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SUMMARY

This article presents a new approach to the problem of deriving an optimal design for a
randomized group sequential clinical trial based on right-censored event times. We are motivated
by the fact that, if the proportional hazards assumption is not met, then a conventional design’s
actual power can differ substantially from its nominal value. We combine Bayesian decision
theory, Bayesian model selection and forward simulation (FS) to obtain a group sequential
procedure that maintains targeted false-positive rate and power, under a wide range of true event
time distributions. At each interim analysis, the method adaptively chooses the most likely model
and then applies the decision bounds that are optimal under the chosen model. A simulation study
comparing this design with three conventional designs shows that, over a wide range of
distributions, our proposed method performs at least as well as each conventional design, and in
many cases it provides a much smaller trial.
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1. INTRODUCTION

The use of group sequential designs has become routine in phase 11 clinical trials. Many
authors have provided general group sequential methods [1-3] and approximately optimal
group sequential procedures [4-9]. Each of these group sequential designs is derived by
assuming a sequence of normally distributed test statistics with unknown mean and known
variance, with proportional hazards usually assumed to accommodate right-censored event
times. While these designs are used routinely in practice, if the proportional hazards
assumption is not met, then the design’s actual power may differ substantially from its
nominal value. For example, if the true event time distribution is lognormal with a hazard
that initially increases and then decreases (Figure 1(d)), then the actual power achieved by
the O’Brien and Fleming (OF) [1], Pocock [2] and optimal Hwang, Shih and De Cani (HSD)
[5] designs with nominal power 80 per cent may be as low as 20-40 per cent (Tables I-111).
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Thus, the trial would be unlikely to identify a true treatment advance. In contrast, if the true
event time distribution is Weibull with an increasing hazard (Figure 1(a)), then the actual
power achieved by the OF, Pocock and HSD designs with nominal power 80 per cent may be
as high as 99 per cent (Tables I-111). In this case, these designs each enroll 33 per cent to 50
per cent more patients than the optimal Bayesian design that we will present here.

Although Bayesian methods for randomized clinical trials have received increasing attention
in recent years [10-12], the use of Bayesian rules in large-scale trials remains controversial.
A central issue when using Bayesian methods in a group sequential setting is that of
controlling the overall false-positive error rate, especially for registration trials. Spiegelhalter
et al. [11], Pocock and Hughes [13] and many others feel that controlling the false-positive
rate is crucial, and this is the policy of regulatory agencies such as the U.S. food and drug
administration. We share this viewpoint, since any method that does not control type | error
has little chance of being widely adopted.

In this paper, we present a Bayesian decision-theoretic approach to group sequential clinical
trials, with rules for concluding either superiority or futility, that controls the overall false-
positive rate and power. We focus on two-sided tests for two-arm trials with time-to-event
outcomes, in settings where little prior information is available about the shapes of the
hazard functions. A typical approach used in practice is to assume proportional hazards and
employ a conventional group sequential design. In contrast, our proposed method requires
one to first specify a small set of possible models for the event time distribution. Forward
simulation (FS) is used to obtain optimal decision boundaries under each possible model.
Each set of decision boundaries is optimal, in that it minimizes the equally weighted average
of the null and alternative expected sample sizes under the assumed model, subject to
conventional overall false-positive rate and power constraints. Since the true model is not
known, and we do not wish to base our decisions on a single model chosen from prior data
that may turn out to be suboptimal, we utilize the data at each interim analysis by applying
Bayesian model selection [14] to adaptively choose the model having the largest posterior
probability. The interim decision is then based on the optimal boundaries under the chosen
model. Because the model having the largest posterior probability may change as the data
accumulate during the trial, the boundaries used for a given interim decision may differ from
those used at previous decisions. By combining Bayesian decision theory and Bayesian
model selection in this way, we are able to maintain the specified overall false-positive rate
and power under a broad set of possible models. Consequently, in many cases our method
enrolls substantially fewer patients than conventional designs typically used in practice.
Because the optimal boundaries are chosen for each model before the trial and stored, and
the model is optimized adaptively during the trial, we call the method Bayesian doubly
optimal group sequential (BDOGS). To assess the design’s performance, we provide a
simulation study comparing BDOGS to the OF, Pocock and HSD designs. We compare each
method with BDOGS under a proportional hazards model, and also under several alternative
models where this assumption is not met. Our simulations show that BDOGS performs at
least as well as the OF, Pocock, and HSD designs, and in many cases it provides a much
smaller trial.
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The remainder of the article is organized as follows. In Section 2, we provide the general
decision-theoretic framework. Section 3 develops the FS procedure for obtaining optimal
bounds and presents the decision rules. Section 4 describes the model selection algorithm
used at each interim analysis. Section 5 presents the BDOGS procedure, with computational
algorithms given in Section 6. Section 7 presents the results of the simulation study, and we
conclude with a discussion in Section 8.

