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Abstract A key research question at the Large Hadron Col-
lider is the test of models of new physics. Testing if a par-
ticular parameter set of such a model is excluded by LHC
data is a challenge: it requires time consuming generation of
scattering events, simulation of the detector response, event
reconstruction, cross section calculations and analysis code
to test against several hundred signal regions defined by the
ATLAS and CMS experiments. In the BSM-AI project we
approach this challenge with a new idea. A machine learn-
ing tool is devised to predict within a fraction of a millisec-
ond if a model is excluded or not directly from the model
parameters. A first example is SUSY-AI, trained on the phe-
nomenological supersymmetric standard model (pMSSM).
About 300,000 pMSSM model sets – each tested against
200 signal regions by ATLAS – have been used to train and
validate SUSY-AI. The code is currently able to reproduce
the ATLAS exclusion regions in 19 dimensions with an accu-
racy of at least 93%. It has been validated further within the
constrained MSSM and the minimal natural supersymmetric
model, again showing high accuracy. SUSY-AI and its future
BSM derivatives will help to solve the problem of recasting
LHC results for any model of new physics. SUSY-AI can
be downloaded from http://susyai.hepforge.org/. An on-line
interface to the program for quick testing purposes can be
found at http://www.susy-ai.org/.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . 1
2 The pMSSM and ATLAS SUSY searches . . . . . 2
3 Machine learning and classification . . . . . . . . . 4

3.1 Decision trees and random forest . . . . . . . . 4

a e-mail: krolb@fuw.edu.pl

3.2 Performance of a classifier . . . . . . . . . . . 6
4 Training of SUSY-AI . . . . . . . . . . . . . . . . . 6
5 Performance tests of SUSY-AI . . . . . . . . . . . . 8

5.1 Performance in the 19-dimensional pMSSM . 8
5.2 Performance in a pMSSM submodel: the 6-

dimensional natural SUSY model . . . . . . . 12
5.3 Performance in a pMSSM submodel: the 5-

dimensional constrained MSSM . . . . . . . . 14
5.4 Effects of limited training data and applicability

range . . . . . . . . . . . . . . . . . . . . . . 14
6 Conclusions . . . . . . . . . . . . . . . . . . . . . 16
A Comparison of out-of-bag estimation with train:test

split . . . . . . . . . . . . . . . . . . . . . . . . . . 16
B Projections of the pMSSM . . . . . . . . . . . . . . 17
References . . . . . . . . . . . . . . . . . . . . . . . . 23

1 Introduction

The ATLAS and CMS experiments at the Large Hadron Col-
lider (LHC) have analyzed the full Run 1 and a small fraction
of the Run 2 data set and no evidence of new physics has
been found. In particular, there is no trace of supersymmetry
(SUSY) in conventional searches.

Both collaborations have explored intensively the impact
of the null results in the context of simplified models [1–3]
as well as in complete models like the constrained minimal
supersymmetric standard model (cMSSM) [1]. In addition,
both experiments have started to focus on natural SUSY sce-
narios addressing the emerging little hierarchy problem [4,5].
Finally, the ATLAS and CMS datasets were successfully
interpreted with sampling of the 19-dimensional phenomeno-
logical minimal supersymmetric standard model (pMSSM)
with specific priors, astrophysical constraints and particle
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physics constraints from the Higgs physics, electroweak pre-
cision observables and direct LEP2 limits [6,7].

The estimation of the number of expected signal events
for a fixed point in the SUSY parameter space can take from
several minutes to hours in CPU time when full detector sim-
ulations with GEANT are performed. In addition, it requires
one to model all LHC SUSY searches. Therefore any attempt
to use LHC data on models like the pMSSM [8] with 19
dimensions is cumbersome.

In order to overcome this problem, several tools have been
developed in the past few years to recast the LHC results: for
simplified models, Fastlim [9] and SModelS [10] have
been introduced. Both tools recast LHC searches on new
physics scenarios without relying on the slow Monte Carlo
(MC) event generation and detector simulation. However,
realistic models or scenarios with high-dimensional parame-
ter space do not fulfill the assumptions of simplified models
and the full MC event generation is usually required. For this
reason, tools like NLL-fast [11–13] as a fast cross sec-
tion calculator, the recasting projects CheckMATE [14,15]
and MadAnalysis [16] based on Delphes [17], which
is a fast detector simulator, were developed. However,
CheckMATE as well as MadAnalysis still require MC
event generation and thus testing model points still takes a
few tens of minutes.

Machine learning (ML) is becoming a powerful tool for
the analysis of complex and large datasets, successfully
assisting scientists in numerous fields of science and technol-
ogy. An example of this is the use of boosted decision trees
[18] in the analyses that led to the Higgs discovery at the LHC
in 2012 [19,20]. Moreover, recently there have been appli-
cations to SUSY phenomenology in coverage studies [21],
in the study of the cMSSM [22] and in the reconstruction of
the cMSSM parameters [23].

In this work we propose the use of ML methods to explore
in depth LHC constraints on the rich SUSY phenomenology.
In particular, we investigate the use of classifiers to predict
whether a point in the pMSSM parameter space is excluded
or not in light of the results of the full set of ATLAS Run 1
data, avoiding time consuming MC simulations. We show
that decision tree classifiers like the Random Forest (RF)
algorithm perform very well in the pMSSM. Similar results
have been obtained for other MSSM realizations such as
the natural SUSY model and the cMSSM. The method dis-
cussed here allows for a quick analysis of large datasets and
can be coupled with recasting tools to resolve the remain-
ing ambiguities by generating more training data. It could
also be used in projects aiming at fits of the multidimen-
sional parameter space of the pMSSM or derived models,
like e.g. [24,25].

The paper is structured as follows. In Sect. 2 we recap the
search for SUSY by ATLAS in the context of the pMSSM.
In Sect. 3 we briefly review the machine learning techniques

used in our analysis. In Sect. 4 we present a procedure of gen-
erating the ML classifier. The validation and performance of
the classifier are described in Sect. 5: in the pMSSM frame-
work in Sect. 5.1, for the natural SUSY model in Sect. 5.2 and
for the constrained MSSM in Sect. 5.3. Section 5.4 discusses
limitations of the code. Finally, we summarize our findings
in Sect. 6. In Appendix A we discuss a comparison of dif-
ferent estimation methods and in Appendix B we provide
additional validation information.

2 The pMSSM and ATLAS SUSY searches

The MSSM with R-parity conservation is uniquely described
by its particle spectrum and the superpotential [26],

W = εi j [(hL)mnH
i
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where εi j is the antisymmetric SU (2) tensor with ε12 = +1.
hL , hD , hU and μ denote the lepton-, down-type and up-
type Yukawa couplings and the Higgs superpotential mass
parameter, respectively. Generation indices are denoted by
m and n. The chiral superfields have the following gauge
quantum numbers under the Standard Model (SM) group
G = SU (3)C × SU (2)L ×U (1)Y :

L : (1, 2,−1/2), E : (1, 1, 1),

Q : (3, 2, 1/6), U : (3̄, 1,−2/3), D : (3, 1, 1/3),

H1 : (1, 2,−1/2), H2 : (1, 2, 1/2), (2.2)

while the vector multiplets have the following charges under
G:

g : (8, 1, 0), W : (1, 3, 0), B : (1, 1, 0). (2.3)

All kinetic terms and gauge interactions must be consistent
with supersymmetry and be invariant under G. Since the ori-
gin of supersymmetry breaking is unknown, one approach
to addressing this issue is avoiding explicit assumptions as
regards a SUSY-breaking mechanism. It is then common to
write down the most general supersymmetry breaking terms
consistent with the gauge symmetry and the R-parity con-
servation [27],
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Here, M2
Q̃

, M2
Ũ

, M2
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, M2
L̃

and M2
Ẽ

are 3 × 3 Hermitian

matrices in generation space, (hL AL), (hD AD) and (hU AU )

are complex 3 × 3 trilinear scalar couplings and m2
1, m2

2 as
well as m2

12 correspond to the SUSY-breaking Higgs masses.
M1, M2 and M3 denote the U (1)Y , SU (2)L and SU (3)C
gaugino masses, respectively. The fields with a tilde are the
supersymmetric partners of the corresponding SM field in
the respective supermultiplet. Most new parameters of the
MSSM are introduced by Eq. (2.4) and a final count yields
105 genuine new parameters [28]. One can reduce the 105
MSSM parameters to 19 by imposing phenomenological
constraints, which define the so-called phenomenological
MSSM (pMSSM) [8,29]. In this scheme, one assumes the
following: (i) all the soft SUSY-breaking parameters are real,
therefore the only source of CP-violation is the CKM matrix;
(ii) the matrices of the sfermion masses and the trilinear cou-
plings are diagonal, in order to avoid FCNCs at the tree-level;
(iii) first and second sfermion generation universality to avoid
severe constraints, for instance, from K 0–K̄ 0 mixing.

