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SUMMARY

This article presents a new approach to the problem of deriving an optimal design for a 

randomized group sequential clinical trial based on right-censored event times. We are motivated 

by the fact that, if the proportional hazards assumption is not met, then a conventional design’s 

actual power can differ substantially from its nominal value. We combine Bayesian decision 

theory, Bayesian model selection and forward simulation (FS) to obtain a group sequential 

procedure that maintains targeted false-positive rate and power, under a wide range of true event 

time distributions. At each interim analysis, the method adaptively chooses the most likely model 

and then applies the decision bounds that are optimal under the chosen model. A simulation study 

comparing this design with three conventional designs shows that, over a wide range of 

distributions, our proposed method performs at least as well as each conventional design, and in 

many cases it provides a much smaller trial.
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1. INTRODUCTION

The use of group sequential designs has become routine in phase III clinical trials. Many 

authors have provided general group sequential methods [1–3] and approximately optimal 

group sequential procedures [4–9]. Each of these group sequential designs is derived by 

assuming a sequence of normally distributed test statistics with unknown mean and known 

variance, with proportional hazards usually assumed to accommodate right-censored event 

times. While these designs are used routinely in practice, if the proportional hazards 

assumption is not met, then the design’s actual power may differ substantially from its 

nominal value. For example, if the true event time distribution is lognormal with a hazard 

that initially increases and then decreases (Figure 1(d)), then the actual power achieved by 

the O’Brien and Fleming (OF) [1], Pocock [2] and optimal Hwang, Shih and De Cani (HSD) 

[5] designs with nominal power 80 per cent may be as low as 20–40 per cent (Tables I–III). 
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Thus, the trial would be unlikely to identify a true treatment advance. In contrast, if the true 

event time distribution is Weibull with an increasing hazard (Figure 1(a)), then the actual 

power achieved by the OF, Pocock and HSD designs with nominal power 80 per cent may be 

as high as 99 per cent (Tables I–III). In this case, these designs each enroll 33 per cent to 50 

per cent more patients than the optimal Bayesian design that we will present here.

Although Bayesian methods for randomized clinical trials have received increasing attention 

in recent years [10–12], the use of Bayesian rules in large-scale trials remains controversial. 

A central issue when using Bayesian methods in a group sequential setting is that of 

controlling the overall false-positive error rate, especially for registration trials. Spiegelhalter 

et al. [11], Pocock and Hughes [13] and many others feel that controlling the false-positive 

rate is crucial, and this is the policy of regulatory agencies such as the U.S. food and drug 

administration. We share this viewpoint, since any method that does not control type I error 

has little chance of being widely adopted.

In this paper, we present a Bayesian decision-theoretic approach to group sequential clinical 

trials, with rules for concluding either superiority or futility, that controls the overall false-

positive rate and power. We focus on two-sided tests for two-arm trials with time-to-event 

outcomes, in settings where little prior information is available about the shapes of the 

hazard functions. A typical approach used in practice is to assume proportional hazards and 

employ a conventional group sequential design. In contrast, our proposed method requires 

one to first specify a small set of possible models for the event time distribution. Forward 

simulation (FS) is used to obtain optimal decision boundaries under each possible model. 

Each set of decision boundaries is optimal, in that it minimizes the equally weighted average 

of the null and alternative expected sample sizes under the assumed model, subject to 

conventional overall false-positive rate and power constraints. Since the true model is not 

known, and we do not wish to base our decisions on a single model chosen from prior data 

that may turn out to be suboptimal, we utilize the data at each interim analysis by applying 

Bayesian model selection [14] to adaptively choose the model having the largest posterior 

probability. The interim decision is then based on the optimal boundaries under the chosen 

model. Because the model having the largest posterior probability may change as the data 

accumulate during the trial, the boundaries used for a given interim decision may differ from 

those used at previous decisions. By combining Bayesian decision theory and Bayesian 

model selection in this way, we are able to maintain the specified overall false-positive rate 

and power under a broad set of possible models. Consequently, in many cases our method 

enrolls substantially fewer patients than conventional designs typically used in practice. 

