russelli russelli (Russell's viper) venom by ethanol leaf extract of Acalypha indica. Journal of Ethnopharmacology. 2004;94(2-3):267–273. doi: 10.1016/j.jep.2004.05.010. [DOI] [PubMed] [Google Scholar]
  • 175.Tarannum S., Mohamed R., Vishwanath B. S. Inhibition of testicular and Vipera russelli snake venom hyaluronidase activity by Butea monosperma (Lam) Kuntze stem bark. Natural Product Research. 2012;26(18):1708–1711. doi: 10.1080/14786419.2011.602829. [DOI] [PubMed] [Google Scholar]
  • 176.Maung K. M., Lynn Z. Effects of Tamarind (Tamarindus indicus Linn) seed extract on Russell's viper (Daboia russelli siamensis) venom. Tropical Biomedicine. 2012;29(4):580–587. [PubMed] [Google Scholar]
  • 177.Ushanandini S., Nagaraju S., Kumar K. H., et al. The anti-snake venom properties of Tamarindus indica (leguminosae) seed extract. Phytotherapy Research. 2006;20(10):851–858. doi: 10.1002/ptr.1951. [DOI] [PubMed] [Google Scholar]
  • 178.Alam M. I., Gomes A. Snake venom neutralization by Indian medicinal plants (Vitex negundo and Emblica officinalis) root extracts. Journal of Ethnopharmacology. 2003;86(1):75–80. doi: 10.1016/s0378-8741(03)00049-7. [DOI] [PubMed] [Google Scholar]
  • 179.Chandrashekara K. T., Nagaraju S., Usha Nandini S., Basavaiah, Kemparaju K. Neutralization of local and systemic toxicity of Daboia russelii venom by Morus alba plant leaf extract. Phytotherapy Research. 2009;23(8):1082–1087. doi: 10.1002/ptr.2735. [DOI] [PubMed] [Google Scholar]
  • 180.Krishnan S. A., Dileepkumar R., Nair A. S., Oommen O. V. Studies on neutralizing effect of Ophiorrhiza mungos root extract against Daboia russelii venom. Journal of Ethnopharmacology. 2014;151(1):543–547. doi: 10.1016/j.jep.2013.11.010. [DOI] [PubMed] [Google Scholar]
  • 181.Janardhan B., Shrikanth V. M., Mirajkar K. K., More S. S. In vitro screening and evaluation of antivenom phytochemicals from Azima tetracantha Lam. leaves against bungarus caeruleus and Vipera russelli. Journal of Venomous Animals and Toxins Including Tropical Diseases. 2014;20(1, article 12) doi: 10.1186/1678-9199-20-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 182.Mahadeswaraswamy Y. H., Devaraja S., Kumar M. S., Goutham Y. N. J., Kemparaju K. Inhibition of local effects of Indian Daboia/Vipera russelli venom by the methanolic extract of grape (Vitis vinifera L.) seeds. Indian Journal of Biochemistry and Biophysics. 2009;46(2):154–160. [PubMed] [Google Scholar]
  • 183.Mukherjee A. K., Kalita B., Mackessy S. P. A proteomic analysis of Pakistan Daboia russelii russelii venom and assessment of potency of Indian polyvalent and monovalent antivenom. Journal of Proteomics. 2016;144:73–86. doi: 10.1016/j.jprot.2016.06.001. [DOI] [PubMed] [Google Scholar]
  • 184.Wüster W. The genus Daboia (Serpentes: Viperidae): Russell's viper. Hamadryad. 1998;23(1):33–40. [Google Scholar]
  • 185.Warrell D. A. Snake bite. The Lancet. 2010;375(9708):77–88. doi: 10.1016/S0140-6736(09)61754-2. [DOI] [PubMed] [Google Scholar]
  • 186.Pla D., Sanz L., Molina-Sánchez P., et al. Snake venomics of Lachesis muta rhombeata and genus-wide antivenomics assessment of the paraspecific immunoreactivity of two antivenoms evidence the high compositional and immunological conservation across Lachesis. Journal of Proteomics. 2013;89:112–123. doi: 10.1016/j.jprot.2013.05.028. [DOI] [PubMed] [Google Scholar]
  • 187.Gutiérrez J. M. Comprendiendo los venenos de serpientes: 50 Años de investigaciones en América Latina. Revista de Biologia Tropical. 2002;50(2):377–394. [PubMed] [Google Scholar]
  • 188.de Paula R. C., Sanchez E. F., Costa T. R., et al. Antiophidian properties of plant extracts against Lachesis muta venom. Journal of Venomous Animals and Toxins Including Tropical Diseases. 2010;16(2):311–323. [Google Scholar]
  • 189.De Oliveira E. C., Cruz R. A. S., Amorim N. D. M., et al. Protective effect of the plant extracts of erythroxylum sp. against toxic effects induced by the venom of lachesis muta snake. Molecules. 2016;21(10, article 1350) doi: 10.3390/molecules21101350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 190.Biondo R., Soares A. M., Bertoni B. W., França S. C., Pereira A. M. S. Direct organogenesis of Mandevilla illustris (Vell) Woodson and effects of its aqueous extract on the enzymatic and toxic activities of Crotalus durissus terrificus snake venom. Plant Cell Reports. 2004;22(8):549–552. doi: 10.1007/s00299-003-0722-6. [DOI] [PubMed] [Google Scholar]
