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Abstract

Atrial fibrillation affects more than 33 million people worldwide and increases the risk of stroke, 

heart failure, and death.1,2 Fourteen genetic loci have been associated with atrial fibrillation in 

European and Asian ancestry groups.3–7 To further define the genetic basis of atrial fibrillation, we 

performed large-scale, multi-racial meta-analyses of common and rare variant association studies. 

The genome-wide association studies (GWAS) included 18,398 individuals with atrial fibrillation 

and 91,536 referents; the exome-wide association studies (ExWAS) and rare variant association 

studies (RVAS) involved 22,806 cases and 132,612 referents. We identified 12 novel genetic loci 

that exceeded genome-wide significance, implicating genes involved in cardiac electrical and 

structural remodeling. Our results nearly double the number of known genetic loci for atrial 

fibrillation, provide insights into the molecular basis of atrial fibrillation, and may facilitate new 

potential targets for drug discovery.8
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Atrial fibrillation is a common cardiac arrhythmia that can cause serious complications such 

as stroke, heart failure, dementia, and death.1,2 The lifetime risk of atrial fibrillation is one in 

four9 and it has been estimated that more than 33 million individuals worldwide are 
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affected.1 During the last decade, GWAS have identified 13 genetic loci associated with 

atrial fibrillation in Europeans and one Asian specific atrial fibrillation locus, of which a 

region near the gene encoding the transcription factor PITX2 has shown the strongest 

association.3–7 Recently, genome and exome sequencing studies have identified rare atrial 

fibrillation-associated mutations in MYL4,10 MYH6,11 CACNB2,12 and CACNA2D4.12 

Given the incomplete understanding of the biology of atrial fibrillation and the modestly 

sized prior genetic association analyses, we sought to identify additional susceptibility loci 

by increasing the size and diversity of the atrial fibrillation studies.

We therefore investigated both common and rare variants in a large collection of individuals 

in the Atrial Fibrillation Genetics (AFGen) Consortium, by meta-analyses of GWAS, 

ExWAS, and RVAS in 33 studies, including 22,806 individuals with atrial fibrillation and 

132,612 referents (Online methods). Fig. 1 illustrates our study design and Supplementary 

Tables 1 and 2 show baseline characteristics of the study participants.

In a meta-analysis of GWAS in 31 studies, we identified 10 new genetic loci associated with 

atrial fibrillation (P < 5×10−8) at METTL11B/KIFAP3, ANXA4/GMCL1, CEP68, TTN/
TTN-AS1, KCNN2, KLHL3/WNT8A/FAM13B, SLC35F1/PLN, ASAH1/PCM1, 
SH3PXD2A, and KCNJ5 (Table 1, Figs. 2 and 3, Supplementary Fig. 1, Supplementary 

Table 3). The 13 genetic loci previously associated with atrial fibrillation in Europeans were 

again observed, while one locus previously reported in Asians only, did not reach genome-

wide significance in our study (CUX2).

In a meta-analysis of ExWAS in 17 studies, we identified two additional novel genetic loci 

(SCN10A and SOX5, P < 1.04×10−6) as well as one new locus also identified in the GWAS 

meta-analysis (SLC35F1/PLN) (Table 2, Supplementary Fig. 2 and 3). Variants at each of 

these three loci have previously been associated with electrocardiographic traits 

(Supplementary Table 3).

Finally, in an RVAS or burden test of rare variants, one gene, SH3PXD2A, reached genome-

wide significance. This association was mainly driven by a rare coding variant that is unique 

to individuals of Asian ancestry (rs202011870, minor allele frequency (MAF) 0.18%, odds 

ratio (OR) 4.68, 95% confidence interval (CI) 2.97–7.39, P=3.3×10−11, Supplementary 

Tables 3–5) and the same locus was significantly associated with atrial fibrillation in the 

GWAS meta-analysis. Out of the 11 variants in the Asian ancestry burden test, rs149867987 

also reached genome-wide significance and had an effect in the same direction as 

rs202011870. There was no genome-wide significant signal at SH3PXD2A in RVAS 

analyses in individuals of European or African American ancestry.

