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Therapeutic protocols in immunotherapy are usually proposed following the intuition and experience of the therapist. In order
to deduce such protocols mathematical modeling, optimal control and simulations are used instead of the therapist’s experience.
Clinical efficacy of dendritic cell (DC) vaccines to cancer treatment is still unclear, since dendritic cells face several obstacles in the
host environment, such as immunosuppression and poor transference to the lymph nodes reducing the vaccine effect. In view of
that, we have created a mathematical murine model to measure the effects of dendritic cell injections admitting such obstacles. In
addition, the model considers a therapy given by bolus injections of small duration as opposed to a continual dose. Doses timing
defines the therapeutic protocols, which in turn are improved to minimize the tumor mass by an optimal control algorithm. We
intend to supplement therapist’s experience and intuition in the protocol’s implementation. Experimental results made on mice
infectedwithmelanomawith andwithout therapy agree with themodel. It is shown that the dendritic cells’ percentage thatmanages
to reach the lymph nodes has a crucial impact on the therapy outcome.This suggests that efforts in finding bettermethods to deliver
DC vaccines should be pursued.

1. Introduction

Immunotherapy based on antigen-treated dendritic cells
(DCs) is a promising treatment against certain types of
cancer [1]. This kind of therapy is often regarded as a safe
option alone or in concurrence with other therapies [2].
Nonetheless, clinical evidence of its efficacy is still unclear
and researchers are still designing new experiments in mice
and humans to decipher mechanisms that could lead to a
successful cancer treatment.Murinemodels are a current way
to test hypothetical therapy protocols by cultivating dendritic
cells in vitro from mouse bone marrow to be inserted back
into themouse after being treatedwith antigens. For example,
modest clinical success has been observed in C57BL/6S mice
inoculated with B16 melanoma cells [3] after being treated
with antigen loaded DCs.

Therapy schedules consist in previously planned proto-
cols of injection times with their respective vaccine quantity.

Such protocols in immunotherapy are usually proposed
following therapist traits such as intuition and experience.We
aim to provide a rational therapy planning not only relying
on therapist’s experience and intuition but also by the help
of mathematical modeling, optimal control, and simulations.
Optimal control has a history as a tool to improve tumor
therapy schedules. It is usually used to rationalize issues like
infusion times and drug quantities. For instance, the optimal
control for a model with mixed immunotherapy and chem-
otherapy is addressed in [4]. Numerical and analytic control
techniques for continuous and bang-bang controls can be
consulted in [5].Therapeutic protocol improvement by simu-
lations have been made in [6] for Cytotoxic T Cell (CTL) and
in [7] for dendritic cell transfections.

Maturation of antigen-primed DCs reduces phagocytic
capacities in an interchange for improving and present-
ing migration capabilities [2] to lymph tissues increasing
expression of chemokines and adhesion molecules. DCs are
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characterized by improving the immune response activating
natural killer cells and naive and memory B cells. Moreover,
DCs create cytokines which help CD4+T cells differentiation.
Several methods to generate and mature DCs are able to
produce antigen-specific T cell response after DCs inocula-
tion. Maturation is essential since mature DCs have a greater
capacity to create cytokines and chemokines that activate T
cells in contrast to immature DCs.

Tumor cell antigens need to be loaded into Major His-
tocompatibility Complex (MHC) molecules of the DCs in
a process called antigen loading [2]. For such an endeavor
DCs are curated with peptides and proteins from tumor cells.
Another method to load antigens to DCs is by using virus
vectors. Such viruses are used to load genes with encoded
Tumor Associated Antigens (TAA) into the dendritic cells.
Also, the natural immune response against virus vectors
serves as an immunostimulant towards the TAA.

DCs are regarded as the best at activating cytotoxic T
cells. They have a history of being used as the therapy to
improve the host immune capabilities. Nonetheless, many
clinical results of dendritic immunotherapy are not quite
successful. The purpose of this work is to propose a model
that accounts for the obstacles that dendritic cells could face
when they are used as a medium to transmit antigens to
the host immune system and create immune response. Such
obstacles are as follows:

(i) Only 5% of the DC vaccine reaches the lymph node
[8].

(ii) Injected DCs do not directly activate CD8 cells; they
only transmit the antigens to the endogenous Antigen
Presenting Cells (APCs) which are responsible for
activating the T cells [9]. We suppose that DCs only
interact with CD4 T cells and IL-2 cytokine.