  • 191.Ode O. J., Nwaehujor C. O., Onakpa M. M. Evaluation of antihaemorrhagic and antioxidant potentials of Crinum jagus bulb. International Journal of Applied Biology and Pharmaceutical Technology. 2010;1(3):1330–1336. [Google Scholar]
  • 192.Nalbantsoy A., Erel Ş. B., Köksal Ç., Göçmen B., Yildiz M. Z., Karabay Yavaşoĝlu N. Ü. Viper venom induced inflammation with Montivipera xanthina (Gray, 1849) and the anti-snake venom activities of Artemisia absinthium L. in rat. Toxicon. 2013;65:34–40. doi: 10.1016/j.toxicon.2012.12.017. [DOI] [PubMed] [Google Scholar]
  • 193.Collaço R. D. C. O., Cogo J. C., Rodrigues-Simioni L., Rocha T., Oshima-Franco Y., Randazzo-Moura P. Protection by Mikania laevigata (guaco) extract against the toxicity of Philodryas olfersii snake venom. Toxicon. 2012;60(4):614–622. doi: 10.1016/j.toxicon.2012.05.014. [DOI] [PubMed] [Google Scholar]
  • 194.Amog P. U., Manjuprasanna V. N., Yariswamy M., et al. Albizia lebbeck seed methanolic extract as a complementary therapy to manage local toxicity of Echis carinatus venom in a murine model. Pharmaceutical Biology. 2016;54(11):2568–2574. doi: 10.3109/13880209.2016.1171882. [DOI] [PubMed] [Google Scholar]
  • 195.Nanjaraj Urs A. N., Yariswamy M., Joshi V., et al. Local and systemic toxicity of Echis carinatus venom: Neutralization by Cassia auriculata L. leaf methanol extract. Journal of Natural Medicines. 2014;69(1):111–122. doi: 10.1007/s11418-014-0875-3. [DOI] [PubMed] [Google Scholar]
  • 196.Hasson S. S., Al-Balushi M. S., Said E. A., et al. Neutralisation of local haemorrhage induced by the saw-scaled viper Echis carinatus sochureki venom using ethanolic extract of Hibiscus aethiopicus L. Evidence-Based Complementary and Alternative Medicine. 2012;2012:8. doi: 10.1155/2012/540671.540671 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 197.Hasson S. S., Al-Jabri A. A., Sallam T. A., Al-Balushi M. S., Mothana R. A. A. Antisnake venom activity of hibiscus aethiopicus L. against echis ocellatus and naja n. nigricollis. Journal of Toxicology. 2010;2010 doi: 10.1155/2010/837864.837864 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 198.Mahadeswaraswamy Y. H., Nagaraju S., Girish K. S., Kemparaju K. Local tissue destruction and procoagulation properties of Echis carinatus venom: Inhibition by Vitis vinifera seed methanol extract. Phytotherapy Research. 2008;22(7):963–969. doi: 10.1002/ptr.2462. [DOI] [PubMed] [Google Scholar]
  • 199.Boldrini-França J., Corrêa-Netto C., Silva M. M. S., et al. Snake venomics and antivenomics of Crotalus durissus subspecies from Brazil: Assessment of geographic variation and its implication on snakebite management. Journal of Proteomics. 2010;73(9):1758–1776. doi: 10.1016/j.jprot.2010.06.001. [DOI] [PubMed] [Google Scholar]
  • 200.Santoro M. L., Sousa-E-Silva M. C. C., Gonçalves L. R. C., et al. Comparison of the biological activities in venoms from three subspecies of the South American rattlesnake (Crotalus durissus terrificus, C. durissus cascavella and C. durissus collilineatus) Comparative Biochemistry and Physiology - C Pharmacology Toxicology and Endocrinology. 1999;122(1):61–73. doi: 10.1016/S0742-8413(98)10079-8. [DOI] [PubMed] [Google Scholar]
  • 201.Sangiorgio F., Sakate M., Nogueira R. M. B., Araújo J. P., Jr., Chavez-Olortegui C. Kinetics of venom and antivenom serum levels, clinical evaluation and therapeutic effectiveness in dogs inoculated with Crotalus durissus terrificus venom. Journal of Venomous Animals and Toxins Including Tropical Diseases. 2008;14(1):100–112. [Google Scholar]
  • 202.Hiremath V., Nanjaraj Urs A. N., Joshi V., et al. Differential action of medically important Indian BIG FOUR snake venoms on rodent blood coagulation. Toxicon. 2016;110:19–26. doi: 10.1016/j.toxicon.2015.11.014. [DOI] [PubMed] [Google Scholar]
  • 203.Chen Q., Wang W., Li Q., Bai Y., Zou X., Wu Y. Effect of externally applied Jidesheng anti-venom on skin and soft-tissue necrosis after Chinese cobra bite: a retrospective study. Journal of Traditional Chinese Medicine. 2014;34(2):150–154. doi: 10.1016/S0254-6272(14)60069-8. [DOI] [PubMed] [Google Scholar]

Articles from Evidence-based Complementary and Alternative Medicine : eCAM are provided here courtesy of Wiley

RESOURCES