2. DECISION-THEORETIC FRAMEWORK

We consider trials that will be monitored group sequentially with up to K'analyses with a
maximum of A/ patients randomized fairly between two treatments, A and B. Denote the
median event times by 84 and 6, with 6= 65 — 84 and 0 = (84, 6g). The goal of the trial is
to test Hp : 6= 0 versus H : 6# 0. To facilitate comparison to conventional group sequential
designs and promote wide acceptability of our method, we restrict attention to designs with a
maximum type | error rate a* under Hg and minimum power B8* when 6= &*.

Our notation and decision-theoretic structure will be similar to Berger [15]. Denote the
observed data of the first 7, patients enrolled by the Ath analysis by X, = (X1, Xp, ..., Xpp)
for k=1, ..., K We refer to a decision made during the trial as an action, denoted by &, with
o/ the set of possible actions, the action space. At the Ath interim decision, the utility
function, U8, ax Xp), is the gain from taking action &y after observing data X, if © is the
true parameter. A decision rule, ¢, (X 5., is a function from 2 the sample space of X,
into ¢, defining the action to be taken when X, is observed, e.g. claim superiority of one
treatment over the other. A stopping ruleis a function (X ,,) = 1 if the trial is terminated,
and z, (Xp,) = 0 if the trial is continued. Since NV is the maximum sample size, 7y (Xp) =1
for all possible X n. The decision at the Ath analysis is ak = {7, (Xng), én (X} and dg=
(4, &b, ..., dy) is a sequential decision proceaure. The random sample size when the trial is
terminated is Z= min{/=0: z,,, (X ;) = 1} and we denote by ¥ ,, the set of observations
for which the trial stops at the Ath analysis and Z= 7. Thus, ¥, is the set of all X ;, €27k
such that z,, (Xp,) =1 and z,;(X,) =0 forall / <k

We define the utility of dxto be (B, gAX>), X5 = —Z an approach similar to that of Lewis
and Berry [16]. Since, in general, we do not know the true utility of d, we estimate the
expected utility, U, d k), with respect to the posterior distribution, rz, on ®. As a
computational convenience for calculating ([, dk), we assume that the prior of @ satisfies
the conditions Pr(64 = 6g) = Pr(6g= 64 + 6*) = 0.5, which says that the null and the
targeted alternatives are equally likely. This prior is a practical compromise between what is
reasonable and what will facilitate computation of the expected utility while yielding a
design that satisfies the false-positive rate and power constraints. The expected utility of a
sequential decision procedure d is
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The sequential decision process is computationally complex since it requires repeated
calculation of U, d) subject to the constraints that d x must have type | error, a, and
power, g, satisfying a<a* and B=4*. The following section explains how the computation of
U, di) may be carried out efficiently to facilitate practical application.

3. OBTAINING OPTIMAL BOUNDS

Computational difficulties in implementing backward induction [17] impose severe practical
limitations on Bayesian optimal designs. Consequently, most Bayesian optimal designs,
using backward induction, assume simple models [16, 18]. To deal with this problem,
Carlin, Kadane, and Gelfand (CKG) [19] proposed FS as a practical alternative to backward
induction. With FS, an optimal design is obtained by first simulating the trial repeatedly and
storing the results. A given sequential decision procedure, d, is applied to each simulated
data set, and expected utilities using d4 are obtained empirically from the simulated data.
Since the simulation results have been stored, different d, may be evaluated and a suitable
search algorithm can be used to find the dy that maximizes ([, dg). This facilitates
computation, since storing the simulated data and the results of any time-consuming
calculations does away with the need to resimulate the trial. Thus, one needs to apply each
d4to obtain U, dx). CKG use FS to obtain the 2K — 1 boundary points of their decision
procedure to maximize the expected utility. In the case considered by CKG, the complexity
of finding the optimal d x grows linearly with K. For a fully sequential or group sequential
trial with large K, however, FS may become very difficult, if not impossible.

