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ABSTRACT

Previous work in predicting protein localization to
the chloroplast organelle in plants led to the develop-
ment of an artificial neural network-based approach
capable of remarkable accuracy in its prediction
(ChloroP). A common criticism against such neural
network models is that it is difficult to interpret the
criteria that are used in making predictions. We
address this concern with several new prediction
methods that base predictions explicitly on the abun-
dance of different amino acid types in the N-terminal
region of the protein. Our successful prediction
accuracy suggests that ChloroP uses little positional
information in its decision-making; an unexpected
result given the elaborate ChloroP input scheme. By
removing positional information, our simpler
methods allow us to identify those amino acids that
are useful for successful prediction. The identifica-
tion of important sequence features, such as amino
acid content, is advantageous if one of the goals of
localization predictors is to gain an understanding of
the biological process of chloroplast localization.
Our most accurate predictor combines principal
component analysis and logistic regression. Web-
based prediction using this method is available
online at http://apicoplast.cis.upenn.edu/pclr/.

INTRODUCTION

The chloroplast organelle in plant cells contains its own
genome, but many of its genes have been transferred to the
plant cell nuclear genome during the course of evolution. The
protein products of these nuclear-encoded plastid genes are
targeted back to the chloroplast organelle. Transit peptide
sequences located in the N-terminus of these proteins facilitate
the transfer from the cytoplasm where they are synthesized,
back to the chloroplast organelle (1; reviewed in 2). Identifica-
tion of proteins that contain an N-terminal chloroplast
targeting sequence has been difficult. First, many proteins
contain N-terminal extensions that are used by the cell to target
the protein to any of several destinations, e.g. the mitochon-
dria. Secondly, there is no known motif, or obvious sequence

pattern that identifies proteins as chloroplast targeted. The
exact nature of the ‘biological’ signal that the cell interprets is
not yet known.

We are concerned with the problem of predicting the pres-
ence of a chloroplast transit peptide (cTP) based on N-terminal
amino acid sequence. What we generally desire from computa-
tional predictors are accuracy and intuition for discriminating
between sequence types in the data (i.e. biological insight).
Previous work by Emanuelsson, Nielsen and von Heijne
(ENH) resulted in a neural network-based model called
ChloroP (3). ChloroP examines amino acid content at specific
positions in order to predict localization to the chloroplast.
ChloroP’s accuracy and availability via an Internet web site
have made it the gold standard for chloroplast transit peptide
prediction.

However, it is very difficult to determine exactly how the
neural network ‘used’ what it ‘saw’ to make its prediction. Our
goal is to provide as an alternative to ChloroP a set of methods
for which we can say with certainty what intuition lies beneath
the decision mechanism. Pilot simulations of ChloroP led us to
posit the hypothesis that amino acid distribution alone provides
useful information for localization prediction. The ChloroP
first-layer network looks at a ‘sliding window’ of sequence,
and we observed a smooth trend in prediction as the window
slid from the N- and C-termini. This smoothness indicates that
ChloroP does not use motifs (relative positions of certain
amino acids) in its decision-making. In a neural network model
with only two internal nodes, as is the case here, one would
expect to see the effects of a motif coming in and out of input
frame reflected in the predictions. This observation led us to
look at amino acid distribution as an indicator of chloroplast
targeting sequences.

We present a new model using a principal component
logistic regression (PCLR). Unlike ChloroP, our PCLR model
uses the distribution of amino acids in the N-terminus of the
protein with no positional information as input to its prediction
function. In addition to the 20 amino acids there is one other
input corresponding to the sequence’s amino acid sample
variance. We use the same method of encoding sequence data
as we experiment with two additional machine learning
algorithms: stepwise logistic regression and a neural network.
Where possible, we identify amino acids (features) from our
models that are used in the prediction algorithm. Our models
are benchmarked against ChloroPv1.1 on an independent test
set, and receiver operating characteristic (ROC) curves (4)
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comparing PCLR and ChloroPv1.1 prediction accuracy are
presented.