The sfermion mass sector is described by the first and
second generation universal squark masses MQ̃1

≡ (MQ̃)nn ,
MŨ1

≡ (MŨ )nn and MD̃1
≡ (MD̃)nn for n = 1, 2, the third

generation squark masses MQ̃3
≡ (MQ̃)33, MŨ33

≡ (MŨ )33

and MD̃3
≡ (MD̃)33, the first and second generation slep-

ton mass ML̃1
≡ (ML̃)nn , MẼ1

≡ (MẼ )nn for n = 1, 2
and the third generation slepton masses ML̃3

≡ (ML̃)33 and
MẼ3

≡ (MẼ )33. The trilinear couplings of the sfermions
enter in the off-diagonal parts of the sfermion mass matrices.
Since these entries are proportional to the Yukawa couplings
of the respective fermions, we can approximate the trilin-
ear couplings associated with the first and second generation
fermions to be zero. Instead, the third generation trilinear
couplings are described by the parameters At ≡ (AU )33,
Ab ≡ (AD)33 and Aτ ≡ (AL)33.

After the application of the electroweak symmetry break-
ing conditions, the Higgs sector can be fully described by
the ratio of the Higgs vacuum expectation values, tan β, and
the soft SUSY-breaking Higgs mass parameters m2

i . Instead
of the Higgs masses, we choose to use the higgsino mass
parameter μ and the mass of the pseudoscalar Higgs, mA,
as input parameters, as they are more directly related to the
phenomenology of the model.

The final ingredients of our model are the three gaug-
ino masses: the bino mass M1, the wino mass M2, and the
gluino mass M3. The above parameters describe the 19-
dimensional realization of the pMSSM, which encapsulates
all phenomenologically relevant features of the full model
that are of interest for dark matter and collider experiments.

The ATLAS study [6] considered 22 separate ATLAS
analyses of the Run 1 summarized in Table 1. These stud-
ies cover a large number of different final-state topologies,
disappearing tracks, long-lived charged particles as well as

Table 1 The experimental analyses used in the ATLAS study [6]. The
middle column denotes the final state for which the analysis is opti-
mized, and the third column shows the target scenario of this analysis

Reference Final state Category

[30] 0 lepton + 2–6 jets + /ET Inclusive

[31] 0 lepton + 7–10 jets + /ET

[32] 1 lepton + jets + /ET

[33] τ(τ/�) + jets + /ET

[34] SS/3 lepton + jets + /ET

[35] b-jets + 0/1 lepton + /ET

[36] Monojet

[37] 0 lepton stop search Third generation
squarks

[38] 1 lepton stop search

[39] 2 lepton stop search

[40] Monojet search

[41] Stop search with Z in final state

[42] 2b-jets sbottom search

[4] Asymmetric stop search

[43] 1 lepton plus Higgs final state Electroweak

[44] Dilepton final state

[45] 2τ final state

[46] Trilepton final state

[47] Four-lepton final state

[48] Disappearing track

[49,50] Long-lived particle search Other

[51] H/A → ττ search

the search for heavy MSSM Higgs bosons. Reference [6]
combines all searches and the corresponding signal regions
in order to derive strict constraints on the pMSSM. For this
purpose, 5×108 model points were sampled within the ranges
shown in Table 2. The model points had to satisfy preselection
cuts following closely the procedure described in Ref. [52].
All selected points had to pass the precision electroweak
and flavor constraints summarized in Table 3. These include
the electroweak parameter �ρ [53], the branching ratios for
rare B decays [54–57], the SUSY contribution to the muon
anomalous magnetic moment �(g − 2)μ [58,59], and the Z
boson width [60] and LEP limits on the production of SUSY
particles [61]. Furthermore, thermally produced dark matter
relic density is required to be at or below the Planck mea-
sured value [62]. Finally, the constraint on the Higgs boson
mass [63,64] was applied. After this preselection 310 327
model points remained, for which the production cross sec-
tions for all final states were computed.

All models with production cross sections larger than a
threshold were further processed. Matched truth level MC
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Table 2 Variable input
parameters of the ATLAS
pMSSM scan and the range over
which these parameters are
scanned

Parameter Description Scanned range

mL̃1
1st/2nd gen. SU (2) doublet soft breaking slepton mass [90 GeV, 4 TeV]

mẼ1
1st/2nd gen. SU (2) singlet soft breaking slepton mass [90 GeV, 4 TeV]

mL̃3
3rd gen. SU (2) doublet soft breaking slepton mass [90 GeV, 4 TeV]

mẼ3
3rd gen. SU (2) singlet soft breaking slepton mass [90 GeV, 4 TeV]

mQ̃1
1st/2nd gen. SU (2) doublet soft breaking squark mass [200 GeV, 4 TeV]

mŨ1
1st/2nd gen. SU (2) singlet soft breaking squark mass [200 GeV, 4 TeV]

mD̃1
1st/2nd gen. SU (2) singlet soft breaking squark mass [200 GeV, 4 TeV]

mQ̃3
3rd gen. SU (2) doublet soft breaking squark mass [100 GeV, 4 TeV]

mŨ3
3rd gen. SU (2) singlet soft breaking squark mass [100 GeV, 4 TeV]

mD̃3
3rd gen. SU (2) singlet soft breaking squark mass [100 GeV, 4 TeV]

At Stop trilinear coupling [−8 TeV, 8 TeV]
Ab Sbottom trilinear coupling [−4 TeV, 4 TeV]
Aτ Stau trilinear coupling [−4 TeV, 4 TeV]
|μ| Higgsino mass parameter [80 GeV, 4 TeV]
|M1| Bino mass parameter [0 TeV, 4 TeV]
|M2| Wino mass parameter [70 GeV, 4 TeV]
M3 Gluino mass parameter [200 GeV, 4 TeV]
MA Pseudoscalar Higgs mass [100 GeV, 4 TeV]
tanβ Ratio of vacuum expectation values [1, 60]

Table 3 Preselection cuts for the pMSSM benchmark points [6]

Parameter Minimum value Maximum value

�ρ −0.0005 0.0017

�(g − 2)μ −17.7 × 10−10 43.8 × 10−10

BR(b → sγ ) 2.69 × 10−4 3.87 × 10−4

BR(Bs → μ+μ−) 1.6 × 10−9 4.2 × 10−9

BR(B+ → τ+ντ ) 66 × 10−6 161 × 10−6


χ̃0
1
h2 − 0.1208

�invisible(Z) − 2 MeV

Masses of charged
sparticles

100 GeV −

mχ̃±
1

103 GeV −
mh 124 GeV 128 GeV

event samples with up to one additional parton in the matrix
element were generated and efficiency factors1 were deter-
mined for each signal region and the final yield was deter-
mined. For points that could not be classified with at least
95% certainty using this method, a fast detector simulation

1 The efficiency factor tells the number of Monte Carlo events passing
the experimental selections relative to the full MC sample size for each
parameter point. Since the number of simulated MC events typically
exceeds the nominal number by a factor of a few (to reduce statistical
fluctuations) the final number of expected events in each signal region is
obtained by multiplying the efficiency, integrated luminosity and cross
section.

based on GEANT4 was performed [6]. The exclusion of the
model points was then determined using 22 different analy-
ses, taking into account almost 200 signal regions covering
a large spectrum of final-state signatures. The exclusion of a
model point is decided by the analysis with the best expected
sensitivity. We follow this approach here.

