Skip to main content
. 2017 Aug 19;6(8):e006079. doi: 10.1161/JAHA.117.006079

Table 5.

Multivariable Linear Regression Models for Coronary Artery Calcification Burden (log [CAC+1])

Variable All (β±SE) Women (β±SE) Men (β±SE)
Age, y 0.102±0.003, P<0.0001 0.089±0.005, P<0.0001 0.120±0.005, P<0.0001
eGFR, mL/min per 1.73 m2 −0.746±0.037, P<0.0001 ··· 0.006±0.003, P=0.0227
Heart rate, bpm ··· ··· ···
MAP, mm Hg ··· ··· 0.007±0.005, P=0.0960
Hypertension 0.008±0.003, P=0.0120 0.267±0.054, P<0.0001 0.155±0.053, P=0.0034
Hyperlipidemia 0.138±0.044, P=0.0016 ··· ···
Diabetes mellitus ··· 0.140±0.073, P=0.0572 ···
Smoking 0.140±0.051, P=0.0064 0.373±0.050, P<0.0001 0.291±0.050, P<0.0001
Antihypertensive use 0.342±0.035, P<0.0001 ··· ···
Apirin use 0.084±0.044, P=0.0576 −0.101±0.053, P=0.0618 ···
Statin use −0.746±0.037, P<0.0001 0.284±0.056, P<0.0001 0.368±0.051, P<0.0001
Log iAC −0.109±0.121, P=0.3700 −0.334±0.166, P=0.0442 −0.114±0.173, P=0.5103

Results of step‐wise multivariable linear regression models with forward elimination, with criteria of P≤0.10 to enter and ≤0.05 to stay in the models. CAC indicates coronary artery calcium; eGFR, estimated glomerular filtration rate; iAC, indexed arterial compliance; MAP, mean arterial pressure; SV, stroke volume; SVi, stroke volume index.