MATERIALS AND METHODS

Training and test sets

Olof Emanuelsson (Stockholm Bioinformatics Center)
supplied the 150 sequence ChloroP data set (3), which we
randomly divided into 20 pairs of training and validation sets
for the purpose of setting the parameters of our method.
Training sets consisted of 124 sequences, and validation sets
consisted of the remaining 26 sequences with each set
containing equal numbers of in-class (e.g. cTP) and out-of-
class examples. Note that when we use the phrase ‘validation
set testing’ we refer to testing done on a partition of the training
set. For final testing, we downloaded the TargetP training set
(5), and used SWISS-PROT accession numbers to remove
those sequences already contained in the ChloroP training set.
The TargetP training set consisted of 371 mitochondrial transit
peptides (mTP), 269 secretory pathway/signal peptide (SP), 48
‘nuclear’ (Nuc), and 87 ‘cystolic’ (Cyt) sequences from which
we removed 17, 14, 9 and 10 sequences respectively. The SP,
Nuc and Cyt sequences were all from the TargetP ‘plant set’.
From the 141 cTP sequences we removed 28 redundant
sequences. These were the only sequences removed, and the
remaining test set contains 113 in-class and 725 out-of-class
sequences.

Encoding a protein

For our PCLR, logistic regression, and neural network models,
the input size is 21. The first 20 inputs consist of percentages
of amino acid composition in the first 55 positions of the
protein sequence. The 21st input is a measure of variance of the
particular protein’s amino acid distribution in the first 55 posi-
tions. Our methods performed similarly on the validation sets
with sequence lengths between 45 and 60, but ultimately a
length of 55 was chosen for our study, based on sum of squared
errors (SSE) measurements.

Principal component logistic regression

Principal components analysis is a method of factoring co-
linearity out of data and reducing dimensionality for a machine
learning algorithm (6). We performed principal component
analysis and subsequent stepwise logistic regression on the
first 12 components (ordered by decreasing eigenvalue magni-
tude) on the principal component matrix using the R statistics
package (7). We transformed testing data into the training data
principal component space before generating prediction
results.

The logistic regression always makes predictions between
(0,1), but we require a threshold to use for classification. Based
on ‘total number correct’ counts during validation set testing
we chose a decision threshold of 0.42 for classification (e.g. a
prediction of 0.41 means our method predicts ‘non-chloroplast
targeting’). After deciding on a number of principal compo-
nents to consider and the classification threshold, we trained
PCLR on the entire ChloroP training set. The resulting

predictor, principal components, and regression coefficients
are available online at http://apicoplast.cis.upenn.edu/pclr/.

Logistic regression

We attempted a standard stepwise logistic regression in addi-
tion to the principal component stepwise logistic regression to
see if a simpler model would provide equal performance. In the
R package we used the same input to the logistic regression as
in the PCLR case. A decision threshold of 0.40 was selected
during validation set testing and then used on the TargetP test
set.

Neural network

We used NevProp4r1, a standard feed-forward neural network
with sigmoidal hidden units and one sigmoidal output unit
(http://www.scs.unr.edu/nevprop). We used the same inputs as
in the PCLR case described above. The number of hidden units
was varied from 1 to 12, with peak performance occurring with
4 hidden units and decreasing performance soon after. A
weight decay of 0.005 was chosen based on validation set
performance. For training, we picked a maximum iteration of
700, and used NevProp’s auto-train switch to pick a good
stopping point. Based on validation set performance (total
number correct), we chose a classification threshold of 0.59.

The ChloroP neural network architecture

The ChloroP architecture is described in Emanuelsson et al.
(3); however, for clarification and comparative purposes a
brief description is included. ChloroP consists of two neural
networks where the output of the first network against a set of
different inputs feeds into the second neural network for a final
prediction. The input to the first network consists of a sliding
window of 51 amino acids from the first 100 positions of a
protein. There are 100 ordered windows per protein, and they
start so that the first window consists of the first 51 amino acids
of the protein sequence. Shifting the previous window to the
right one place forms each subsequent window. As windows
overlap an area past position 100, ‘blank’ amino acids feed into
the predictor. 100 of these windows feed into the first layer,
and so 100 predictions are made.

The first network consists of 1020 input units, 2 hidden units
and 1 output unit. The rather large number of input units is the
result of using categorical data in a neural network. There are
20 possible attributes (amino acids) in a position, and so each
position has 20 input units. Only one of these units is turned on
(denoted by ‘1.0’): the other 19 are left at ‘0.0’. Hence, a
window of 51 positions requires 51 × 20 = 1020 input units.
Compounding this explosion in input size are the 100 windows
per protein sequence that feed into the first layer network. All
together, it takes 102 000 total inputs to the first-layer network
to make a prediction on a single protein. The second layer
network has 100 input units, 10 hidden units and 1 output unit.
For both networks, sigmoidal units are used in hidden and
output layers.