Ancestry-specific GWAS analysis revealed a significant association between African 

Americans (641 cases and 4956 referents) with atrial fibrillation and variants on 

chromosome 4q25 upstream of PITX2 (rs6843082, OR 1.40, 95% CI 1.24–1.58, 

P=4.31×10−8, Supplementary Table 6, Supplementary Fig. 4). Similarly, the 4q25/PITX2 
region is the most significant locus for atrial fibrillation in individuals of Japanese ancestry 

(rs2723334, OR 1.94, 95% CI 1.68–2.25, P=8.46×10−19) and European ancestry 

(rs2129977, OR 1.45, 95% CI 1.41–1.49, P=7.25×10−136), and the lead SNPs in all three 
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ancestry groups are in strong linkage disequilibrium, with an r2>0.94. Further ancestry-

specific meta-analyses did not produce additional robust associations for atrial fibrillation 

(Supplementary Results, Supplementary Table 6–7, and Supplementary Figs. 4–6). Separate 

meta-analyses of incident and prevalent atrial fibrillation in Europeans did reveal one 

additional genome wide signal at chromosome 12p11/PKP2 that was only present in the 

prevalent atrial fibrillation analysis (Supplementary Results, Supplementary Tables 8–9, 

Supplementary Figs. 7–8); however, since this locus was not present in the combined 

analyses it was not pursued further.

We then performed an in silico replication of our results using two ethnically distinct 

studies. First, we replicated the atrial fibrillation associated variants in 8,180 cases and 

28,612 referents from the Biobank Japan study (Online methods, Supplementary Table 10). 

The novel atrial fibrillation variant intronic to CEP68 reached genome-wide significance 

among Japanese, whereas the atrial fibrillation variants at KCNN2 and SOX5 achieved 

significance when correcting for multiple testing of 33 variants (P<1.5×10−3). The loci at 

ASAH1, TTN, and METTL11B reached nominal significance in Japanese (P<0.05). Of 

note, approximately 10% of the cases in the GWAS discovery analysis and Japanese 

replication analysis were overlapping (837 cases and 3293 referents). The lack of replication 

of the remaining loci likely reflects the heterogeneous nature of atrial fibrillation across 

different ancestries.

Second, we performed replication in 3,366 cases and 139,852 referents of mainly European 

ancestry in the UK Biobank (Online methods, Supplementary Table 11). The atrial 

fibrillation locus at SH3PXD2A reached genome-wide significance in the UK Biobank, 

whereas the loci METTL11B, CEP68, and KLHL3/WNT8A/FAM13B were significantly 

associated when correcting for multiple testing of 31 variants (P<1.6×10−3), and the loci at 

TTN, ASAH1, KCNJ5, and SCN10A reached nominal significance (P<0.05). The lack of 

replication of all of the atrial fibrillation loci is likely caused by reduced statistical power 

due to decreased sample size in the replication sample (18,398 versus 3,366 atrial fibrillation 

cases). However, there was a consistent direction of effects for all atrial fibrillation loci in 

the discovery and replication analyses.

Conditional analyses based on the summary level results of the GWAS meta-analysis were 

performed to identify multiple, independent signals on each chromosome containing atrial 

fibrillation loci (Online Methods). We confirmed that the two loci METTL11B/KIFAP3 and 

PRRX1, located ~350 kilobases (kb) apart on chromosome 1, were independent signals, as 

were the two loci SH3PXD2A and NEURL1, ~200 kb apart on chromosome 10 

(Supplementary Table 12, Supplementary Fig. 9).

We found that seven of the known or new atrial fibrillation loci were associated with atrial 

fibrillation-related phenotypes, such as electrocardiographic traits, left ventricle internal 

diastolic diameter, and stroke (Supplementary Table 3 and 13, Supplementary Fig. 10). 

Given the close relation between atrial fibrillation and cardioembolic stroke, we then sought 

to determine whether the novel atrial fibrillation variants were associated with stroke risk. 

We performed an in silico lookup in GWAS data for stroke subtypes from the Neuro-

CHARGE and METASTROKE consortia. None of the novel loci for atrial fibrillation were 
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associated with ischemic stroke, cardioembolic stroke, small, or large vessel disease 

(Supplementary Tables 14–15).