3 Machine learning and classification

In terms of ML the problem considered in this paper is a clas-
sification problem and there are several methods for address-
ing it. We will focus on decision tree classifiers and in par-
ticular on the random forest classifier [65], which was found
to give the best results in the present case, compared to other
ML methods like AdaBoost [66], k-nearest neighbors [67]
and support vector machines [68], amongst others.

In the following we present an introduction to decision
trees and the random forest classifier, aiming at providing a
basic understanding of the algorithms. For more complete
texts on the subject, the reader is referred to Refs. [69,70].
A more detailed and technical description of the Random
Forest algorithm can be found in Ref. [65].

3.1 Decision trees and random forest

In a classification problem the goal is to classify a param-
eter set (attribute set), �y = {y1, . . . , yN }, by assigning it
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Fig. 1 Graphical representation
of a sample decision tree

a class label C , corresponding to the class it belongs to.
The procedure starts with training a classifier by presenting
parameter sets and the corresponding class labels, in order
to learn patterns that the input data follow. Though this basic
principle is the same for all classification algorithms, the
specific implementation differs depending on the particular
problem.

Decision trees are often used as a method to approach
a classification problem. An example of a decision tree is
shown in Fig. 1. In this example, the tree classifies a 2-
dimensional attribute set �y = (y1, y2) as either class A or
class B.

A decision tree consists of multiple nodes. Every node
specifies a test performed on the attribute set arriving at that
node. The result of this test determines to which node the
attribute set is sent next. In this way, the attribute set moves
down the tree. This process is repeated until the final leaf node
is reached, i.e. the node with no further nodes connected to
it. At the final node no test is performed, but a class label
is assigned to the set, specifying its class according to the
classifier. The depth of the tree is the maximum number of
nodes, as shown in Fig. 1.

Because the tree works on the entire parameter space,
every test performed in each node can also be interpreted
as a cut in this space. By creating a tree with multiple nodes,
the parameter space is split into disjunct regions, each having
borders defined by the cuts in the root and internal nodes, and
a classification defined by a leaf node.

One of the drawbacks of decision trees is that they are
prone to overtraining: they have a tendency to learn every
single data point as an expression of a true feature of the
underlying pattern, yielding decision boundaries with more
detailed features than actually present in the underlying pat-
tern. Although this overtraining may cause a better prediction

when classifying the training data, such classifiers generally
perform poorly on new data sets.

A simple, yet crude method to fix this problem is known
as pruning: training the entire tree, but cutting away all nodes
beyond a certain maximum depth. This effectively reduces
the amount of details the tree can distinguish in the learned
data pattern, since fewer cuts are made in the parameter space.
With a maximum depth set to a certain value, classification
will not be perfect and mistakes will be made in predictions
for the training. Lone data points in sparse regions or individ-
ual data points with a classification different from a classifi-
cation of the data points around it will therefore be learned
less efficiently, thus reducing their influence on the trained
classifier.

In the Random Forest algorithm, multiple decision trees
are combined into a single classifier, creating an ensemble
classifier. Classification of an attribute set is then decided by
a majority vote: the ratio of trees that predict class C and the
total number of trees is taken as a measure of probability the
attribute set belongs to class C . The class with the highest
score is assigned to the attribute set. This method averages
out fluctuations that cause overtraining in individual trees.

Another method to overcome overtraining is to implement
a random attribute selection, meaning that at each node the
cuts are applied only to a subset of attributes. In a single
decision tree this would introduce a massive error in predic-
tions, but since the random forest is an ensemble classifier,
its predictions actually improve.

In addition to these two methods, random forests also use
bagging to reduce overtraining even more. In bagging, each
decision tree is trained on a random selection of n model
points out of N available in the training set. The sampling is
done with replacement, meaning a single model point can be
selected multiple times. In bagging, n is conventionally cho-
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sen to be equal to the total amount of model points available,
which means each tree is trained on approximately 63% of
points for large N [71]. By using this procedure, the contri-
bution of a single data point to the learned pattern is reduced,
making the classifier more focused on the collective patterns.

Overtraining of a classifier is difficult to express quantita-
tively, but it can be tested qualitatively using an independent
test set, with which one can estimate the fraction of incor-
rectly predicted data points for general datasets (i.e. datasets
other than the training set). This fraction is called the gen-
eralization error. A high generalization error is a possible
indicator of overtraining. Normally the check on this error
is performed by splitting the available data into training and
testing subsets. The training set is used to train the classi-
fier, while the testing set is used to test the predictions of the
algorithm. This splitting of the dataset is, however, not the
procedure we followed here. Since random forests employ
bagging, a single data point is used only in training of a part
of the trees. Testing of the algorithm can thus be done by
letting all data points be predicted by those trees that did
not use a particular data point in their training. As with a
test set, one can now obtain a fraction incorrectly predicted
data points, and thus estimate the generalization error. This
method is called out-of-bag estimation (OOB). The obvious
advantage of this procedure is that all the data can be used
in training without the need to split the sample into the train-
ing and testing sets, hence improving the general prediction
quality of the algorithm. It was shown in Ref. [71] that this
method provides an error estimate as good as train-test split
method; see Appendix A for a direct comparison in our case.

Though random forest is in general not very susceptible to
overtraining due to the bagging procedure, its performance
depends on the number of trees it contains: the more trees, the
less overtraining will occur, because predictions are averaged
over many individual trees thus reducing undesired fluctua-
tions. The number of decision trees inside the forest is a
configuration parameter that has to be set before starting a
training, as are the maximum depth of the decision trees and
the number of features used in the random attribute selection
at each node for example.

In this work we used the RF implementation in the
scikit-learn Python package [72] (version 0.17.1).

3.2 Performance of a classifier

Given a classifier and a testing set, there are four possible
outcomes in the case of binary classification (i.e. “positive”
and “negative”). If the true classification is positive and the
prediction by the classifier is positive, then the attribute set is
counted as a true positive (TP). If the classifier classifies the
set as negative, it is counted as false negative (FN). If, on the
contrary, the attribute set is truly negative and it is classified

as negative, it is counted as a true negative (TN) and if it is
classified as positive, it is counted as a false positive (FP).

With this, one can define the true positive rate (TPR) as
the ratio of the positives correctly classified and the actual
positive data points. The false positive rate (FPR) is the ratio
of negatives incorrectly classified and the total truly negative
data points.

A receiver operating characteristic (ROC) graph is a 2-
dimensional plot in which the TPR is plotted on the vertical
axis and the FPR is plotted on the horizontal axis.2 The ROC
graph shows a relative trade-off between benefits (true pos-
itives) and costs (false positives). Every discrete classifier
produces an (FPR, TPR) pair for a specified cut on the clas-
sifier output corresponding to a single point in the ROC space.
The lower left point (0, 0) represents a strategy of never get-
ting a positive classification; such a classifier commits no
false positive errors but also does not predict true positives.
The opposite strategy, of unconditionally assigning positive
classifications, is represented by the upper right point (1, 1).
The point (0, 1) represents the perfect classification.

The ROC curve is a 2-dimensional representation of a
classifier performance. A common method used to compare
classifiers is the area under the ROC curve (AUC) [73]. Its
value is always between 0 and 1. Because a random classifica-
tion produces a diagonal line between (0, 0) and (1, 1), which
corresponds to AUC = 0.5, no realistic classifier should have
AUC less than 0.5. A perfect classifier has a AUC equal to 1.
Each point on the curve corresponds to a different choice of
the classifier output value that separates data points classified
as allowed or excluded.

4 Training of SUSY-AI

The classifier was trained using the data points generated by
ATLAS as discussed in Sect. 2. The set of parameters used
in this classification task is shown in Table 4. We follow
here the SLHA-1 standard [74] and provide the respective
block names and parameter numbers. All input variables are
defined at the SUSY scale Q = √mt̃1mt̃2 .