To deal with this computational problem, we propose a decision procedure that uses FS but
does not depend on Kby defining the decision boundaries in terms of two monotone
functions, each having three parameters. Let ay, by, a_, 4, =0 and ¢y, ¢ >0 be decision
boundary parameters and let N * (X n) denote the number of treatment failures (events) in
X i We define the boundary functions
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with AL(Xpp aL, b, a)<PUX e @u, b, Q). For K24,y = (au, by, cu, a, b, a) has
smaller dimension than the 2K — 1 boundary points of CKG. In these boundary functions, a
and &_define the initial decision boundaries before any patients are enrolled, 5y and H_
determine the final boundaries when all events have been observed, and ¢y and ¢_ determine
the rate at which A decreases and A_ increases. To ensure that A <A, for a given y and &,

if PL(Xn;_’a’L’bL’CL)>PL'(Xn;€7a’L'7bU’CU)then for all k=k"we set
P Xy, ,a.,b ,c,)=P,(X b

L Mgy ™Ly» YLy L U a

”;c’ vy Yy Cy )
Denote the Bayesian decision criteria by pgs>a (Xp,) = P(6>6* | X)) and pasg (Xpy) =
Pr(6<=8* | X py)- Using these criteria and the boundary functions in (2), the trial is conducted

as follows:

1 Superiority. (a) If pp>a (Xn)>Pu(X ng aus bus cu)>Pa>s (Xpy), then stop the
trial and select B, that is, dk= (1, B). (b) If pa>s(Xn)>Pu(X g aus bu,
cu)>PB>a (Xpy), then stop the trial and select A; that is, d = (1, A).

2. Futility. \f max{pg>4 (X ), Pa>8 X }<PL(X ns aL, b1, 0), then stop the trial
and conclude that neither treatment is superior to the other; that is, dj = (1,
Neither).

3. Continuatiorn. If either (a) A.(X aL, b1, a)<pB>a (Xng), Pass Xa<Pu(X ng

ay, by, cy) or (b) min{pa-g (Xny), PB>AX 1) }2PU(X e au, U, €u), then
continue enrolling patients; that is, dj = (0, C).

Part (b) of rule 3 is included to deal with cases where var(&| X ) is large and both pa>p
(Xpp) and ppsa (X p,) are large, although in practice both values being >A occurs rarely.
Thus, from the decision rules above, ¢,,(X ) = A, B, continue or neither, and z, (X)) = 1
if the trial is terminated, O if continued. At the final analysis, if the superiority rule does not
apply for either treatment then we conclude that the treatments are equivalent.

; ; iai OPT
Together, y and rules 1-3 determine d x. Denote the optimal decision rule by d -~ and let

¥OPT be the corresponding design parameter vector. Note that d"" maximizes the expected
utility. To find yOFT, we first simulate the trial 10 000 times under each of the two cases 6p
= 84and 6g= 64+ &*. For each simulated trial, we generate the accrual times and
outcomes for the maximum A patients. At each interim analysis in each simulated trial, we
calculate pgsa (X ) and pasg (X)) The results of these calculations and all patients’ data
are stored for later use. To calculate the expected utility ((r, d), we apply d«to each
simulated data set and obtain the expected sample size N, (0, dk) for each of the cases 65 =
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Baand 6= G4+ &*. The expected utility is the negative of the average of the expected
samples sizes under 84 = Bgand Og= 84+ &. If the resulting design has a<a* and B28*,
then the expected utility is the sample mean of the utilities from the 10 000 simulated trials;
otherwise we exclude d « from the set of possible decision procedures. If the expected utility
using vy is not the maximum, then another vy is tried. Because pg>a(X ), pa>s(Xpy), and the
simulated data sets have been stored and do not depend on -y, there is no need to resimulate
the trial or repeat any time-consuming calculations. Therefore, in the search for yOPT, we
only need to apply the sequential decision procedures using each proposed vy and obtain the
expected utility, which is extremely fast. By using FS, we have the ability to search over a
very large set of v in a relatively short amount of time. To find y©PT, we begin with a coarse
grid of  and refine the grid around potential yOPT. Using this general procedure, the
particular method used to find yOPT is not critical, and any efficient grid search algorithm
can be used.