Next, we performed an in silico evaluation of the known and newly identified atrial 

fibrillation associated loci (Online Methods, Supplementary Results). We compared the 

atrial fibrillation loci (n=24) to other trait-associated loci from the NHGRI-EBI GWAS 

catalog (n=3,381) and matching control loci selected for similar architectural properties 

(n=9,093). Interestingly, the atrial fibrillation loci were significantly conserved across 

species, and were also significantly enriched for active enhancers in cardiac tissues as 

denoted by H3K27ac marks, compared to other trait-associated loci from the NHGRI-EBI 

GWAS catalog and matching control loci (Supplementary Fig. 11). Moreover, the genes at 

atrial fibrillation loci displayed enrichment for Gene Ontology terms important for cardiac 

action potential propagation and cardiac contractility compared to the control loci, although 

this enrichment was not significant when corrected for multiple hypothesis testing 

(Supplementary Table 16).

We also performed expression quantitative trait locus (eQTL) analyses of the atrial 

fibrillation-associated genetic loci using two additional approaches (Online Methods). We 

identified significant eQTLs for seven of the twelve novel atrial fibrillation associated loci 

(closest gene;eQTL gene: METTL11B;KIFAP3, ANXA4;ANXA4/GMCL1/PCYOX1/
SNRNP27, CEP68;CEP68, KCNN2;KCNN2, KLHL3;FAM13B/REEP2, ASAH1;ASAH1/
PCM1/RP11-806O11.1, and KCNJ5;KCNJ5/C11orf45) and eight of the thirteen previously 

reported atrial fibrillation loci (Supplementary Tables 17–20, Supplementary Fig. 12).

In the current work, we have identified 12 novel genetic loci for atrial fibrillation in our 

large-scale analyses of common, coding, and rare genetic variation for atrial fibrillation 

(Supplementary Table 3). When considered together with the known atrial fibrillation loci, 

the genes at these loci broadly encode ion channels, sarcomeric proteins, and transcription 

factors that underlie this common arrhythmia. Genes at five of the genetic loci identified 

encode potassium or sodium channels, including two novel loci at the genes KCNN2 and 

KCNJ5 that are known to be involved in the maintenance of the atrial cardiac action 

potential. Since the cellular hallmark of atrial fibrillation is shortening of the atrial action 

potential duration and calcium overload, the KCNN2 and KCNN3 genes are particularly 

interesting. The lead variant at chromosome 5q22 is located intronic to and has a significant 

eQTL with KCNN2, which encodes the calcium dependent potassium channel SK2. The 

SK2 protein is known to form heteromeric channel complexes with SK3, which is a product 

of the KCNN3 gene that is strongly associated with atrial fibrillation in the present and 

previous atrial fibrillation GWAS meta-analyses.5,6

Similarly, KCNJ5 encodes the potassium channel Kir3.4 or GIRK4 that is known to form 

heteromeres with Kir3.1/GIRK1/KCNJ3 and assemble to form the inwardly rectifying, 

IKAch channel complex. The IKAch complex is regulated by G protein signaling, is well-

known to regulate the membrane potential in the sinoatrial node and atria, and has been 

considered as a therapeutic target for atrial fibrillation.
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Interestingly, the gene identified in our rare and common variant analyses, SH3PXD2A, is 

expressed in human atria and ventricles and encodes TKS5, a tyrosine kinase substrate. The 

rare variant association was largely driven by the variant rs202011870, which results in a 

leucine to arginine substitution at position 396. TKS5 has been shown to be important in 

determining the invasiveness of cancer cells13 and has been suggested to mediate the 

neurotoxic effect of beta-amyloid in Alzheimer disease in association with the matrix 

metalloproteinase gene ADAM12.14 Developmentally, SH3PXD2A is important for neural 

crest migration; homozygous knockout in mice result in complete cleft in the secondary 

palate and neonatal death;15 however, the relation between SH3PXD2A and atrial fibrillation 

is unclear and as with any rare variant association, replication in a large, independent dataset 

will ultimately be required.

Finally, we found that the atrial fibrillation loci have significant conservation across species, 

and are enriched for active enhancers in cardiac tissues, compared to other GWAS or control 

loci. Since many of the identified atrial fibrillation loci include genes that encode 

transcription factors (PITX2, ZFHX3, PRRX1, SOX5, and TBX5), we hypothesize that 

these loci may be more conserved, because they may underlie a canonical program for left 

atrial and/or pulmonary venous development.

While the strengths of our study include the large sample sizes, analyses of common and 

rare genetic variation, and the inclusion of different races and ethnicities, our study was 

subject to some limitations. Specifically, it is important to note that the estimates of variance 

explained by genetic variation can be challenging for qualitative traits such as atrial 

fibrillation, particularly given the marked variability in prevalence of the disease according 

to age. Thus, as with GWAS for other common conditions, we anticipate that the newly 

described loci for atrial fibrillation would only explain a small portion of the variance of 

atrial fibrillation.