The class labels were generated by the exclusion analy-
sis performed in Ref. [6]. From the 22 analyses that were
used by ATLAS, the exclusion of each point is decided by
means of the signal region with the best expected sensitivity
at a given point. To excluded data points we assign a class
label 0, to allowed data points a class label 1. Note that the
current version only uses the combined classification, with-
out making a distinction which particular analysis excluded
a given parameter point.

2 TPR and FPR may also be called sensitivity and specificity in the
literature.
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Table 4 Variables used for training in the pMSSM. The variables are
identified according to the SLHA-1 standard [74], given in order used
by SUSY-AI

Parameter Block No. Parameter Block No.

M1 MSOFT 1 m
˜U3

MSOFT 46

M2 MSOFT 2 m
˜D1

MSOFT 47

M3 MSOFT 3 m
˜D3

MSOFT 49

m
˜L1

MSOFT 31 At AU 3.3

m
˜L3

MSOFT 33 Ab AD 3.3

m
˜E1

MSOFT 34 Aτ AE 3.3

m
˜E3

MSOFT 36 μ HMIX 1

m
˜Q1

MSOFT 41 M2
A HMIX 4

m
˜Q3

MSOFT 43 tanβ HMIX 3

m
˜U1

MSOFT 44

Fig. 2 Distribution of the number of true allowed or excluded points
by ATLAS [6] as a function of the classifier output

In order to find an optimal configuration of the classifier,
we used a grid search as an automated investigation method,
which varies the hyperparameters (number of trees, maximal
depth, number of features at each node) to find a configura-
tion with a maximal value for a figure of merit, which is the
OOB score in our case. The result of this search yielded the
following parameters: 900 decision trees, a maximal depth
of 30 nodes and a maximum number of features considered
at each node of 12. The training was performed including
the out-of-bag estimation technique for the creation of an
estimate for the generalization accuracy.

Figure 2 shows a histogram of all data points with a clas-
sification prediction determined by the classifier. The hor-
izontal axis shows the classifier output while the vertical
axis shows a number of points for a given output with a
true label 1 (green histogram) or 0 (red histogram). From
the figure, one can conclude that although a vast majority of

Fig. 3 Confidence level that the classification is correct, as defined in
the text. The horizontal lines indicate specific confidence levels

the points is classified correctly (the allowed points pile-up
at a classifier output of 1.0, while the excluded points pile-
up at a classifier output of 0.0), some of the points fall into
the categories of false positives or false negatives. A per-
fect classification is therefore not possible, and one has to
make cuts in this diagram to make the classification binary.
Setting the cut at 0.5 would mean the truly excluded data
points with a value for the output of 0.5 or more would
be classified as allowed, while the truly allowed data points
with a classifier output of 0.5 or less would be classified as
excluded.

The desired location of the cut depends on the required
properties of the classifier. For example, when one would like
to avoid false positives the preferred value should be close
to 1.0, while the value close to 0.0 will result in many true
positive points being classified as positive for a price of many
true negative points wrongly classified as positives. Typically,
the neutral choice would be at a point of intersection of red
and green histograms, in our example at 0.535. It is assumed
that newly added points will follow the same distribution as
a function of the classifier output.

Another possibility, which we adopt here, is to plot the
ratio of the majority class and the total number of points for
each bin, as showed in Fig. 3. This provides a frequentist
confidence level that a point with a given classifier output is
truly allowed or excluded. The horizontal lines for typically
used confidence levels are also shown in the figure.

Using this confidence level (CL) method, one can use the
trained classifier to provide both a classification and a mea-
sure of confidence in that classification. By demanding a
specific CL (and so the probability of the wrong classifica-
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Fig. 4 a ROC curves for different minimum CLs following from an
analysis of Fig. 3. Note that only the upper left corner of the full ROC
curve is shown. b ROCs for SUSY-AI and 20 decision trees (ROCs
overlap here). The decision trees model educated manual cuts on the

dataset. The square marker indicates the location of SUSY-AI perfor-
mance without a cut on CL, while discs denote different decision trees

tion) one determines the classifier output, which can be read
from Fig. 3. For example, for a confidence level of 99%, the
classifier output for a given point should be below 0.05 or
above 0.95, while for a confidence level of 95% the predicted
probabilities below 0.133 or above 0.9 are sufficient. Trim-
ming the dataset using the limits determined by this method
yields better results for the classification, but also implies
that further analyses have to be done on the points that were
cut away. The improved quality of classification can be seen
by the increasing AUC for higher confidence levels in the
ROC curve in Fig. 4a. This plot was generated by varying
the decision cut on the classifier output between 0.0 and 1.0
and plotting the result as a function of FPR vs. TPR for a
given CL cut.

In order to demonstrate how SUSY-AI outperforms a sim-
ple decision tree we make a comparison of both methods in
Fig. 4b, which shows ROC curves for both of them. We study
here O(20) simple decision trees (with a maximum depth of
5) that model a set of simple cuts one would put on the dataset
manually. The decision trees were trained with a train:test
split dataset according to a ratio 75:25, cf. Appendix A. An
example of a decision tree trained in this way can be seen in
Fig. 5. For the purpose of this exercise, the cut of 0.5 was
imposed on the classifier output. The square marker in the
figure shows the actual location of SUSY-AI on the RF ROC
curve. Clearly, for any choice of FPR SUSY-AI outperforms
the simple decision trees. The difference is particularly vis-
ible once we take low FPR. Note that the SUSY-AI ROC
curve plotted here does not take into account CL cuts dis-
cussed in the previous paragraph. Once this is taken into
account the advantage of the package increases even fur-
ther.

5 Performance tests of SUSY-AI

In this section we study the performance of SUSY-AI on a
sample that was initially used for its training and on two spe-
cific SUSY models. The first one is a natural SUSY model
that focuses on only several chosen parameters (with the
rest effectively decoupled) of the 19-dimensional pMSSM
parameter space, but fulfills almost all the constraints of the
original sample. The second one is the constrained MSSM
defined by high-scale parameters. It generally contains all
particles from the pMSSM spectrum, but with the constraints
from dark matter relic abundance and Higgs physics being
relaxed. In the last subsection we discuss validation perfor-
mance on two additional ad hoc models and provide a general
discussion of SUSY-AI validation and applicability for mod-
els not specified in this paper, which users could try on their
own.

5.1 Performance in the 19-dimensional pMSSM

To validate the performance of SUSY-AI, all possible 2-
dimensional projections of the 19-dimensional pMSSM
parameter space have been searched for differences between
the classification by SUSY-AI and ATLAS. Figures 6 and
7 show as an example the classification in the M1–M2

and mg̃–mχ̃0
1

plane. Various other classification plots are
shown in Figs. 13, 14, 15, 16, 17, 18, 19 and 20 in
Appendix B.

One could expect that misclassified points are primarily
located at a border of allowed and excluded regions of the 19-
dimensional parameter space. To test this hypothesis, we bin
every possible 2-dimensional projections of parameter space
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Fig. 5 Example of a decision tree modeling educated manual cuts,
trained with a 75:25 ratio of training and testing data. The figure has
been created withGraphViz [75]. The information shown in the nodes
are, respectively: a cut that is made in the parameter space (line 1), an

impurity measure which is minimized in the training (line 2), a number
of model points in the node (line 3), the distribution of model points
over the classes [excluded, allowed] (line 4) and a label of the majority
class (line 5)

Number of model points True classification Prediction by classifier Ratio of misclassified points

A
ll
da

ta
95
C
L

99
C
L

Fig. 6 Color histograms for a projection of the 19-dimensional
pMSSM parameter space on the M1–M2 plane. The color in the sec-
ond and third column indicates the fraction of allowed data points for

the true classification and the out-of-bag prediction, respectively. The
last column shows the fraction of misclassified model points by the
prediction, with white areas denoting no misclassifications

123



257 Page 10 of 25 Eur. Phys. J. C (2017) 77 :257

Number of model points True classification Prediction by classifier Ratio of misclassified points
A
ll
da

ta
95
C
L

99
C
L

Fig. 7 Color histograms for a projection of the 19-dimensional
pMSSM parameter space on themg̃–mχ̃0

1
plane. The color in the second

and third column indicates the fraction of allowed data points for the true

classification and the out-of-bag prediction, respectively. The last col-
umn shows the fraction of misclassified model points, with white areas
denoting no misclassifications. The dashed bins contain no data points

and calculate the ratio of allowed points to the total number
of points in each bin. We compare the true classification and
out-of-bag prediction.3 The fraction of misclassified points
can be plotted in the same manner and provides information
on prediction errors in different parts of parameter space; see
Figs. 6 and 7.