We also include the immunosuppressive effects of the TGF-𝛽 in the cytotoxic T cells. Then, the model is used together
with optimal control to overcome such obstacles. In this
case, optimal control is used to predict satisfactory dendritic
injection times with an optimal control technique developed
by Castiglione and Piccoli [10]. Another consideration is
regarding the kind of DCs vaccine. We do not consider a
continuous infusion of DCs, but a short period or bolus injec-
tion that can be considered instantaneous. This resembles
more accurately the procedure following the immunotherapy
injection in [3] for which we adjusted our model.

The outline of this work is as follows. The explanation
of the mathematical model and its terms are given in
Section 2, followed by numerical simulations that agree with
experimental data from mice bearing melanoma cells in
Section 3. Section 4 contains the optimal control problem
and the optimization algorithm, followed by Section 5 that
explores the consequences of changing the percentage of
dendritic cells arriving at the lymph node. Finally, Section 6
gives some biological implications of the results.

2. The Murine Mathematical Model

The clinical efficacy of DC vaccines by simulations of mathe-
maticalmodels is a topic of ongoing research inmathematical

oncology [1]. One of the most used tools for modeling the
intricate interactions between proteins, lymphocytes, and
tumor cells is ordinary differential equations (ODEs). Other
kinds of models include delay differential equations (DDEs),
which are a system of ODEs where an unknown depends on
past values. This is usually represented in the independent
variable as 𝑡−𝜏 (e.g.,𝑥(𝑡) and is changed for𝑥(𝑡−𝜏)) where 𝜏 is
called the delay. Such delay can elegantly represent a gestation
time or a transport delay, hiding some of the intricacies of the
phenomena.The negative side is that it is often more difficult
to solve a DDE analytically and numerically than an ODE.
Several DDE models have been used to hide the transport
delay of DCs from the injection time to the interaction time
with effector and helper T cells. For example, a compartment
model between the spleen, blood, and tumor with a delay
between theDCs injection and spleen arriving is given in [11].
A DDE with interactions between TGF-𝛽 and T cells is made
in [7].

For the model considers an inherent delay 𝜏 = 232 h,
which is equal to the time that DCs take to arrive at lymph
nodes but only affects the times at which the simulations
assume an injection and is not implicitly adding 𝑡. Then,
our model is an ODE. Also, we are considering that therapy
consists of bolus injections with very small timespan in com-
parison with overall therapy. The details of implementation
are explained inThe Simulation.

2.1. The ODE System. Themodel of the present paper having
been inspired by the works of [6, 7, 10] is given by the ODE
system:

𝑑𝑇
𝑑𝑡 = 𝑟𝑇𝑇 log(𝐾𝑇𝑇 )

− 𝑎𝑇𝐶𝑇( 𝑀𝐼𝑒𝑇 +𝑀𝐼)(𝑎𝑇𝐹𝛽 + 𝑒𝑇
𝑒𝑇 + 𝐹𝛽 ) ,

(1)

𝑑𝐻
𝑑𝑡 = 𝑎𝐻 + 𝑟𝐻𝐷𝐻(1 − 𝐻

𝐾𝐻) − 𝜇𝐻𝐻, (2)

𝑑𝐶
𝑑𝑡 = 𝑎𝐶 + 𝑟𝐶𝐼𝐶(1 − 𝐶

𝐾𝐶) − 𝜇𝐶𝐶, (3)

𝑑𝐷
𝑑𝑡 = −𝜇𝐷𝐶𝐷 + 𝑢, (4)

𝑑𝐼
𝑑𝑡 = −𝜇𝐼𝐶𝐶𝐼 + 𝑟𝐼𝐷𝐻 − 𝜇𝐼𝐼, (5)

𝑑𝐹𝛽
𝑑𝑡 = 𝑟𝑇𝛽𝑇 − 𝜇𝛽𝐹𝛽, (6)

𝑑𝐹𝛾
𝑑𝑡 = 𝑎𝛾𝐶𝐶 − 𝜇𝛾𝐹𝛾, (7)