We benchmarked the ChloroP model using the web-
accessible ChloroPv1.1 release located at http://
www.cbs.dtu.dk/services/ChloroP/. We used the classification
threshold 0.50 as suggested by Emanuelsson et al. (3).
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RESULTS

Benchmark results

In order to give an accurate assessment of our new models
against each other and ChloroPv1.1, we trained them on the
original ChloroP training data (3). It is important to test such
models on new data not present in the training set in order to
give an unbiased estimate of prediction ability. Our testing data
came from the TargetP set (5), from which we removed any
sequences already present in our training set. [Though the
TargetP details (5) were not available until after the comple-
tion of our work, the datasets were available online months
ahead of time.]

In order to describe the benchmark results, a mixture of
terms and abbreviations from both molecular biology and
machine learning is employed in the data analysis. We adopt
abbreviations for categories of protein in training and test sets:
sequences containing a cTP, sequences containing a mTP,
sequences containing a SP but no additional signaling informa-
tion, nuclear-localized proteins (Nuc) and cytosolic sequences
(Cyt). The inputs to the prediction methods are often referred
to as features; each sequence is encoded as a 21 component
‘feature vector’ for predication. All four machine learning
methods benchmarked here make predictions within a (0,1)
interval, where predictions closer to 1 indicate the presence of
a cTP. A decision threshold in the (0,1) range is used for
‘classification’ of sequences as containing a cTP (cTP class) or
not containing a cTP (non-cTP class). The decision threshold
for our tests is determined by training set performance (see
Materials and Methods).

We benchmarked the following methods: web-based
ChloroPv1.1, PCLR, our own neural network predictor, and
logistic regression. Each of the 838 sequences in the test set
were classified by each method as either cTP-containing or not
(Table 1). Also shown is a SSE providing an additional
standard for comparing different prediction methods. SSE
measures how close a predictor is to getting the right answer
(0 or 1):

The summation is over the protein sequences (i) in the test set,
while y and refer to the correct answer and prediction respec-
tively. A smaller SSE indicates a closer correct prediction
(to 0 or 1) in general. ChloroP’s predictions fall in the
[0.40,0.59] interval, whereas our methods make predictions in
the wider range: (0,1). Hence, there is often a lower SSE for
our methods even where ChloroP classifies more accurately.
The wider (0,1) range of prediction is useful when an estimated
probability of chloroplast localization is desired from the
predictor in addition to a classification.

In the field of machine learning sensitivity and specificity
are often used to compare two different prediction methods.
Sensitivity is defined here as the percentage of cTP-containing
sequences correctly classified, and specificity is the percentage
of cTP-predicted sequences that are correctly classified.
ChloroP’s predictions generate a sensitivity of 0.87 and a
specificity of 0.37 while our PCLR model achieved a sensi-
tivity of 0.82 and a specificity of 0.30. Figure 1 shows an ROC

curve comparing PCLR against ChloroPv1.1 on test set data.
ROC curves illustrate the trade-off between sensitivity and
specificity for different classification thresholds. PCLR was
chosen for this analysis over logistic regression because of its
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Table 1. Classification and SSE results on the test set by ChloroP v1.1 and our
methods: PCLR, logistic regression and the neural network

The rows display predictions (cTP versus non-cTP) for the different cate-
gories of sequences in the data. The five columns of data are filled in order
with results for sequences containing a chloroplast transit peptide, a mito-
chondrial transit peptide, and a signal (secretory) peptide (with no additional
signal), followed by cystolic and nuclear-localized proteins.