The classification has been studied for different cases:
including all points, including only points within the 95%
CL limit and for points within the 99% CL limit, as shown in
the different rows of Figs. 6 and 7. As expected, the difference
between the original classification and the predicted classi-
fication becomes smaller when demanding a higher confi-
dence level. Figures 13, 14, 15, 16, 17, 18, 19 and 20 in
Appendix B further support the hypothesis that the misclas-
sified points indeed gather around decision boundaries in the
19-dimensional parameter space.

Without a confidence level cut, SUSY-AI classifies 93.2%
of the data correctly at the working point with the classifier
output cut of 0.535. This can be compared with the per-
formance of the simple decision tree in Fig. 4b, which is
markedly worse for any value of the false positive rate. Com-
paring SUSY-AI at the working point, FPRSUSY-AI = 0.112,

3 A comparison of out-of-bag estimation and the validation via splitting
of data in a training and testing set is discussed in Appendix A.

TPRSUSY-AI = 0.960, with the decision tree at the same
FPR we obtain just TPRDT = 0.647. Alternatively, looking
at true and false negatives we have FNRSUSY-AI = 0.089,
TNRSUSY-AI = 0.947, while the decision tree at the same
FNR we obtain just TNRDT = 0.670, and at the same TNR:
TNRDT = 0.660. The last result is particularly worth not-
ing as it means that for a decision tree that correctly excludes
95% of points the rate of incorrect exclusions is at 66%. With
the confidence level cut of 95%, corresponding to 70% of the
full dataset, the correct classification by the RF is increased to
99.0%. Finally the confidence level cut of 99%, correspond-
ing to 50% of the full dataset, yields a correct classification
of 99.7%.

One might think that the volume of the 19-dimensional
parameter space is so large that the data points become too
sparse to make reliable classification possible. Our results
show otherwise. The first reason for this is that the size of
the parameter space in the pMSSM is inherently reduced by
sampling restrictions. Of the 500 · 106 model points sam-
pled, only 3 · 105 survived restrictions on the Higgs mass,
non-existence of tachyons and color breaking minima, cor-
rect electroweak symmetry breaking etc. This decreases the
number of points needed for training since the volume of
the valid and relevant parameter space is reduced. Moreover,
only the part of parameter space with a complicated decision
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boundary shape (<4 TeV) has to be sampled. Furthermore,
we want to stress that the DM constraint already excludes
benchmark points with an LSP different from the lightest
neutralino and thus a non-trivial cut into parameter space
is performed. Moreover, the majority of the bino-like LSP
points are concentrated with masses below 100 GeV and in
particular at the Z and Higgs boson pole, have a higgsino or
wino NLSP for co-annihilation or have colored scalars (usu-
ally stops) or staus as the NLSP candidate. Usually, bench-
mark points with a wino and higgsino LSP are constrained
to masses below 1.5 TeV.

Secondly, the experimental constraints on the pMSSM sig-
nificantly reduce the allowed SUSY parameter space. Only
less than 1 out of 100 randomly sampled SUSY parameter
points were selected after the constraints applied by ATLAS.
The 300,000 training points, therefore, represent a much
larger set of randomly selected parameters. The classifier
remains valid nevertheless, since one only needs to sam-
ple the part of parameter space where the decision boundary
shape will change as a function of a particular feature ‘X’.
This happens in the low-energy range therefore justifies the
upper cut of <4 TeV. Another relevant issue here is the cov-
erage of the compressed spectrum region where one might
expect poor performance. The ATLAS scan, however, cov-
ers fairly well compressed spectra and provides training data
also in these regions.

The final reason is that not all 19 dimensions of the
pMSSM are phenomenologically relevant. For example, the
production of gluinos and squarks, which is the main search
channel at the LHC, depends mainly on the squark masses,
the gluino mass, and the electroweakino mass parameters
M1, M2 and μ, while the trilinear couplings and tan β only
have a small impact on the predictions.

This can be exposed by investigating features’ importance.
Every node in a decision tree is a condition on a single fea-
ture and splits the dataset into two parts. The locally optimal
condition is chosen based on a measure called impurity. In
our case, we implement the Gini impurity which is given
by

I =
C

∑

i=1

fi · (1 − fi ) = 1 −
C

∑

i=1

f 2
i , (5.1)

where C is the total number of classes and fi the fraction of
class i in this node. The smaller the Gini impurity, the purer
the dataset at the given node. Minimizing this value during
training guarantees that model points will be split according
to their class label.

After training a tree, it can be computed for that tree how
much each feature j decreases the weighted impurity: the
impurity change weighted with the fraction of model points
it influences, summed over all nodes making a split on feature
j in that tree:

Table 5 Features’ importance for the trained RF classifier

Parameter Importance Parameter Importance

mL1 0.021 M1 0.058

me1 0.019 M2 0.164

mL3 0.014 mu 0.130

me3 0.014 M3 0.242

mQ1 0.079 At 0.013

mu1 0.066 Ab 0.012

md1 0.037 Atau 0.012

mQ3 0.026 mA2 0.031

mu3 0.018 tanbeta 0.019

md3 0.026

∑

k∈nodes splitting j

model points at node k

total number of model points
· impurity change.

(5.2)

This weighted impurity change for each feature can be aver-
aged for the forest and the features can be ranked according
to this measure. The result of this exercise for SUSY-AI is
shown in Table 5, where the features’ importance are listed.

One can see that a subset of all features have a significantly
higher contribution to the final prediction by SUSY-AI. We
investigated a reduction of the number of features taken as an
input by SUSY-AI and the reduction yielded classifiers with
systematically lower quality.

From the above discussion one can see that the effective
dimensionality of the problem is significantly reduced. With
this in mind let us make several remarks about the uncer-
tainty of a decision boundary. Firstly, we note that it does
not scale with 1/N , where N is the number of points in each
dimension. The error actually scales with 0.5 · V/(N + 1)

where V is the allowed volume. Let us assume V = 1 and
four points in the unit box placed at 0.2, 0.4, 0.6, 0.8 (a grid
spacing) and that the first two points are excluded. The algo-
rithm would guess the limit to be at 0.5 (i.e. between points 2
and 3). The uncertainty of this guess is only 0.1 and not 0.25
even for a grid spacing of points. In a 9-dimensional space
this means 49 = 262144 points. Taking into account that
some of the features are relatively unimportant and with the
constraints on the parameter space that reduce the effective
volume (e.g. the physical vacuum, a viable DM candidate,
etc.), it becomes plausible that our sample provides sufficient
coverage of the parameter space.