𝑑𝑀𝐼𝑑𝑡 = 𝑎𝑀𝑙𝛾𝐹𝛾𝑒𝑀𝑙𝛾 + 𝐹𝛾 + 𝑔𝑀𝑙 − 𝜇𝑀𝑙𝑀𝐼 (8)
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Figure 1: Simulation and experimental data without therapy. Parameter Table 2.
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Figure 2: Simulation and experimental data with therapy. The experiment was obtained starting with 6 × 104 melanoma cells inoculated in
mice. Following a dosing protocol of 106 DC at times 𝑡 = 168, 336, 504 [3, 7] with total dose of 3 × 106 DCs. The initial condition is 6 × 104
for tumor cells and zero for the rest of the variables. The parameters used are shown in Table 2. The big arrows are the injections, and small
arrows are the delayed impulses 𝑢.

which has 8 state variables:
(i) 𝑇, the tumor cells.
(ii) 𝐻, the CD4 T helper cells.
(iii) 𝐶, the CD8 T or CTL cytotoxic cells.
(iv) 𝐷, the antigen loaded dendritic cells.
(v) 𝐼, the IL-2 Interleukin-2 cytokine.
(vi) 𝐹𝛽, the TFG-𝛽 T cell inhibitor.
(vii) 𝐹𝛾, the IFN-𝛾 which upregulates MHC class 1.
(viii) 𝑀𝑙, is the number of MHC class 1 receptors per

melanoma cell.

Thefirst termof (1) is aGompertz growthwhich adjusted very
well to experimental data; see Figures 1 and 2.The expression
in the second term −𝑎𝑇𝐶𝑇(𝑀𝐼/(𝑒𝑇 +𝑀𝐼))((𝑎𝑇𝐹𝛽 + 𝑒𝑇)/(𝑒𝑇 +𝐹𝛽)) represents the tumor cell eliminations by theCD8T cells,

which in turn is suppressed by the cytokines TFG-𝛽 and the
efficiency of MHC class 1 receptors. Both suppressing effects
follow Michaelis-Menten saturation dynamics; see [6].

Equations (2) and (3) represent the dynamics of CD4
and CD8 T cells, respectively. The parameters 𝑎𝐻 and 𝑎𝐶
represent the production ofCD4 andCD8T cells. Both follow
a logistic growth law. Asmentioned before, it is supposed that
the injections of DCs only interact with CD4 T cells since it
was reported in [9] that CD8 activation is not made by DC
vaccines. So, in the term 𝑟𝐶𝐼𝐶(1 − 𝐶/𝐾𝐶) we consider that
activation of tumor-specific CD8 is only promoted by IL-2.

The term 𝑢 in (4) is a control variable representing the
DCs injections. Since we are considering a bolus injection
therapy, 𝑢 is the sum of impulses at injection times: 𝑢 =𝑉𝛿(𝑡−(𝑡𝑖+𝜏)). Where the therapy consists of 𝑛 doses of size𝑉
given at times 𝑡0 < 𝑡1 < ⋅ ⋅ ⋅ < 𝑡𝑛−1, but because there is a delay
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Table 1: Immunotherapy protocol used in the experiment.

Infusion times Week 1 (0 h) Week 2 (168 h) Week 3 (336 h) Week 4 (504 h) Week 5 (672 h)
Control mice 6 × 104 Melanoma cells Mice sacrificed
Melanoma mice 6 × 104 Melanoma cells 106 DCs 106 DCs 106 DCs Mice sacrificed

in the DCs arriving time at lymph nodes the impulse occurs
at (𝑡𝑖 + 𝜏).

Equation (5) have interleukin IL-2 produced from the
interactions of DCs and CD4 T cells by 𝑟𝐼𝐷𝐻 and is
consumed by CD8 T cells at −𝜇𝐼𝐶𝐶𝐼. Interleukin IL-2 has a
major role in the system, prolonging persistence of CD8 T
cells. It is necessary for the production of new tumor antigen-
specific CD8 T.

Equation (6) describes the cytokine dynamics of TGF-𝛽,
an inhibitor of T cells activity, with secretion proportional to
the number of tumor cells and degradation rate 𝜇𝛽.

Equation (7) describes the cytokine IFN-𝛾, a weapon
of the CD8 T cells to upregulate the MHC class 1 in the
melanoma cells. The production is proportional to the CD8
T cells and degradation rate 𝜇𝛾.

MHC 1 class dynamics is in (8). It has a basal production
rate per melanoma cell 𝑔𝑀𝑙 . The first term shows a growing
rate stimulated by IFN-𝛾 which follows a Michaelis-Menten
Kinetics with maximal effect 𝑎𝑀𝑙𝛾 and Michaelis parameter𝑒𝑀𝑙𝛾 .