In conclusion, we have nearly doubled the number of known genetic loci associated with 

atrial fibrillation through meta-analysis of more than 22,000 individuals with atrial 

fibrillation. We have identified a series of novel atrial fibrillation-associated variants, which 

lie proximal to genes involved in atrial electrical and mechanical function. Our results will 

facilitate downstream research establishing the mechanistic links between identified genetic 

loci and atrial fibrillation pathogenesis, potentially aiding in the discovery of new 

therapeutic targets for the treatment of atrial fibrillation.8

Code availability

The computer code that support the results of the present study are available from the 

corresponding author upon request.

Data availability

The datasets generated during and/or analyzed during the current study are available from 

the corresponding author on reasonable request.
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Online METHODS

Study population

The Atrial Fibrillation Genetics Consortium (AFGen) is a collaboration between multiple 

studies with the aim of investigating the genetic causes of atrial fibrillation. In this study, we 

included 33 studies from AFGen, of which 31 participated in the GWAS meta-analysis, 

whereas 17 studies were part of the exome chip analyses. Supplementary Table 21 shows per 

study overlap of samples between the GWAS and exome chip analyses. The majority of the 

participants were of European ancestry (15,993 cases, 113,719 referents). We also included 

studies with African-American (3 studies; 641 cases, 4956 referents), Japanese (1 study; 837 

cases, 2456 referents), Hispanic (1 study; 277 cases, 3081 referents), and Brazilian (1 study; 

187 cases, 550 referents) ancestry (Supplementary Table 1). The ExWAS and RVAS 

involved 22,806 cases and 132,612 referents of European (13,496 cases, 96,273 referents), 

African American (681 cases, 4,871 referents), and Asian (8,180 cases, 28,612 referents) 

ethnicities (Supplementary Table 2). Overall, adjudication of atrial fibrillation included 

either documented atrial fibrillation on an electrocardiogram and/or one in-patient or two 

out-patient diagnoses of atrial fibrillation. Referents were free of atrial fibrillation. All 

participating studies had obtained informed consent from all cases and referents and had 

obtained approval from their respective ethics committees or institutional review boards.

GWAS meta-analyses

Each study performed genotyping and imputation to the 1000 Genomes Project Phase 1 

reference panel (March 2012 release). Detailed methods for each study are described in the 

Supplementary Note and in Supplementary Table 22. Cox proportional hazards models were 

used for incident data with time-to-event from study enrollment. Logistic regression models 

were used for prevalent and case-control data. Models were adjusted for age and sex if 

available, and if appropriate, for principal components of the genotype matrix to control for 

population stratification. For studies with prevalent cases at time of enrollment (or blood 

draw) and incident cases identified during follow up, two analyses were performed: 1) 

Prevalent analysis at baseline/blood draw: all individuals who were diagnosed with atrial 

fibrillation prior to baseline were defined as cases, and all individuals who were not 

diagnosed with AF prior to baseline were defined as referents in a logistic regression 

analysis (future cases were controls in this analysis); 2) Incident analysis looking forward 

from baseline: prevalent cases were excluded and time-to-atrial fibrillation diagnosis was 

analyzed, using Cox proportional hazards models, with censoring at last follow-up. The two 

analyses are approximately independent, because they consider different periods of risk, as 

described by Benjamin et al.1 Pre- and post-GWAS filtering was performed according to 

predefined quality control filters (Supplementary Table 23). Briefly, variants with MAF 

<1%, imputation quality <0.3 (IMPUTE), or that were present in <2 studies were excluded.

We meta-analyzed summary level GWAS results using an inverse variance-weighted fixed-

effects model with METAL software.2 For the combined ancestry GWAS meta-analysis, we 

tested 11,795,432 variants. The traditional Bonferroni correction for number of variants 

tested is often regarded as too conservative, because the tests are not independent due to LD. 

Thus, we chose the most widely used and accepted significance threshold for GWAS in our 
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GWAS meta-analyses.3–6 Variants that reached a genome-wide P-value <5×10−8 were 

considered statistically significant. Meta-analyses were also performed separately for each 

ethnicity group and for incident and prevalent atrial fibrillation to identify potentially 

differential associations and effects.