In addition, the separation of the excluded and allowed
regions close to the decision boundary becomes better
defined when applying confidence level cuts that remove
model points not classified with a high enough certainty. We
note that in the future the probability for correct classification
by SUSY-AI will be improved with more training data.
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Table 6 Input parameters of the
natural SUSY scenario of
Ref. [76], and the range over
which these parameters were
scanned

Parameter Description Scanned range

mQ̃3
3rd generation SU (2) doublet soft breaking squark mass [0.1 TeV, 1.5 TeV]

mŨ3
3rd generation SU (2) singlet soft breaking squark mass [0.1 TeV, 1.5 TeV]

M3 Gluino mass parameter [0.1 TeV, 3.0 TeV]
At Stop trilinear coupling [−3.0 TeV, 3.0 TeV]
μ Higgsino mass parameter [0.1 TeV, 0.5 TeV]
tan β Ratio of vacuum expectation values [1, 20]

Table 7 The experimental
analyses used in Ref. [76]. The
ATLAS-CONF and CMS-SUS
papers are only available as
conference proceedings, the
others are given by their arXiv
number. The middle column
corresponds to the final state of
the respective search, and the
third column shows the total
integrated luminosity employed
in this analysis. The fourth
column gives the total number
of signal regions

Reference Final state L [fb−1] #SR

1308.2631 (ATLAS) [42] 0� + 2b-jets + /ET 20.1 6

1403.4853 (ATLAS) [39] 2� + /ET 20.3 12

1404.2500 (ATLAS) [34] SS 2� or 3� 20.3 5

1407.0583 (ATLAS) [38] 1� + (b)-jets + /ET 20.0 27

1407.0608 (ATLAS) [40] monojet + /ET 20.3 3

1303.2985 (CMS) [84] αT + b-jets 11.7 59

ATLAS-CONF-2012-104 [85] 1� + ≥4 jets + /ET 5.8 2

ATLAS-CONF-2013-024 [86] 0� + 6 (2b)-jets + /ET 20.5 3

ATLAS-CONF-2013-047 [87] 0� + 2–6 jets+ /ET 20.3 10

ATLAS-CONF-2013-061 [88] 0–1� + ≥3b-jets + /ET 20.1 9

ATLAS-CONF-2013-062 [89] 1–2� + 3–6 jets + /ET 20.0 19

CMS-SUS-13-016 [90] OS 2� + ≥3b-jets 19.7 1

5.2 Performance in a pMSSM submodel: the
6-dimensional natural SUSY model

In order to further test the performance of the trained clas-
sifier, a cross-check has been performed on two models:
the 6-dimensional natural SUSY [76] and the 5-dimensional
CMSSM. The natural SUSY sample is contained within the
limits specified in Table 2, however, one might worry that
this specific part of the parameter space was too sparsely
sampled. We show here that nevertheless the prediction of
SUSY-AI is reliable. On the other hand, the CMSSM sample
relaxes some of the constraints of the training sample, like the
Higgs mass or dark matter abundance. Still, we demonstrate
the exclusion limits are correctly reproduced.

In Ref. [76] limits were presented on the parameter
space of the natural supersymmetry based on Run 1 SUSY
searches. The authors considered 22,000 model points in a
6-dimensional parameter space listed in Table 6. The mass
spectra consist of higgsinos as the lightest supersymmet-
ric particle, as well as light left-handed stops and sbottoms,
right-handed stops and gluinos, while assuming a SM-like
Higgs boson. All remaining supersymmetric particles and
supersymmetric Higgs bosons were decoupled. All bench-
mark scenarios have to satisfy low-energy limits such as the
ρ parameter [77], LEP2 constraints [78–80] and have to be
consistent with the measured dark matter relic density [62],

i.e. the total cold dark matter energy density is used as an
upper limit on the LSP abundance. However, no constraints
from b-physics experiments have been imposed. In summary,
our natural SUSY sample fulfills the ATLAS pMSSM con-
straints, except the b-physics limits.

The event generation was performed with Pythia
8.185 [81] as well as with Madgraph [82] interfaced with
the shower generator Pythia 6.4 [83] for matched event
samples. The truth level MC events were then passed over
to CheckMATE [14,15]. It consists of a simulation of the
detector response with a modified Delphes [17] where the
settings have been re-tuned to resemble the responses of the
ATLAS detector.

Each model point was tested against a number of natu-
ral SUSY and inclusive SUSY searches with a total num-
ber of 156 signal regions, including two CMS searches,
summarized in Table 7. CheckMATE determines the signal
region with the highest expected sensitivity, as well as the
selection efficiency for this particular signal region. Finally,
CheckMATE determines if the model point is excluded at
the 95% CL, using the CLS method [91] by evaluating the
ratio,

r ≡ S − 1.96 · �S

S95
exp.

, (5.3)
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(a) True classification from Ref. [76]. (b) 95% CL SUSY-AI classification result.

(c) pMSSM data used for training.

Fig. 8 Results of testing a natural SUSY scenario with the trained clas-
sifier in the higgsino LSP and gluino mass plane assuming stop masses
larger than 600 GeV. The colors indicate the probability that a partic-
ular point is not excluded. For reference c shows the training data in

the same plane as a, b after applying a constraint on the stop mass to
filter out data points mimicking natural SUSY. The dashed bins contain
no data points. The dashed stripe in a, b corresponds to the points that
were outside the 95% CL boundaries of CheckMATE; see text

where S is the number of signal events, �S denotes its the-
oretical uncertainty, and S95

exp. is the experimentally deter-
mined 95% confidence level limit on the signal. A statistical
error due to the finite MC sample, i.e. �S = √

S, as well
as a 10% systematic error has been assumed. The parame-
ter r is only computed for the best expected signal region,
in order to avoid exclusions due to downward fluctuations
of the experimental data, which is expected considering the
large number of signal regions. CheckMATE does not statis-
tically combine signal regions nor combine different analy-
ses. It considers a parameter point to be excluded at 95% CL
if r defined in Eq. (5.3) exceeds 1.0. However, the authors
followed a more conservative approach. If the r value was
below 0.67 the point was considered allowed; if it was above
1.5 it was excluded. All other points were removed from the
analysis.

Figure 8a shows the exclusion limit in the gluino–LSP-
mass plane assuming mt̃1 ≥ 600 GeV from Ref. [76].

Here, the red (blue) shaded areas indicate excluded (allowed)
regions of parameter space, while the fraction of allowed
points is shown by the color intensity according to a color
bar. The limit is essentially driven by the production of gluino
pairs. Hence, a clear separation between the allowed and
excluded regions can be observed in the figure.

Figure 8b shows the result from the prediction with the
95% CL cut. The classification by SUSY-AI reproduces the
results from Ref. [76] very well. It produces slightly bet-
ter limits, since the classifier was trained using more recent
searches and a larger number of analyses, showing that the
procedure of CheckMATE is conservative. Figure 8c shows
the same plot using the pMSSM training data and its true
classification. This confirms that the location of the decision
boundary in Fig. 8b is indeed learned from the training data
and not an artifact of the natural SUSY data sample.

Again a series of ROC curves were generated. These are
plotted in Fig. 9. A large part of the model points is clas-
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Fig. 9 Several ROCs for the pMSSM-trained classifier with varying
CL cuts when tested on the natural SUSY sample

sified correctly; however, there remains a small number of
false negatives (assuming the CheckMATE classification to
be correct). This can be deduced from the spacing between
the TPR = 1.0 line and the ROC curves in Fig. 9. Neverthe-
less, the pMSSM-trained classifier provides a reliable clas-
sification, especially when a confidence level cut is applied,
resulting in AUC of about 0.997 for the full dataset.

5.3 Performance in a pMSSM submodel: the
5-dimensional constrained MSSM

A second test was performed on the constrained MSSM
(cMSSM or mSUGRA) [92–94]. The MSSM with a partic-
ularly popular choice of the universal boundary conditions
for the soft breaking terms at the grand unification scale is

called the cMSSM. It is defined in terms of five parameters:
common scalar (m0), gaugino (m1/2) and trilinear (A0) mass
parameters (all specified at the GUT scale) plus the ratio tan β

of Higgs vacuum expectation values and sign(μ), where μ

is the Higgs/higgsino mass parameter whose square is com-
puted from the conditions of radiative electroweak symmetry
breaking. For this model, ATLAS has set constraints shown in
Fig. 10a [1]. Using SuSpect [95], the same slice of param-
eter space was sampled randomly following an uniform dis-
tribution over parameter space and classified using the tested
classifier. In this scan, we set tan β = 30, A0 = 2m1/2 and
the sign of μ to +1 in order to facilitate the comparison with
ATLAS results. In this search no further constraints were
imposed, for example on the Higgs mass or from dark matter
measurements. The result of the classification on the data can
be seen in Fig. 10b, in which similarities with Fig. 10a can
be observed.

In this plot, only the data points within the 95% CL are
shown. The white band, therefore, corresponds to the param-
eter points that could not be classified within 95% CL. All
data points that lay outside of the sampling range as speci-
fied in Table 2 (or close to the border) were relocated into the
sampling region in order to reduce boundary effects of the
classifier. In particular, for the points with m0 > 4 TeV the
masses of the scalars where moved back to values approx-
imately 4 TeV. This has a small effect on physics since the
heavy scalars have masses outside of the sensitivity of the
LHC at 8 TeV.