4. MODEL SELECTION

Bayesian model selection and model averaging have been used extensively in many settings
[20, 21]. However, Bayesian model selection has not been used in clinical trial design. We
use posterior model probabilities based on the current data each time an interim decision is
made to choose the most likely model empirically. Denote the set of /Jmodels under
consideration, by # = (M1, @y, ..., M,). To simplify notation, we temporarily suppress
treatment information and all subscripts on X. The posterior probability of #for £=1, 2,
e Jis

F(X|.Ay) (M)
A f X)) () (3)

[ X)=

where £ (7)) is the prior probability of @y F(X | @) = | £(X | yws MYr(ye| MY weis the
marginal likelihood, yis the parameter vector, and 7 (y¢| M) is the prior density of yrp
under 7

Since computing (X | M) can be very time-consuming, especially if the dimension of each
ypis large, we use an approximation of the Bayes factor (BF) given in Raftery [14] to
compute the posterior probability of each ®given by (3). The BF for model @ versus @ is
the ratio of the posterior to prior odds,

5y, LAIX) FAX) _ F(X))
Ty FXLA) (@

with By 1= 1. Let £p(X | w4 %) denote the likelihood,

x*=2[log .Z;(X ‘@7///4) —log fo(x‘ We,1)), nthe number of observations, 4, the
MLE of ypunder #p and pp= dim(y ) Raftery [14] gives the approximation
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2log By~ x* — (pe —p1)log n (5

where the notation a, ~ b, means that lim, . (4,/0,;) = 1. To compute F(®| X), we
express the posterior model probabilities in (3) in terms of BFs, and then exploit the method
of Raftery [14] to obtain By ; for £=2, 3, ..., J Denote the prior odds &= f(M@)/f (M) with
€1 = 1. Combining (3) and (4), the posterior probability of #pis

By x &

M| X)=
f( (‘ ) TJ:1B7',1 < 57. (6)

Substituting (5) into (6) gives an approximate value of F(@| X) for £=2, ..., J The main
computational requirements are obtaining the MLEs of w1, ¥, ..., yasunder their
respective models. While Raftery provides other approximations that are more accurate,
since our method requires model selection to be done repeatedly during simulation, we
require a fast method for calculating the posterior model probabilities in (6). We thus use the
slightly less accurate approximation in (5) to gain speed.

5. THE BDOGS DESIGN

In this section, we combine the methods described in Sections 2—4 to obtain a BDOGS
design. Intuitively, it may seem that a flexible model for the event time distribution should
give a robust design. However, our preliminary simulations showed that this is not the case,

since ngT depends heavily on the true model, specifically the shape of the hazard.
Therefore, rather than finding a single under one highly flexible model, we find dQPT
for each of Jprespecified models (hazards), thus deriving Jsets of optimal decision rules

OPT
dK

( dQﬂ’T, dggT, e 7dSST), where dgET is the optimal sequential decision procedure under
mpfor =1, 2, ..., J Since an essential feature of our procedure is its ability to switch
decision boundaries based on repeated adaptive model selection, this makes the method

inherently robust (Section 7).

Theoretically, the optimal boundary should be computed at every interim analysis given the
current data. However, this computation is impractical and thus we combine FS and model
selection to obtain Jsets of optimal decisions as an approximation. An important practical
requirement is that Jmust be small enough to allow the necessary computations to be carried
out within a reasonable time frame to facilitate application. However, # must include a
broad array of different hazard functions. After examining the behavior of our method using
a wide variety of possible # with varying J, we chose J= 5 specific models from the three-
parameter-generalized gamma (GG) family, selected in terms of the shapes of their hazards.
The GG distribution is characterized by pdf
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fylB,m, ﬁ)zf(i)n (%) Kﬂilexp {— (%)lj} y» Bymy k>0 0

This distribution has survival function () = 1 - T'; ({y/7}#, ) and median 6= 76, (Y7,
where I'y (&, x) is the cdf and 6, (x) is the median of a Gamma (x, 1) distribution with pdf
T'(x) ~1 221 &7Z We chose the GG family because its hazard function may take many
shapes, and it contains the gamma, lognormal and Weibull as special cases. #; was chosen
to have a constant hazard, and Figure 1 displays possible forms of the hazards under models
Mo, ..., Ms, each of which was obtained by constraining (8, 7, x). 8, and %3 were chosen
to have, respectively, a wide variety of increasing and decreasing hazards. @, is lognormal

with scale parameter, gf, chosen so that its hazard first increases then levels off or decreases

slightly. In contrast, the scale parameter, 2, was chosen for the lognormal @5 to have an
increasing hazard followed by a sharp decrease.