ExWAS and rare variant meta-analyses

Each study performed exome variant genotyping and association analyses locally, using a 

logistic model that combined incident and prevalent cases and referents (Supplementary 

Table 24). Individual variants that passed quality control filters and were present in at least 2 

studies with average MAF≥0.5% (Supplementary Table 23), were meta-analyzed using the 

score test implemented in the seqMeta package of R statistical software.7 For the combined 

ancestry ExWAS meta-analysis, we tested 48,133 variants and used a significance level of 

1.04×10−6, which is approximately a Bonferroni adjustment of 0.05/48,133. For MAF > 

0.5%, we had approximately 80% power to detect variants with a multiplicative genotype 

relative risk of 1.4. RVAS was performed on rare variants from the exome chip array using 

SKAT8 and burden tests with three approaches: 1) all non-synonymous and splice site 

variants, 2) non-synonymous variants annotated as possibly damaging, and 3) loss-of-

function variants only. For each gene-based test we excluded variants with MAF >5% and 

excluded genes with cumulative MAF <0.05%.

Approximate joint and conditional analysis

To identify independent variants within the 12 significant genetic loci, we performed an 

approximate joint and conditional association analysis implemented in the software GCTA9 

using summary level statistics from the meta-analysis. We used a stepwise procedure for 

detecting additional independent variants with a European ancestry reference panel from the 

Framingham Heart Study (n=2764 unrelated individuals).

Functional annotation

Functional element enrichment—Loci were defined as regions encompassing variants 

that were in linkage disequilibrium with the query variant (r2>0.8 in CEU population) and 

that were no greater than 500 kb from the query variant. Loci had to encompass at least 5 kb 

both upstream and downstream of the query variant. Overlapping loci were merged. The 

GWAS control loci were calculated from unique variants from the NHGRI-EBI GWAS 

catalog (as of May 31, 2016) that had a P-value <5×10−8. The 1000 Genomes control loci 

were calculated using 24,000 matched variants based on MAF, gene density, distance to 

nearest gene, and number of nearby variants in linkage disequilibrium determined by the 

SNPsnap tool.10 The SNPsnap matched variants were calculated using the European 

population and an r2 cutoff of 0.8, but otherwise default parameters. Each locus in each 

experimental set was intersected with various markers for functional elements to determine 

the median percent overlap of each experimental set. The markers included phastCons 46-

way primate and mammalian conserved elements, Roadmap Epigenome H3K27ac gapped 

peaks, and ENCODE DNaseHS sites. Statistical significance was calculated by one-tailed 

bootstrapping for enrichment with 1,000 random sub-samplings of each control set.
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Gene ontology analysis of atrial fibrillation loci—RefSeq genes that overlapped 

atrial fibrillation-associated loci as well as genes that overlapped the GWAS catalog control 

loci and the 1000 Genomes matched control loci were used for gene ontology enrichment 

analysis. The genes that overlapped the control loci were used as two separate background 

sets. Enrichment calculations were provided by the GOrilla tool.11

In silico database interrogation—All statistically significant variants and genes from 

GWAS and RVAS analyses were selected for an in silico assessment through lookups in the 

following databases: The Gene Tissue Expression database (GTEx),12 RegulomeDB,13 

HaploREG,14 GeneCards (www.genecards.org/), dbSNP.15 From the GTEx search, we 

report statistically significant eQTLs in cardiac and skeletal muscle tissues. The NHGRI-

EBI GWAS catalog16 was interrogated with the aim of identifying possible pleiotropy with 

other cardiovascular phenotypes. At each locus, we defined a region based on LD span (r2 > 

0.2) with the lead SNP. We searched the GWAS catalog for all SNPs within these regions 

and report LD of proxies with the lead SNP when available. LD information was identified 

using the SNiPA tool17 (Available at http://www.snipa.org. Accessed 6-24-2016.)