ChloroP v1.1 cTP mTP SP Cyt Nuc

Predicted Class cTP 99 131 33 4 4

non-cTP 24 223 222 73 35

SSE 23.7 86.1 57.1 15.5 7.9

PCLR

Predicted Class cTP 93 174 30 5 5

non-cTP 20 180 225 72 34

SSE 16.4 99.6 15.2 2.5 3.1

Logistic Regression

Predicted Class cTP 94 208 26 1 3

non-cTP 19 146 226 76 36

SSE 19.2 146.2 16.8 1.8 0.9

Neural Network

Predicted Class cTP 71 233 102 7 5

non-cTP 42 121 153 70 34

SSE 26.6 170.7 74.4 6.1 4.1

Figure 1. ROC curves for ChloroPv1.1 and PCLR show how these methods
trade sensitivity for specificity with different classification thresholds. A
greater area under a ROC curve indicates superior prediction ability. Classifi-
cation thresholds are available in Table 2.



e82 Nucleic Acids Research, 2001, Vol. 29, No. 16 PAGE 4 OF 6

superior SSE and classification performance (summed over
columns of Table 1 ). Due to the number of variables present in
testing, it is difficult to decide which of our methods performs
‘best’: PCLR or logistic regression. For instance, PCLR does
better at predicting sequences containing mTPs, but logistic
regression is better at predicting nuclear-localized proteins.
PCLR has a better total SSE (summed over columns of Table 1)
even when mTPs are not included in the total, and so we have
focused our attention on this method.

Figure 2 shows a plot of the training data with respect to the
two largest principal components used during the regression.
‘Large’ here refers to eigenvalue magnitude. We see that these
vectors visibly separate the chloroplast targeting and non-
targeting sequences, showing that the 21 inputs (amino acid
frequency and sample variance) discriminate between cTP and
non-cTP sequences. If it were possible to represent on paper, a
plot consisting of all dimensions selected during the regression
would show much more separation.

Selecting features from PCLR

It is valuable to understand in intuitive terms what criteria are
used by these prediction methods for the classification of
proteins to see if we can gain any biological insight into

chloroplast targeting. Our approach is to identify amino acids
that contribute heavily to the classification function (i.e. are
useful for discriminating among the various N-terminal types).
In the PCLR model, by examining the principal components
(see Materials and Methods) for our training data, we are able
to observe the weight given to each amino acid for each vector
V. In order to extract interesting amino acids from the eigen-
vectors selected during the stepwise regression process, we
multiplied the eigenvectors by their regression weights and
summed the results into a single vector V. At this point we
could see relative magnitudes of the different features and their
sign of contribution: positive indicating cTP, and negative
indicating non-cTP. We then squared and added up the 21 V
components to get a total sum of squared contribution. Then,
comparing the squared value of each component of V to the
total sum of squared contribution, we picked the components/
features that stand out as contributing the most. Aspartic acid,
glutamic acid, proline and serine together contribute more than
46% of the total sum of squared weight. Aspartic acid and
glutamic acid influence the decision negatively, while proline
and serine are indicative of cTPs.

Selecting features from logistic regression

Stepwise logistic regression selected eight amino acids as
informative for classification. Serine and arginine are given
positive cTP weight, while aspartic acid, cysteine, glutamic
acid, histidine, isoleucine and tryptophan are all given negative
weight. The variance input was also selected and given nega-
tive weight in the decision process. Positive contribution indi-
cates cTP, while negative contribution indicates non-cTP.

Selecting features from our neural network

In order to select key amino acids for prediction we used a
neural network input relevance score:

(sum of square weights of the ith input group)
Relevancei =

(sum of square weights of all input groups).
This definition of relevance captures the degree to which each
of the 21 inputs is weighted in the decision. It is not the
complete picture, as it does not take into account second layer
weights. Also, this definition of relevance says nothing about
whether the contribution is ultimately positive or negative.
Four amino acids were selected as important to classification:
they have input relevance above 11% each and account for
more than 58% of total relevance. The four amino acids are
asparagine, glutamine, isoleucine and serine.

DISCUSSION

The peculiarities of the amino acid distribution of chloroplast
and mitochondrial targeting sequences have been known for
over 10 years (8), but until now this knowledge has not been
leveraged so successfully in its ability to actually predict
chloroplast localization. Serine has been identified in the past
as abundant in cTPs in comparison to the entire chloroplast
targeting protein (8). In the same study, aspartic and glutamic
acid were reported as under-represented in cTPs. In contrast to
this previous approach of identifying ‘interesting’ amino acids,
our methods select amino acids that discriminate between the
N-termini of different classes of proteins. The three amino acid
overlap in the results of our logistic regression, PCLR methods

Figure 2. Plot of the training set with respect to its first two principal compo-
nents. These two components were selected for classification during the
stepwise regression.

Table 2. Sensitivity levels at various classification thresholds for our PCLR
method

The corresponding specificities for the sensitivities below are available in
Figure 1.