This model assumes the following:

(1) The tumor mass is homogeneous. The present model
assumes that each tumor cell has the same sensitivity
to DCs vaccine.

(2) It is monoclonal, that is, only T cells are able to
recognize the TAA.

3. The Simulation

The model is calibrated to fit the data supplied in [7] made
at the Laboratory of Immunotherapy and Tissue Engineering
of UNAM (Universidad Nacional Autonoma de México),
Mexico [3]. The immunotherapy consisted of three doses of106 DCs activated with MAGE-AX separated by 168 hours,
in Table 1. The tumor cells population is calculated from
mice tumor diameter assuming a spherical form. The used
parameters can be seen in Table 2. The initial condition
is (𝑇(0),𝐻(0), 𝐶(0), 𝐷(0), 𝐼(0), 𝐹𝛽(0), 𝐹𝛾(0),𝑀𝐼(0)) = (6 ×
104, 0, 0, 0, 0, 0, 0, 0). A comparison between the experiment
and simulations with andwithout therapy is shown in Figures
1 and 2.

As mentioned before, in the simulation there is an
inherent delay of 𝜏 = 232 h, which was adjusted to fit
the experimental data. Hence, we implement 𝜏 to affect the
impulse time of the control variable 𝑢.Therefore, for example,
the therapy consists of a single injection of 106 DCs at 𝑡 =10 h; we have

𝑢 = 106𝛿 (𝑡 − (10 + 𝜏)) , (9)

where 𝛿 is the Dirac delta function. Observe that this implies
that the DC injection at 𝑡 = 10 h has an effect on the system
until 𝑡 = 10 + 𝜏. So, we integrate our system from [0, 10 + 𝜏),
and then restart the integration from 𝑡 = 10 + 𝜏 with initial
condition (𝑇,𝐻, 𝐶,𝐷 + 106, 𝐼, 𝐹𝛽, 𝐹𝛾,𝑀𝐼)|𝑡=10+𝜏.
4. Optimal Control

Hypothetical protocols can be found simulating the model
with several combinations of dose timing and size.This could
lead to the implementation of new protocol therapies which
could potentially replace the originally proposed by medics.
For example, see [7]. Now in this section, we show that such
hypothetical protocols can be derived or improved using an
optimization algorithm based on optimal control.

It is considered that a therapeutic protocol consists of 𝑛
doses of size 𝑉 given at times 𝑡0 < 𝑡1 < ⋅ ⋅ ⋅ < 𝑡𝑛−1. Now, let
a schedule of injections be given by 𝑆 = {𝑡𝑖 : 𝑖 = 0, 1, . . . , 𝑛 −1, 𝑡0+𝜏 < 𝑡1+𝜏 < ⋅ ⋅ ⋅ < 𝑡𝑛−1+𝜏 < 𝑡𝑓}, where 𝑡𝑓 is the fixed time
horizon. LetL be the space of schedules, then for a particular
schedule 𝑆 ∈ L the control variable takes the form:

𝑢 = 𝑛∑
𝑖=1

𝑒𝑓𝑉𝛿 (𝑡 − (𝑡𝑖 + 𝜏)) , (10)

where 𝑒𝑓 is the percentage of DC vaccine that actually reaches
the lymph nodes. Notice, we are approximating the doses as
an impulse given by the Dirac function 𝛿(⋅). Now let 𝑥 =(𝑇,𝐻, 𝐶,𝐷, 𝐼, 𝐹𝛽, 𝐹𝛾,𝑀𝐼), so Equations (1)–(8) take the form,

𝑑𝑥
𝑑𝑡 = 𝑓 (𝑥) + 𝑢. (11)

The optimal control problem consists in the following:

(P) Determine the schedule 𝑆 ∈ L of 𝑛 injections that
minimize the final tumor mass 𝑇(𝑡𝑓) of the trajectory
given by (11) with initial condition 𝑥0 = (6 ×104, 0, 0, 0, 0, 0, 0, 0).

To solve (P) we use the optimization algorithm described
in [10], which is repeated here for clarity, with a slight
modification.

4.1. Optimization Algorithm

Algorithm 1 (optimization).

(S0) Fix the time horizon 𝑡𝑓, the number 𝑛 of vaccine
administrations, the value 𝑉 of vaccine quantity, an
initial value 𝑥0 of cells population, and an initial
schedule 𝑆0.
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Table 2: Model parameters.