Denote the GG parameter vector under treatment £= A or Bby ;= (8; 15 ). At each
interim analysis, the data for patient /are X,=(v;", C;,t;) where the observed time v," is the
minimum of the event time Y;and the time of right-censoring, C;=1if y,’=y; and ;=0 if

v'<Y;, and treatment ;= A or B. We assume Y;~ GG (B;; 1 ;). The likelihood at the
Ath interim analysis after enrolling /14 patients and observing X, is

ng

X(X”k‘u)A’1/’)3):Hf(ylo‘wti)CiS(}/iolqz;ti)l_Ci (8)
=1

At each interim analysis, we calculate the posterior decision criteria pg>4 (X ;) and pasg
(X g using the likelihood in (8). For priors, we assume §;;~ Gamma and 7y; xz~ Inverse
Gamma. Numerical prior hyperparameters values will be given in Section 7.1 in the context
of the simulation study. Since the prior and likelihood are non-conjugate, obtaining the
posterior probabilities needed for decision making requires time-consuming Markov chain
Monte Carlo (MCMC) methods. Thus, the use of FS is crucial in order to examine even a
small set of decision rules.

Using the current data at each analysis, we base our decision on dgi? under the optimal

model, denoted by M. To find dgiT for each @)y we use FS described in Section 3. The

dgET are then stored for later use. Specific computational details are provided in Section 6.

Since we have five sets of optimal decision rules, one set for each model, we need the ability

to switch dgiT repeatedly based on the accumulating data. Therefore, we compute the
posterior model probabilities, 7(#| X ), £=1, ..., 5, based on the current data each time
an interim decision is made to choose the most likely model empirically, assuming that the
five models are equally likely a priori.
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6. COMPUTATIONAL ALGORITHMS

To determine how well our method performs, we must simulate the trial repeatedly to obtain
its operating characteristics (OCs) under each of several different cases, varying the true
model as well as 6. The BDOGS method is implemented using the following algorithm.

Algorithm 1
The first algorithm is used to compute (d" 7, dg};T, . dSST) the optimal bounds. The
following steps are carried out for each #pin M.

Step 1: Simulate one replication of the trial, and for each interim analysis calculate
PB>AX ) and pasg(X ) using (8).

Step 2. Store the simulated data and calculated values from Step 1.

Step 3 Repeat steps 1 and 2 each 10 000 times.

Step 4. Combine the results of the 10 000 replications.

Step 5: Obtain dg}ZT using the details described in Section 3.

Step 6. Store dgiT for use in Algorithm 2.

To calculate pg>4(X ) and pa>g(X py), we implement four MCMC chains and begin
sampling with an initial burn-in of 5000 followed by an additional 30 000 samples.
Convergence is monitored using the potential scale reduction method given in [22]. We use
parallel processing for Steps 1-3 to obtain 10 000 replications within a reasonable time
frame.

In order to conduct the simulation study reported here that examines the robustness of
BDOGS and compares it with each conventional method, we employed the following
computational algorithm. In practice, one may conduct a similar robustness study to
determine how well the design will do in cases where the proportional hazards assumption is
not met, although this is not strictly necessary when applying BDOGS.

Algorithm 2

Step 1: Simulate one replication of the trial. For each interim analysis, compute
PB>AX ) and pa>g(X ) using (8) and the posterior model probability A7e| X)
given in Section 4.

Step 2. Store the simulated data and the calculated values from Step 1.
Step 3. Repeat steps 1 and 2 each 5000 times.
Step 4: Combine the results of the 5000 replications.

Step 5: For the Ath interim analysis, apply d%}f from Algorithm 1 and store the

sample size and the decision.