Expression Quantitative Trait Locus analyses

1. eQTL analyses in the Cleveland Clinic Atrial Tissue Bank and Arrhythmia 
Biorepository—We performed analyses of gene expression in human left atrial tissue 

samples obtained from the Cleveland Clinic Atrial Tissue Bank and Arrhythmia 

Biorepository. Genotypes were determined using the Illumina Human Hap550 v3 or Hap610 

v1 chips; whereas RNA expression levels were determined using the Illumina HumanHT-12 

v3 or v4 chips. The atrial samples were obtained from 289 individuals of European 

American (EA) ethnicity and 40 individuals of African American (AA) ethnicity. Of the EA 

individuals, 80 were female, 70 had no history of atrial fibrillation, and 136 were in atrial 

fibrillation at the time of tissue acquisition; 266 samples were from left atrial appendage 

(LAA) tissue and 23 the left atrial pulmonary vein junction tissue (LA-PV). Of the AA 

individuals, 25 were female, 16 had no history of atrial fibrillation, and 12 were in atrial 

fibrillation at the time of tissue acquisition; 34 samples were from LAA and 6 from LA-PV 

tissue. Methods have previously been described in depth by Deshmukh et al.18 We 

performed cis-eQTL analyses for all statistically significant genetic variants identified in 

GWAS analyses. The Benjamini and Hochberg adjustment was applied to the results to 

control the false discovery rate (FDR).19 P-values were adjusted based on the FDR of both 

genome-wide testing and specific variant sets, respectively. Probe-variant pairs with a 

genome-wide adjusted P-value less than 0.05 were deemed significant.

2. Examination of eQTLs in cardiac and skeletal muscle tissues from the GTEx 
database—The GTEx database was interrogated for all genetic loci associated with atrial 

fibrillation in the present meta-analyses. We selected the index variants and all proxies at the 

atrial fibrillation loci and looked for eQTLs in a subset of the GTEx database for right atrial, 

left ventricular, and skeletal muscle tissues that are most relevant to atrial fibrillation.

3. GTEx region based analyses—GTEx region based analyses were performed by 

comparing the percent of atrial fibrillation loci with at least one eQTL to the percent of 
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control loci with at least one eQTL. All tissues in the GTEx database were used for this 

analysis. Atrial fibrillation loci and control loci were defined as described in the “Functional 

element enrichment” section above. Statistical significance was calculated by a one-tailed 

test based on 1,000 bootstrap samples from each set of control loci.

Replication of genetic variants specific to African American ancestry GWAS meta-analysis

We sought to replicate variants specific to the African American ancestry GWAS meta-

analysis in 447 atrial fibrillation cases and 442 referents of African American ancestry. 

Custom TaqMan® genotyping probes for rs115339321 and rs79433233 were obtained from 

Life Technologies. Genotyping was performed on 5 ng of DNA input using the TaqMan® 

genotyping master mix on a Bio-Rad CFX384 real time PCR instrument. Genotyping was 

performed in 447 atrial fibrillation cases and 442 referents obtained from four studies 

(BioVU, Duke Biobank, MGH, and Penn Biobank), with genotype calls being performed by 

end state fluorescence after 40 cycles. See Supplementary Results and Supplementary Tables 

25–26 for further details.

In silico replication in the BioBank Japan (BBJ) study

The variant with the lowest P-value at each independent novel atrial fibrillation locus was 

selected for in silico replication in the results from GWAS analysis in 8180 individuals with 

atrial fibrillation and 28,612 referents from the BioBank Japan study. The cases were 

selected from the Biobank Japan which contains DNA and serum samples collected 

throughout Japan and atrial fibrillation was defined as persistent or paroxysmal atrial 

fibrillation diagnosed by a physician. The referents were selected from the Tohoku Medical 

Megabank organization,20 the Japan Public Health Centre-based Prospective study, and the 

Japan Multi-institutional Collaborative Cohort (J-MICC) Study. Samples were genotyped 

using the Illumina Human OmniExpress BeadChip Kit and Infinium OmniExpressExome 

BeadChip Kit. Only autosomal variants were included in the GWAS. Variants with call rate 

<99%, variants that deviated from Hardy-Weinberg equilibrium among control samples 

(<1×10−6), and non-polymorphic variants were excluded.

In silico replication in the UK Biobank study

Replication was performed using 143,218 unrelated adults of primarily European ancestry 

(>80%), aged 40–69 years old between 2006 and 2010, from the UK Biobank interim 

dataset released in May 2015. We defined atrial fibrillation as reported during a baseline 

interview; presence of a procedure code for cardioversion, atrial flutter or fibrillation 

ablation, or atrioventricular node ablation; billing code for atrial fibrillation; or atrial 

fibrillation reported on a death record (specific codes used in the definition are available 

upon request). Of the 143,218 individuals in the replication dataset, we identified 3366 

individuals with atrial fibrillation, according to the criteria above. Details of genotyping, 

imputation, and calculation of principal components of ancestry in the UK biobank interim 

dataset can be found on the UK biobank website (http://www.ukbiobank.ac.uk/). Briefly, 

samples were genotyped either by UK BiLEVE Axiom array (UKBL) or UK Biobank 

Axiom array (UKBB). Both arrays include ~800,000 SNPs and more than 95% of common 

marker contents are similar. Imputation was phased by modified version of SHAPEIT2 and 

imputed by IMPUTE2, using a combined panel of UK10K haplotype and 1000G phase 3 as 