5.4 Effects of limited training data and applicability range

In the previous subsections, we have shown that SUSY-AI
indeed performs very well despite the fact that the train-

(a) Limits set by ATLAS [6] on mSUGRA
parameter space.

(b) The 95% CL result of the SUSY-AI
classifier.

Fig. 10 Results of testing cMSSM with the trained classifier. The colors in b indicate the probability of the single point not being excluded. The
white band in b corresponds to the points that were outside the 95% CL boundaries
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Table 8 Input parameters of the
pMSSM subspace in the light
stop (left) and the
electroweakino (right) scenarios

Parameter Range Parameter Range

mL̃1
[600 GeV, 4 TeV] mL̃1

[700 GeV, 4 TeV]
mẼ1

[600 GeV, 4 TeV] mẼ1
[700 GeV, 4 TeV]

mL̃3
[600 GeV, 4 TeV] mL̃3

[700 GeV, 4 TeV]
mẼ3

[600 GeV, 4 TeV] mẼ3
[700 GeV, 4 TeV]

mQ̃1
[1200 GeV, 4 TeV] mQ̃1

[1200 GeV, 4 TeV]
mŨ1

[1200 GeV, 4 TeV] mŨ1
[1200 GeV, 4 TeV]

mD̃1
[1200 GeV, 4 TeV] mD̃1

[1200 GeV, 4 TeV]
mQ̃3

[1200 GeV, 4 TeV] mQ̃3
[1200 GeV, 4 TeV]

mŨ3
[100 GeV, 4 TeV] mŨ3

[1200 GeV, 4 TeV]
mD̃3

[100 GeV, 4 TeV] mD̃3
[1200 GeV, 4 TeV]

At [−8 TeV, 8 TeV] At [−8 TeV, 8 TeV]
Ab [−4 TeV, 4 TeV] Ab [−4 TeV, 4 TeV]
Aτ [−4 TeV, 4 TeV] Aτ [−4 TeV, 4 TeV]
|μ| [80 GeV, 4 TeV] |μ| [80 GeV, 4 TeV]
|M1| [600 TeV, 4 TeV] |M1| [0 TeV, 4 TeV]
|M2| [600 GeV, 4 TeV] |M2| [70 GeV, 4 TeV]
M3 [1300 GeV, 4 TeV] M3 [1300 GeV, 4 TeV]
MA [600 GeV, 4 TeV] MA [700 GeV, 4 TeV]
tan β [1, 60] tan β [1, 60]

ing sample is relatively small. However, here we want to
discuss the current limitations of SUSY-AI. Some regions
of parameter space of the pMSSM-19 are poorly sampled
by the ATLAS data since in these corners of the parame-
ter space it is difficult to satisfy all phenomenological con-
straints. For example, there are only a few parameter points
with very light stops since this would require the maximal
mixing scenario with a very heavy t̃2 in order to obtain a
sufficiently heavy SM-like Higgs boson. In these corners,
however, the lack of training data translates to a lower value
for the confidence level. This effect can be observed in the
plots in the previous chapters. Although the initial prediction
may be incorrect, applying a confidence level cut removes
almost all incorrectly classified data points from the tested
sample.

The lack of data points, but also the improvement on
the difference between the true classification and the pre-
dicted classification, can be observed in Fig. 11, which shows
density projections on the stop–LSP-mass plane of the total
number of parameter points used for testing, their true clas-
sification, prediction from the SUSY-AI classifier and the
fraction of misclassified points. Here we show a subspace
in the general pMSSM-19 parameter space summarized in
Table 8 (left), which corresponds to a subset of the pMSSM-
19 resembling a natural-SUSY scenario with relatively light
stops but heavy sleptons, and first and second generation
squarks. The figure shows the classification for all points

as well as for points satisfying the 95% CL and 99% CL
limit, respectively. As expected, with an increased CL level
the misclassification ratio consistently decreases, as can be
seen in the right column. In the bottom left corner of the
stop–LSP-mass plane many light stop points are excluded
if no CL cut is demanded. As can be seen in the left col-
umn of this figure, however, this corner was relatively poorly
trained due to the lack of data points in that region. It is
because of this that the number of data points left after a
confidence level cut decreases for increasingly higher cuts,
which is consistent with our discussion of the performance
of the classifier.

Figure 12 shows a second example in the M2–μ plane.
This subset of the pMSSM-19 is defined in Table 8 (right)
and it resembles an electroweakino scenario with severe
restrictions on the parameter space. As a result, the M2–
μ plane is sparsely populated in the training sample. One
can again observe a corner in the parameter space that is
excluded if no CL cut is imposed. In particular, the pure
wino LSP scenario is excluded due to long-lived sparti-
cle searches. However, without any cut the misclassifica-
tion ratio is non-negligible. With increasing CL cuts, how-
ever, the points with lower CL are removed and the mis-
classification ratio is significantly reduced. This demon-
strates that the CL assignment fulfills its role: it reveals
the ‘uncertain’ points that require a more detailed assess-
ment.
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Although introducing a cut on the confidence level
removes data points on which a prediction can be made from
a testing sample, both Figs. 11 and 12 show an increase in the
quality of the prediction. Using confidence levels in making
predictions, therefore, corresponds to removing data points
on which the resulted binary prediction was uncertain, auto-
matically removing data points in regions of parameter space
with a low density of training data.

Another limitation of the current version is that it only
uses the combined classification from all searches, without
making a distinction which particular analysis excluded a
given parameter point. While this may underpower some
of the analyses, e.g. electroweak searches, the validation
plots in Figs. 13, 14, 15 and 16 show nevertheless a good
sensitivity to light electroweakinos and sleptons. The future
versions will aim to also use this additional information in
order to improve performance in this region of the parameter
space.

The pMSSM sample used for training of SUSY-AI meets
the set of constraints discussed in Sect. 2. As we showed in
various validation plots, the code performs well on points
that belong to the to the tested subspace of the MSSM. The
CMSSM example further demonstrates that some of the con-
straints (e.g. Higgs mass or dark matter relic density) can be
relaxed. A user who wishes to use SUSY-AI on samples that
are outside the ranges of the ATLAS sample or do not fulfill
some of the constraints should first perform revalidation of
the code. The CL measure that we introduced can greatly
assist in this process. Generally speaking, a clear sign that
a classification cannot be trusted would be a high fraction
of points with low CL scores for the sample being tested.
Another method would be to compare SUSY-AI predictions
to a small number of fully simulated points (a MC simulation
and detector simulation using CheckMATE would suffice)
for which one can clearly conclude about their exclusion
status. We advise against using SUSY-AI for models that
have significantly different phenomenology from the training
pMSSM sample, for example including R-parity violation
or the gravitino LSP. Finally, as an additional functionality,
SUSY-AI issues and automated warning when a tested point
lies outside the limits specified in Table 2. When this is the
case the point can be automatically moved within the limits
and the decision is left to the user if the prediction can be
trusted.

6 Conclusions

A random forest classifier has been trained on over 310 000
data points of the pMSSM. We demonstrate that it provides a
reliable classification with an accuracy of 93.8%. The relia-
bility can be improved by demanding a minimum confidence
level for the prediction. The trained classifier, SUSY-AI, is

tested on the 19-dimensional pMSSM, the 6-dimensional
natural SUSY model and on the 5-dimensional constrained
MSSM. All these tests yield results that confirm reliable clas-
sification.

SUSY-AI will be continuously updated with future LHC
results as a part of the BSM-AI project. When possible, the
publicly available ATLAS and CMS data will be used as in
the current work. Additionally, we plan to generate our own
MC data samples and recast them to produce limits using
CheckMATE based on the existing and future LHC analyses.
Classifiers and regressors for other models of new physics are
also planned so that the whole project could cover a broad
range of theories.