Step 6. Average the results from Step 5 to obtain the OCs.
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7. SIMULATION STUDIES

7.1. Group sequential design specifications

The conventional group sequential designs, used as a basis for comparison in the
simulations, were chosen because they are used routinely in practice. To compare BDOGS
to each of the three conventional methods, we specified all designs to test Ay : 6 =0 versus
Hy . 6# 0, with overall type | error rate a* = 0.05 and power 8* = 0.80 to detect

improvement §* = 3, assuming median failure times 93“:93“:12 months under Hp and

92“6:15 months under ;. For each method, a maximum of K= 5 analyses were
conducted, with up to four interim tests and one final test. For all simulated trials, we
assumed an accrual rate of 150 patients per year, simulated as a Poisson process.

For all methods, at each interim analysis, the trial could be terminated for superiority of
either treatment, or because it was unlikely that either treatment would ultimately prove to
be superior (futility). For each of the OF, Pocock, and HSD designs we obtained A, the
monitoring times and boundaries from East Version 3.0 [23]. Since the boundaries for
superiority and futility were based on spending functions and the details are complex and
lengthy, we refer the reader to the East documentation [23] Appendix A.2, page 469 under
the LD(OF), LD(PK), and Gamma(y) subsections for the OF, Pocock, and HSD boundaries,
respectively. To obtain the HSD optimal design, a custom Excel macro was written to
perform a grid search over all possible combinations of the spending function parameters
and AV. For each combination, the macro called East to calculate the expected sample sizes
under Hy and H;, and the HSD parameterization minimizing the equally weighted average
of these values was chosen.

To compare the average behaviors of the different methods, we simulated 5000 trials using
each design. Since the OF, Pocock, and HSD designs assume proportional hazards, we first
simulated event times from an exponential distribution. Since, in general, one does not know
the true hazard or if the assumption of proportional hazards is met, we also performed a
sensitivity analysis to determine how the performance of each method was affected if the
proportional hazard assumption is violated under particular alternative models. Specifically,
we generated event times from each of nine different distributions, summarized graphically
in terms of their hazards in Figure 2. These included six parametric distributions (a—f) as
well as three non-parametric distributions, denoted by PI (piecewise-increasing), PD
(piecewise-decreasing) and VS (vee-shaped). To ensure fair comparisons, we first simulated
all patients’ accrual times and event times and presented all four methods with the same
data.

Because the three standard group sequential methods do not maintain the desired power in
many cases, we provide two simulation studies. In the first simulation study, we calibrated
BDOGS to match the achieved power of the design to which it was compared. In addition,
since the three conventional designs have different interim test times and maximum sample
sizes, NV, to ensure that each comparison was fair the interim test times and the value of A/ for
BDOGS were set to match those of the conventional design to which it was compared. Thus,
for each pairing, BDOGS and the conventional method received the same data. In the second
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simulation study, since the maximum sample sizes under the conventional designs were not
adequate to maintain the desired power in all cases, we allowed all methods to have an
equal, larger maximum sample size and calibrated BDOGS to maintain the nominal power
in all cases. The stopping boundaries for the conventional methods were derived assuming a
piece-wise linear hazard.

7.2. Simulation study 1

In the first simulation study (Tables I-111), the OF method enrolled up to /= 716 patients
with tests when 211,337,463,589, and 715 events are observed, corresponding outer Z-score
test boundaries * (3.61, 2.86, 2.49, 2.16, 1.96) for superiority and inner futility boundaries
+ (0, 0.57, 1.14, 1.59, 1.96). For the Pocock method, V= 1058 with tests when 211, 423,
634, 846, and 1057 events are observed, and boundaries + (2.33, 2.33, 2.33, 2.33, 2.33) for
superiority and £ (0.33, 1.00, 1.52, 1.96, 2.33) for futility. For the HSD design, /= 680 with
tests when 211, 328, 445, 562 and 679 events are observed, and boundaries + (3.05, 2.87,
2.61, 2.33, 1.97) for superiority and + (0.13, 0.27, 0.76, 1.37, 1.97) for futility. For OF,
Pocock, and HSD, the trial is terminated for superiority of E(S) if the Z-sore is greater than
(less than) the test boundaries for superiority, and stopped for futility if the Z-score falls
within the futility boundaries. The initial look at 211 events was set to be the same for all
methods, and subsequent analyses were equally spaced between 211 events and the
maximum sample size for each given method. Thus, when comparing BDOGS to the OF,
Pocock and HSD designs, BDOGS had maximum sample sizes 716, 1058, and 680,
respectively, also matching the conventional method’s times of interim analysis, as noted
earlier. BDOGS was calibrated to have nominal power 80 per cent, with the important
exception that, in cases where the OF, Pocock, or HSD design had <80 per cent power, to
ensure comparability BDOGS was calibrated to match the observed power of the respective
design. An important difference between BDOGS and conventional designs is that BDOGS
does not use Z-score boundaries. Rather, the six BDOGS decision parameters (ay, by, cu,
a, b, q) are optimized under each of the five GG models given in Figure 1 and thus can be
calibrated to have a different power for each of the five GG models.