Christophersen et al. Page 9

Nat Genet. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.ukbiobank.ac.uk/


the reference panel. All significant variants detected in the discovery study passed quality 

control filters in the UK biobank data (imputation quality info ≥ 0.4, variant missing rate < 

5%, individual missing rate < 10%, and variant genotype probability > 0.9 in > 90% of the 

individuals). Variants were then transformed to hard-called genotypes (probability threshold 

≥ 0.9, minor allele frequency (MAF) ≥ 0.01, and missing rate per variant <5%). We used 

logistic regression to test the association between each hard-called variant and risk of atrial 

fibrillation using an additive genetic model, adjusting for baseline age, sex, array, and the 

first 15 principal components of ancestry. Quality control, transformation and analyses were 

performed by QCTOOL and Plink v1.90b. Since we performed an in silico replication of 31 

variants, we set a conservative significance threshold of 1.6 × 10−3 (0.05/31).

Pathway analyses

Pathway analyses provide a potential route to investigate the collective effects of multiple 

genetic variants on biological systems (see Supplementary Results and Supplementary 

Tables 27–29). We utilized two different methods for pathway analysis:

1. DEPICT—We ran the analysis DEPICT,21 which integrates multiple layers of evidence 

to identify causal genes at GWAS loci. From meta-analysis results, we first performed 

clumping to identify independent loci using plink.22 We then performed analysis using 

DEPICT with the default settings.

2. Ingenuity Pathway Analysis (IPA)—Data were analyzed through the use of 

QIAGEN’s Ingenuity® Pathway Analysis (IPA®, QIAGEN Redwood City, 

www.qiagen.com/ingenuity). For each of the tested genetic variants, we mapped it back to 

the reference human genome (NCBI Build 37, 2009) and examined its location relative to 

RefSeq genes (May 15, 2016). The gene score was defined as the most significant variants 

that were located within 110kb upstream and 40kb downstream of the gene’s most extreme 

transcript boundaries. Of the 27,011 genes evaluated, 338 reached a score less than 5×10−6. 

These genes were then imported into IPA analysis. Fisher’s exact test was used to justify the 

enrichment of each of the canonical pathways.

Assessment of pleiotropy with the ischemic stroke phenotype—In order to 

evaluate pleiotropy with the ischemic stroke phenotype, we selected the variant with the 

lowest P-value at each independent novel atrial fibrillation locus and performed a lookup in 

the results from 1000 Genomes imputed GWAS meta-analyses from the Neurology Working 

Group of the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) 

Consortium (4348 stroke patients and 80,613 referents)23 and the METASTROKE 

consortium (10,307 ischemic stroke cases and 19,326 referents) of the International Stroke 

Genetics Consortium (ISGC).24

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Study flow-chart
Overview of the approach employed for genome-wide and exome-wide association analyses.
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Figure 2. Manhattan plot of the combined ancestry GWAS meta-analyses
Manhattan plot showing novel (red) and replicated (blue) genetic loci associated with atrial 

fibrillation in the combined ancestry GWAS meta-analysis. The dotted line represents the 

threshold of statistical significance (5×10−8). The gene names represent the gene in closest 

proximity to the most significant variant at each locus. There is a break in the Y-axis to 

increase the resolution of the genetic loci near the genome-wide significance threshold.
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Figure 3. Regional plots from combined ancestry GWAS meta-analysis
The most significant variant at each locus is plotted (purple, diamond-shaped) and identified 

with rsID. Each dot in the plots represent a single variant present in our results and the color 

of the dot indicates the degree of linkage disequilibrium with the most significant variant, as 

shown on the top left color chart on each panel. The lower part of each panel shows the 

locations of genes at the respective loci. r2, degree of linkage disequilibrium; chr, 
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chromosome; Mb, megabases; cM, centiMorgan. Regional plots were created using 

LocusZoom.16
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