SUSY-AI can be downloaded from the web page http://
susyai.hepforge.org, where we also provide installation
instructions, more detailed technical information, frequently
asked questions, example codes and updates of SUSY-AI
using results of the ongoing Run 2, currently based on
Refs. [96,97].
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A Comparison of out-of-bag estimation with train:test
split

The SUSY-AI classifier was validated using out-of-bag esti-
mation, i.e. using the full available dataset. In this appendix
we compare SUSY-AI to an identically configured classifier
trained on a subset of the data, so that is could be validated
using the remaining data. Although this is the standard way
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Table 9 Results of the
validation of the SUSY-AI
classifier with out-of-bag
estimation

CL # #/total Accuracy Precision Sensitivity NPV Specificity

Out-of-bag

0.0 310 324 1.0000 0.93226 0.93951 0.94665 0.92152 0.91133

0.68 289 371 0.93248 0.95735 0.96072 0.96835 0.95222 0.94094

0.95 219 233 0.70646 0.99094 0.99092 0.99426 0.99096 0.98573

0.98 184 230 0.59367 0.99543 0.99573 0.99672 0.99496 0.99346

0.99 160 034 0.51570 0.99708 0.99747 0.99764 0.99649 0.99624

Table 10 Results of the
validation of the RF classifier
with a split dataset (0.75
training, 0.25 testing)

CL # #/total Accuracy Precision Sensitivity NPV Specificity

Dataset splitting train:test = 75:25

0.0 77 581 1.0000 0.92271 0.91653 0.93049 0.92912 0.91491

0.68 70 375 0.90712 0.9545 0.95516 0.95302 0.95386 0.95595

0.95 48 900 0.63031 0.99022 0.99047 0.9893 0.99 0.99109

0.98 39 815 0.51321 0.99485 0.99559 0.99353 0.99419 0.99604

0.99 34 004 0.43830 0.99644 0.99685 0.99554 0.99608 0.99724

of classifier validation, it has a drawback that the classifier
does not fully exploit the available data.

A comparison of the out-of-bag method and the splitting
of the dataset is shown in Tables 9 and 10. The column labels
are defined as follows:

Accuracy = TP + TN

TP + FP + FN + TN
,

Precision = TP

TP + FP
,

Sensitivity = TP

TP + FN
,

Specificity = TN

TN + FP
,

Negative predictive value (NPV) = TN

TN + FN
, (A.1)

while different tags for each point are assigned following
the rules in Table 11. The comparison yields similar results
with the out-of-bag method performing better on accuracy,
precision and sensitivity.

Table 11 Classification of events following from a comparison of true
classification and prediction [69]

True classification

Positive Negative

Prediction

Positive True positive (TP) False positive (FP)

Negative False negative (FN) True negative (TN)

B Projections of the pMSSM

In this appendix we provide additional validation plots
demonstrating the performance of SUSY-AI. They are pre-
sented in a similar manner to Figs. 11 and 12 as various
2-dimensional projections of the 19-dimensional pMSSM
parameter space. We show the following projections: mb̃1

–
mχ̃0

1
plane in Fig. 13, m

�̃L
–mχ̃0

1
plane in Fig. 14, mχ̃0

2
–mχ̃0

1
plane in Fig. 15,mχ̃±

1
–mχ̃0

1
plane in Fig. 16,mA0 –tan β plane

in Fig. 17, μ–M2 plane in Fig. 18, M3–m
˜Q1

plane in Fig. 19,
and m

˜Q1
–m

˜D1
plane in Fig. 20.
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Number of model points True classification Prediction by classifier Ratio of misclassified points
A
ll
da

ta
95
C
L

99
C
L

Fig. 11 Color histograms for a projection of the 19-dimensional
pMSSM parameter space on the mt̃1 –mχ̃0

1
plane after imposing the

constraints on the soft breaking parameters summarized in Table 8

(left). The color in the second and third column indicates the fraction of
allowed data points. The last column shows the fraction of misclassified
points. The dashed bins contain no data points

Number of model points True classification Prediction by classifier Ratio of misclassified points

A
ll
da

ta
95
C
L

99
C
L

Fig. 12 Color histograms for a projection of the 19-dimensional
pMSSM parameter space on the M2–μ plane after imposing the con-
straints on the soft breaking parameters summarized in Table 8 (right).
The contours denote the mass of χ0

1 . The color in the second and third

column indicates the fraction of allowed data points. The last column
shows the fraction of misclassified points. The dashed bins contain no
data points
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Number of model points True classification Prediction by classifier Ratio of misclassified points

A
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da

ta
95
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L

99
C
L

Fig. 13 Color histograms for a projection of the 19-dimensional
pMSSM parameter space on the mb̃1

–mχ̃0
1

plane. The color in the sec-
ond and third column indicates the fraction of allowed data points for the

true classification and the out-of-bag prediction, respectively. The last
column shows the fraction of misclassified model points. The dashed
bins contain no data points. Cf. Fig. 7a of Ref. [6]

Number of model points True classification Prediction by classifier Ratio of misclassified points

A
ll
da

ta
95
C
L

99
C
L

Fig. 14 Color histograms for a projection of the 19-dimensional
pMSSM parameter space on the m

�̃L
–mχ̃0

1
plane. The color

in the second and third column indicates the fraction of
allowed data points for the true classification and the out-of-bag

prediction, respectively. The last column shows the fraction of mis-
classified model points. The dashed bins contain no data points. Cf.
Fig. 9a of Ref. [6]; however, note that the plots here take into account
all searches
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Number of model points True classification Prediction by classifier Ratio of misclassified points
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L

Fig. 15 Color histograms for a projection of the 19-dimensional
pMSSM parameter space on the mχ̃0

2
–mχ̃0

1
plane. The color

in the second and third column indicates the fraction of
allowed data points for the true classification and the out-of-bag

prediction, respectively. The last column shows the fraction of mis-
classified model points. The dashed bins contain no data points. Cf.
Fig. 11a of Ref. [6]; however, note that the plots here take into account
all searches

Number of model points True classification Prediction by classifier Ratio of misclassified points

A
ll
da

ta
95
C
L

99
C
L

Fig. 16 Color histograms for a projection of the 19-dimensional
pMSSM parameter space on the mχ̃±

1
–mχ̃0

1
plane. The color

in the second and third column indicates the fraction of
allowed data points for the true classification and the out-of-bag

prediction, respectively. The last column shows the fraction of mis-
classified model points. The dashed bins contain no data points. Cf.
Fig. 11b of Ref. [6]; however, note that the plots here take into account
all searches
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Number of model points True classification Prediction by classifier Ratio of misclassified points
A
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99
C
L

Fig. 17 Color histograms for a projection of the 19-dimensional
pMSSM parameter space on the mA0 –tan β plane. The color in the
second and third column indicates the fraction of allowed data points

for the true classification and the out-of-bag prediction, respectively.
The last column shows the fraction of misclassified model points. The
dashed bins contain no data points. Cf. Fig. 12 of Ref. [6]

Number of model points True classification Prediction by classifier Ratio of misclassified points

A
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da

ta
95
C
L

99
C
L

Fig. 18 Color histograms for a projection of the 19-dimensional
pMSSM parameter space on the μ–M2 plane. The color in the second
and third column indicates the fraction of allowed data points for the

true classification and the out-of-bag prediction, respectively. The last
column shows the fraction of misclassified model points. The dashed
bins contain no data points
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Number of model points True classification Prediction by classifier Ratio of misclassified points
A
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ta
95
C
L

99
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L

Fig. 19 Color histograms for a projection of the 19-dimensional
pMSSM parameter space on the M3–m

˜Q1
plane. The color in the sec-

ond and third column indicates the fraction of allowed data points for

the true classification and the out-of-bag prediction, respectively. The
last column shows the fraction of misclassified model points

Number of model points True classification Prediction by classifier Ratio of misclassified points

A
ll
da

ta
95
C
L

99
C
L

Fig. 20 Color histograms for a projection of the 19-dimensional
pMSSM parameter space on the m

˜Q1
–m

˜D1
plane. The color in the

second and third column indicates the fraction of allowed data points

for the true classification and the out-of-bag prediction, respectively.
The last column shows the fraction of misclassified model points
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