The first simulation study is summarized in Tables I-111. When the event times are simulated
from an exponential model, the assumptions for the OF, Pocock, and HSD designs are met
and, as expected, all four methods maintain a* and g*. In addition, the sample size
distributions are very similar for all four methods.

Since the results of the sensitivity analysis are extensive, and moreover the results for true
hazards WI (Weibull-increasing), GI (gamma-increasing), and LN1 (lognormal 1) (Figure 2)
are very similar, we only present the WI case. Similarly, because the results under the WD
(Weibull-decreasing) and LN3 (lognormal 3) models are very similar we only present the
WD case. To facilitate explanation, we provide a brief description of the key differences and
direct the reader to Tables I-I1l for complete results.

In cases where the achieved power of the conventional methods is = 0.80, BDOGS achieved

power closer to the targeted 0.80 than OF, Pocock, or HSD. Consequently, BDOGS provides
a substantial reduction in expected sample size compared to all three conventional methods,

with the largest reduction when 6= 0.
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In cases where the targeted power is not reached by the conventional methods, BDOGS
obtains a slightly higher power. Specifically, the desired power is not maintained by any of
the four methods in the PD case, and also is not maintained by OF or Pocock in the WD
case. In general, if the targeted false-positive rate is maintained, BDOGS has at least the
same power as the alternative method and has a much smaller expected sample size.

To assess the performance of BDOGS for values of & other than 0 and 3, we performed
additional simulations in which we set 64 = 12 and varied 8z over the range from 8 to 16.
We did this in the case where the true hazards were either WI or lognormal with a hazard
similar to LN2 with the specified median survival times. Figure 3 displays the probability of
selecting the best treatment and expected sample size for BDOGS and HSD. The results for
OF and Pocock are similar to those for HSD. For the Weibull case, OF, Pocock, and HSD
are all overpowered at the expense of a much larger trial, on average. For the lognormal
case, OF, Pocock, and HSD are all severely underpowered.

Decision making is most difficult, regardless of method, in cases where the hazard is
initially high and then decreases quickly and remains low, such as WD. The difficulty arises
since the information is accruing at a low rate and the majority of patients are enrolled
before a treatment difference can be detected.

7.3. Simulation study 2

In the second simulation study (Table 1V), we compared BDOGS with two designs that do
not assume a constant hazard. Specifically, we compared BDOGS with an OF design
obtained from East that assumes a piece-wise constant hazard that initially increases then
decreases. We refer to this design as OF*. The second design assumes a GG likelihood with
a single set of group sequential boundaries optimized under this model. We denote this
design by GG*. Thus, the GG* design is a conventional group sequential procedure under
one assumed general model, in contrast with the BDOGS design that adaptive selects among
five particular GG models. For comparability, all three methods enrolled up to A//= 1650
patients and the interim decision are conducted when 142, 423, 634, 946, and 1625 events
are observed. For the second simulation study, we calibrated BDOGS to have power 80 per
cent for all cases. This was in contrast with simulation study 1, where for each comparison
the power of BDOGS was calibrated to match that of the design to which it was compared.

For the priors on the GG parameters (8, 7, ) in (7) used in the BDOGS design, for both j=
Aand Bwe assumed B;~ Gamma(0.5, 2), which has mean 1 and variance 2, 7;~ Inverse
Gamma(2.03, 17.83) which has mean 17.312 and variance 10 000, and «;~ Inverse
Gamma(2.0001, 1.0001) which has mean 1 and variance 10 000. The mean of 7;was chosen
to give median failure time 12 months if the data were exponentially distributed. The means
of Byand x;were set equal to 1 so that, if these parameters were replaced by their mean
values, then the likelihood would be exponential with median 12 months. If the data were
exponentially distributed, the information in this prior would correspond to observing two
patients.