Threshold 0.85 0.82 0.78 0.72 0.68 0.62 0.55 0.51 0.43 0.39 0.33 0.27

Sensitivity 0.51 0.55 0.60 0.65 0.69 0.73 0.77 0.79 0.83 0.85 0.88 0.90
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and earlier work by von Heijne and co-workers (9) establish
our two methods as capable of producing and confirming
insightful observations about a data set. The inferior accuracy
of our neural network model implies that we should discount
from consideration the amino acids extracted from this model.
In the case of cTPs, our results partly confirm what the
Arabidopsis thaliana community has already discovered. In
future pattern recognition applications, we hope that classifica-
tion accuracy is recognized from the start as an intuitive and
useful method for selecting ‘interesting’ amino acids.

Signal prediction and extraction have been active research
areas in recent years. The SignalP tool, which is built from
several neural networks, provides excellent prediction for
targeting of the endoplasmic reticulum and location of signal
peptide cleavage sites (9,10). Recent work using adaptive
encoding neural networks has identified features useful for
prediction of the signal peptide cleavage site (11). An alterna-
tive method uses amino acid frequency at relative positions in
a probabilistic model (12). The problem of predicting mito-
chondrial transit peptides has also been tackled using a combi-
nation of principal component analysis and linear discriminant
analysis (13,14).

There are previous studies that have used amino acid distri-
bution for chloroplast organelle prediction as well. A covariant
discriminant (CD) algorithm was developed to predict among
12 different subcellular localizations including the chloroplast
(15). After adjusting for sequence composition in the CD test
set (e.g. percentage of mTPs), we estimate that our PCLR
method represents a substantial improvement of accuracy in
predicting chloroplast localization. (CD was unavailable for
independent testing.) Based on published results (15), we can
say that our test set sensitivity is at least 10% greater than the
CD ‘self-consistency’ (testing on training data) performance.
No attempt has yet been made to interpret the decision mecha-
nisms of the CD method for cTP classification, and this
prevents us from comparing amino acid weightings. Some
studies of hybrid methods combining amino acid composition
with limited positional data include Chou’s work with pseudo-
amino acid composition (16,17). Other researchers have
combined an ‘expert system’ with machine learning clustering
methods in using amino acid frequencies among other features
to predict localization (18,19). The published accuracy is not
yet competitive with our method.

In performing our experiment, we have learned that amino
acid frequency can account substantially for the prediction
accuracy of a ChloroP-like neural network architecture for
predicting localization. When a system such as ChloroP with
over 2000 parameters is trained on a challenging data set it is
dangerous to conjecture on an intuitive explanation without
experimentation. Our frequency-based models are a first step
in such experimentation. Consider another feature that one
might hypothesize as important for localization prediction: the
transit peptide cleavage site. By combining our method with a
transit peptide cleavage-site predictor such as the scoring
matrix method of ENH or alternatively a hidden markov
model, we will gain a sense of how much each set of features
can contribute to correct prediction ability. Separating predic-
tion features in this matter can give greater insight into the
prediction mechanism.

The recognition of amino acid frequencies as important
factors in protein localization prediction should have an important

effect on the way the transit peptide prediction problem is
addressed in the future. The original ChloroP training set was
homology-reduced by the Hobohm motif-finding algorithm
(20), which is based on sequence similarity, but our findings
suggest that similarity of amino acid counts could be a more
important tool for making training sets sufficiently representa-
tive of the population. In addition, discrimination between
mTPs and cTPs, a problem that cripples prediction accuracy
for all methods benchmarked here, is given a specific
definition: cTPs and mTPs have similar amino acid frequencies.
In the short term we have focused on developing purely
distribution-based techniques because they generalize more
easily beyond the chloroplast transit peptide problem. For
instance, the organism Toxoplasma gondii uses transit peptides
to target proteins to the apicoplast organelle (21). Transit
peptide cleavage sites (another potential prediction feature) for
these sequences have not yet been identified, but a prediction
tool is still needed for screening.

PCLR and logistic regression methods may be applied to
other pattern recognition problems on a modern desktop
computer using built-in routines of various commercial data-
manipulation packages (e.g. Splus, Matlab). Once training
sequences have been encoded as amino acid frequency data,
training and testing can occur within seconds. For these
reasons, we recommend PCLR and logistic regression to small
laboratories that wish to experiment with pattern recognition
algorithms.
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