Parameter Description Values Units h = hours, c = cell Reference
𝑎𝐻 Birth rate of CD4 T 10−4 ch−1 [10]
𝜇𝐻 Death rate of CD4 T 0.005 h−1 [10]
𝑟𝐻 Max proliferation of CD4 T 1 c−1h−1 [10]
𝐾𝐻 Carrying capacity of CD4 T 1 c [10]
𝑎𝐶 Birth rate of CD8 T 10−4 c−1h−1 [10]
𝜇𝐶 Death rate of CD8 T 0.005 h−1 [10]
𝑟𝐶 Max proliferation of CD8 T 4 ∗ 10−7 c−1h−1 [10]
𝐾𝐶 Carrying capacity of CD8T 1 c [10]
𝑟𝑇 Tumor growth rate 0.002 h−1 Ad hoc value
𝑎𝑇 Maximum efficiency of cytotoxic cells 0.1136 h−1 Ad hoc value
𝜏 DC arriving time delay at lymph nodes 232 h Ad hoc value
𝐾𝑇 Tumor carrying capacity 1012 c [6]
𝜇𝐷 Rate death of DCs 0.009625 h−1 [7]
𝑟𝐼 IL-2 production by CD4 T 10−2 c−1h−1 [10]
𝜇𝐼𝐶 IL-2 uptake by CD8 T 10−7 c−1h−1 [10]
𝜇𝐼 IL-2 degradation rate 10−2 h−1 [10]
𝑒𝑇 Michaelis constant 50 c−1 [6]
𝑎𝑇𝛽 Michaelis constant 0.69 none [6]
𝑒𝑇𝛽 Michaelis constant 104 pg [6]
𝑟𝑇𝛽 Production rate of TGF-𝛽 5.57 × 10−6 pg(ch)−1 [6]
𝜇𝛽 Degradation rate of TGF-𝛽 6.93 h−1 [6]
𝑎𝛾𝐶 Release rate per single CTL 1.02 ∗ 10−4 pg ⋅ c−1 ⋅ml−1 ⋅ h−1 [6]
𝜇𝛾 Degradation of 𝐹𝛾 0.102 h−1 [6]
𝑔𝑀𝑙 Receptor production 1.44 rec ⋅ c−1 ⋅ h−1 [6]
𝑎𝑀𝑙𝛾 Maximal effect of IFN-c 2.89 rec ⋅ c−1 ⋅ h−1 [6]
𝑒𝑀𝑙𝛾 Michaelis parameter 3.38 ∗ 105 pg [6]
𝜇𝑀𝑙 Degradation of MI 0.0144 h−1 [6]
𝑒𝑓 Active DC percentage 0.05 c [8]

(S1) Integrate system (1)–(8) with initial value 𝑥0 to obtain
the trajectory 𝑥𝑠. Solve for each 𝑡𝑖 of the schedule 𝑆0:

𝑑V𝑖𝑑𝑡 = 𝐷𝑥𝑓 (𝑥𝑠) ⋅ V𝑖 (12)

in the interval [𝑡𝑖, 𝑡𝑓] with initial condition V𝑖(𝑡𝑖) =𝑓(𝑥𝑠(𝑡𝑖)) − 𝑓(𝑥𝑠(𝑡𝑖) + e4𝑉) where e4 is the fourth
coordinate vector.

(S2) Update the schedule 𝑆0 : 𝑡𝑛+1𝑖 = 𝑡𝑛𝑖 −ℎV𝑖(𝑡𝑓)⋅e4with ℎ >0.The step sizeℎ should be of the order𝑂(1/|V𝑖(𝑡𝑖)⋅e4|)
to avoid an excessive big step. Go to step 1.

The correct choice of step size ℎ is important. If ℎ is too
big, we could get a wrong optimization step. If ℎ is too small
the optimization could improve very slowly. Final tumormass
was decreased in each optimization step choosing ℎ of the
order 𝑂(1/|V𝑖(𝑡𝑖) ⋅ e4|). Also, to find the best ℎ an 1𝐷 search
method could be used such as the Golden Section Search
(GSS) [12]. Using GSS we achieve a good optimization with

10 steps in about 10 seconds. In contrast to a fixed step ℎ it
needs 100 optimization steps in 60 seconds.