Since the results for true hazard WI, GlI, or LN1 (Figure 2) in the second simulation study
are very similar, we only present the W1 case; similarly, because the results under the WD
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and LN3 models are very similar we only present the WD case. The results are summarized
in Table 1V in terms of the achieved type | error, power, and sample size distribution.

To facilitate explanation, we provide a brief description of the key differences and direct the
reader to Table IV for complete results. By assuming a decreasing hazard, the maximum
sample size was large enough for BDOGS to maintain the desired power in all cases.
Because BDOGS adaptively switches between decision boundaries, it does not inflate the
expected sample sizes in cases where a difference can be detected between the treatments
early in the trial. In general, the achieved power figure for BDOGS is closer to the desired
level, thus resulting in a substantially smaller trial. In some cases, the reduction in expected
sample size is greater than 60 per cent when compare to OF*. The achieved power figure
with the GG* design is typically lower than the desired power, illustrating the benefit of
BDOGS’s adaptively model selection.

7.4. lllustrative trial

To illustrate how BDOGS works in practice, we simulated one data set in the case where the
true hazard is Wl and 6= &* = 3 months, and applied both BDOGS and OF to the simulated
data. The information needed for decision making by OF consists of the Z-score and the

boundaries given in Section 7.1, while BDOGS requires pa>g(X ;) and pg>a(X ) for k=1,

5, (A9 T, afs T, dSET), shown in Figure 4, and the interim posterior model
probabilities of (1, ..., Ms). In the simulated data set, at the first evaluation, the Z-score
was 2.9, pas>g(X ) = 0.005, pg>a(Xpy) = 0.51>0.48 = Ay(X 5y au, bu, cu) and the interim
posterior probability of #, was 0.98. Since 0<2.9<3.61, OF would continue the trial to the
second analysis and thus enroll more patients. However, based on the observed data,
BDOGS would use the optimal boundaries under #,, and thus would stop the trial at the
first analysis and conclude that Bis superior to A. If the constant hazard model had been
most likely then BDOGS, like OF, would have continued to the second analysis. Thus, the
BDOGS adaptive model selection played a critical role in making the correct decision.

8. DISCUSSION

We have presented a Bayesian adaptive decision-theoretic approach to designing a
randomized group sequential clinical trial with time-to-event outcomes. An advantage of our
computational procedure for finding optimal decision boundaries, when compared with the
FS method of Carlin et a/. [19], is that our approach does not increase in complexity with the
number of interim analyses. We use Bayesian model selection to adaptively choose decision
boundaries during the trial, since the optimal boundaries depend on the selected model. A
critical component contributing to the performance of our method is the fact that, rather than
using historical data to pick a single model at the start of the trial, we use the accumulating
data to continually update our choice of the ‘best’ model. Our simulations show that,
compared with standard group sequential designs, on average BDOGS provides a smaller
trial and does a better job of maintaining the targeted power.

One important question is how often the model selection algorithm selects the correct model
at the early evaluations. We found that, under most models, BDOGS had an 80-90 per cent
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chance of selecting the correct model at the initial evaluation. In the cases with a decreasing
hazard, the model selection was only correct approximately 50 per cent of the time at the
first evaluation. However, in the decreasing hazards case pa>g(X ;) and pg-a(X ) typically
were both large for the first three evaluations, so that the trial would continue under all
models.

In our implementation of the BDOGS method, we included J= 5 possible different models,
characterized in terms of their hazards. Initially, we investigated the method’s behavior for
several larger values of J, and evaluated the OPs of the resulting designs. We removed
models that resulted in optimal boundaries that were very similar to other models and then
examined the OPs of the new design with a reduced J. Once the five models that we used
here were determined, we found that the performance of BDOGS was substantially degraded
when J<5. However, in practice, if substantial information is available about possible
hazards one could use this information in building the set of potential models.

Although we have assumed that the event times follow a GG distribution, for the three cases
that we examined where the true distribution follows a piece-wise hazard, including PI, PD,
and VS, BDOGS was still superior to conventional methods. We also conducted simulations,
not shown here, under many other distributions not in the GG family, and the results were
very similar to those presented here. These simulations indicate that BDOGS is robust.

In our simulations, we formulated BDOGS using large prior variances so that the
accumulating data would quickly overwhelm the prior. To assess the effects of a more
informative prior, we multiplied each prior variance by 0.001 and reran all of the
simulations. The results were very similar to what we have presented here.
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