We tested Algorithm 1 with an initial random schedule{232, 462, 692, 922} and 100 optimization steps with 𝑉 = 6 ×105. Also, in order to get 𝑥𝑠 at step 2 we used the same initial
condition: 𝑥0 = (6 × 104, 0, 0, 0, 0, 0, 0, 0) as that used to test
the model (Figure 2). This evolved into one big injection of1.8 × 106 at 𝑡 = 303 h and one of 6 × 105 at 𝑡 = 879 h. Observe
that a total dose of 2.4×106 DCs is used, whereas the original
protocol used 3 × 106 DCs (Figure 2).

Thedifference of initial and optimized therapy is shown in
Figure 5.Moreover, Figure 5(b) shows amaximumof roughly3.5 × 109 tumor cells and final tumor mass of around 5 × 108;
substantially less than in the experiment. The maximum and
final tumor mass is 1.5 × 1010 and 6.41 × 108 respectively, see
Figure 2.

Figure 4 shows that a fast final tumor mass decay occurs
in the first 10 optimization steps with little improvement
afterwards. Nonetheless, Figure 3 shows a substantial therapy
evolution until about the 80th optimization step.
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Figure 3: Injection schedule versus the optimization steps. With
initial random protocol {432, 629, 876, 988} and final protocol{303.636, 303.634, 303.211, 879.318} and fixed step size ℎ = 10−6.

4.2. Optimal Therapies in Large Time Horizons. A very slow
convergence and unsatisfactory results of Algorithm 1 are
observed searching for protocols far beyond 𝑡𝑓 = 1000 h
(e.g 𝑡𝑓 = 20000 h). In view of such problems, we divide
the time horizon 𝑡𝑓 in 𝑚 equal intervals of size 𝑡𝑓/𝑚 and
apply Algorithm 1 at every interval [(𝑖−1)(𝑡𝑓/𝑚), 𝑖(𝑡𝑓/𝑚)] for𝑖 = 1, . . . , 𝑚 in an iterative way. At the end of each iteration
step the state 𝑥(𝑖(𝑡𝑓/𝑚)) is saved to be used as an initial
condition in the following iteration. Also, in each iteration the
optimized schedule 𝑆𝑖 is saved. Finally, the system is solved
with the schedule 𝑆 = ⋃𝑚𝑖=1 𝑆𝑖.
Algorithm 2 (optimization of the intervals).

(S0) Fix the time horizon 𝑡𝑓, number of intervals 𝑚, the
number 𝑛 of vaccine administrations on each interval,
the value 𝑉 of vaccine quantity, an initial value 𝑥0 of
cells population and an initial schedule 𝑆0. Let 𝑖 = 1
and 𝑆 = 𝑆0.

(S1) If 𝑖 equals 𝑚, go to Step 3. Otherwise apply Algo-
rithm 1 at interval [(𝑖 − 1)(𝑡𝑓/𝑚), 𝑖(𝑡𝑓/𝑚)] with initial
condition 𝑥𝑖−1(𝑖(𝑡𝑓/𝑚)). Get the schedule 𝑆𝑖.

(S2) Let 𝑆 = 𝑆 ∪ 𝑆𝑖. Save the next initial condition𝑥𝑖(𝑖(𝑡𝑓/𝑚)), Let 𝑖 = 𝑖 + 1. Go to Step 1.
(S3) Solve the system with the schedule 𝑆.

5. Results and Discussion

The objective of this section is to show that the percentage
of DC injection which arrives at lymph nodes (𝑒𝑓) has a
great impact on the tumormass behavior.Three therapy cases
are shown, each starting with a random therapy which is
improved by Algorithm 2.

For ethical reasons, melanoma inoculated mice are
allowed to live maximum of 1000 h. Then, in order to find a

therapy after such time we apply Algorithm 2 for timespans:
20,000, 10,000, and 5,000 hours; in addition, we change 𝑒𝑓
from 5% to 8% and to 10%. In every case tumor oscillations
with amplitude that stabilize after some time are obtained.
This stabilization time seems to be smaller as 𝑒𝑓 grows. It
is worth mentioning that 𝑀max, the maximum number of
melanoma cells that mice can bare before dying cannot be
greater than 1.6 × 1010 [7]. So, the immunotherapy protocol
with 𝑒𝑓 = 0.05 shown in Figure 6 can be regarded as a
successful therapy to control the tumor under𝑀max.

When 𝑒𝑓 is increased, Figures 7 and 8 show a therapy
with better tumor-killing performance than therapy with𝑒𝑓 = 0.05. Using 𝑒𝑓 = 0.08 (Figure 7) reduces the maximal
oscillation amplitude to 3 × 109 and reduces the amplitude
of the stable oscillations to 7.75 × 108. Finally, 𝑒𝑓 = 0.10 in
Figure 8 reduces the amplitude of the stable oscillations to the
order 106 which in some instances is regarded as clinically not
detectable.

The increments of 𝑒𝑓 can be implemented in experiments
using a secondary therapy that improves the migration
capacity of the DCs. Also, alternative delivering methods
for DCs injections could be used. Nevertheless, alternative
delivering routes such as intradermally and intranodally
showed a comparable response to the intravenously route [8].

5.1. Further Research. The overall schema followed in Algo-
rithm 1 is called the steepest descent. This relies on following
the correct gradient in each step until a minimum of the
cost function is apparent. The gradient for our problem is
given by (12) and only considers the cost function 𝑇(𝑡𝑓) [10].
Despite this, the simulations in Figure 5 show improvements
over the originally used therapy. However, there are many
cost functions which can be minimized. For example, a
cost function that admits the total dose given over the
optimization can be proposed. This could help therapists
to economize on materials which cost a lot of money and
effort in cultivating and transferring antigens to the DCs.
Therefore it is observed that optimization in Figure 5 results
in a lesser total dose. For further cost functions associated
with gradients on immunotherapy optimization we refer to
[13].

Melanoma is well known for its immunogenic properties
usually used for immunotherapy testing. For example, one
of the most cited studies on cancer immunotherapy [14]
consisted in a vaccine trial of 440 patients where 96%
of the patients had melanoma, although only 3.8% of the
patients responded to the vaccine and the majority was from
melanoma. Corresponding patients can be found suffering
from lung, childhood, and kidney cancer.This couldmotivate
the creation ofmathematicalmodels for therapy optimization
on such types of cancer.

It can be observed in Figures 6, 7, and 8, a periodically
pulsed immunotherapy can be used to control the tumor.
This results in what seems to be periodical tumor solutions.
Are these periodical solutions stable?This can be investigated
creating a map 𝐹(𝑥𝑜) = 𝑥(𝜎) where 𝑥(𝜎) is the solution of
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Figure 5: Before and after optimization procedure. The arrows represent injection times and the jumps on DCs are the impulses on the
control. A total dose of 2.4 × 106 DCs is used.

(1)–(8) at 𝑡 = 𝜎 with initial condition 𝑥0. Then, the existence
of periodical solutions is equivalent to solve the equation

𝐹 (𝑥𝑜) − 𝑥𝑜 = 0. (13)

The stability is given by the Jacobian of the map 𝐹(𝑥𝑝)
where 𝑥𝑝 is a periodic solution. These stable periodic solu-
tions can be regarded as more robust than the unstable ones.

6. Conclusions

A model has been created that includes several of the
obstacles that DCs face in the host environment such as
immunosuppression and poor transference to the lymph
nodes. The model shows an agreement with experimental
data from mice inoculated with melanoma. This gives us
more confidence about the optimizations outcome.
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We used optimal control as a tool to rationalize the cre-
ation of immunotherapy protocols.These protocols can serve
the therapist to complement their intuition and experience.
Simulations show that optimized protocols outperform that
proposed by the therapists in [7] regarding the total dose and
final tumor size.

Although the real clinical efficacy of DC therapy is still
under discussion, the results of the present work should
be tested in experiments. The simulations show that an
increment in the percentage of DCs that manage to arrive to
the lymph nodes (𝑒𝑓) has a huge impact on the amplitude
of the oscillations made by the periodic therapy. Even an
increment from 5% to 10% reduces the amplitude from the
order of 1010 to the order of 106 as is shown in Figure 8.
This could be achieved using better methods to deliver DC
vaccines or combining DC immunotherapy with treatments
that enhance the DCs migration capacity.

Can immunotherapy be a cure for cancer? That is too
early to be answered. What is sure is that most of the current
therapies rely on prolonging the survival of the patient and
not the cure. The simulations shown in Figures 6, 7, and 8
support the idea of DCs immunotherapy as a medium to
tumor control.
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