Because the optimal boundaries are chosen for each model before the trial and stored, and 

the model is optimized adaptively during the trial, we call the method Bayesian doubly 

optimal group sequential (BDOGS). To assess the design’s performance, we provide a 

simulation study comparing BDOGS to the OF, Pocock and HSD designs. We compare each 

method with BDOGS under a proportional hazards model, and also under several alternative 

models where this assumption is not met. Our simulations show that BDOGS performs at 

least as well as the OF, Pocock, and HSD designs, and in many cases it provides a much 

smaller trial.

Wathen and Thall Page 2

Stat Med. Author manuscript; available in PMC 2017 September 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The remainder of the article is organized as follows. In Section 2, we provide the general 

decision-theoretic framework. Section 3 develops the FS procedure for obtaining optimal 

bounds and presents the decision rules. Section 4 describes the model selection algorithm 

used at each interim analysis. Section 5 presents the BDOGS procedure, with computational 

algorithms given in Section 6. Section 7 presents the results of the simulation study, and we 

conclude with a discussion in Section 8.

2. DECISION-THEORETIC FRAMEWORK

We consider trials that will be monitored group sequentially with up to K analyses with a 

maximum of N patients randomized fairly between two treatments, A and B. Denote the 

median event times by θA and θB, with δ = θB − θA and θ = (θA, θB). The goal of the trial is 

to test H0 : δ = 0 versus H1 : δ ≠ 0. To facilitate comparison to conventional group sequential 

designs and promote wide acceptability of our method, we restrict attention to designs with a 

maximum type I error rate α* under H0 and minimum power β* when δ = δ*.

Our notation and decision-theoretic structure will be similar to Berger [15]. Denote the 

observed data of the first nk patients enrolled by the kth analysis by Xnk = (X1, X2, …, Xnk) 

for k = 1, …, K. We refer to a decision made during the trial as an action, denoted by a, with 

 the set of possible actions, the action space. At the kth interim decision, the utility 
function, u(θ, ak, Xnk), is the gain from taking action ak after observing data Xnk if θ is the 

true parameter. A decision rule, ϕnk (Xnk), is a function from nk, the sample space of Xnk, 

into , defining the action to be taken when Xnk is observed, e.g. claim superiority of one 

treatment over the other. A stopping rule is a function τnk(Xnk) = 1 if the trial is terminated, 

and τnk (Xnk) = 0 if the trial is continued. Since N is the maximum sample size, τN (XN) = 1 

for all possible XN. The decision at the kth analysis is dk = {τnk (Xnk), ϕnk (Xnk)}, and dk = 

(d1, d2, …, dk) is a sequential decision procedure. The random sample size when the trial is 

terminated is Z = min{nk≥0: τnk (Xnk) = 1} and we denote by Ψnk the set of observations 

for which the trial stops at the kth analysis and Z = nk. Thus, Ψnk is the set of all Xnk ∈ nk 

such that τnk (Xnk) = 1 and τni (Xni) = 0 for all i <k.

We define the utility of dK to be u(θ, ϕZ(XZ), XZ) = −Z, an approach similar to that of Lewis 

and Berry [16]. Since, in general, we do not know the true utility of dk, we estimate the 

expected utility, U(π, dK), with respect to the posterior distribution, π, on Θ. As a 

computational convenience for calculating U(π, dK), we assume that the prior of θ satisfies 

the conditions Pr(θA = θB) = Pr(θB = θA + δ*) = 0.5, which says that the null and the 

targeted alternatives are equally likely. This prior is a practical compromise between what is 

reasonable and what will facilitate computation of the expected utility while yielding a 

design that satisfies the false-positive rate and power constraints. The expected utility of a 

sequential decision procedure dk is
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(1)

The sequential decision process is computationally complex since it requires repeated 

calculation of U(π, dK) subject to the constraints that dK must have type I error, α, and 

power, β, satisfying α≤α* and β≥β*. The following section explains how the computation of 

U(π, dK) may be carried out efficiently to facilitate practical application.

3. OBTAINING OPTIMAL BOUNDS

Computational difficulties in implementing backward induction [17] impose severe practical 

limitations on Bayesian optimal designs. Consequently, most Bayesian optimal designs, 

using backward induction, assume simple models [16, 18]. To deal with this problem, 

Carlin, Kadane, and Gelfand (CKG) [19] proposed FS as a practical alternative to backward 

induction. With FS, an optimal design is obtained by first simulating the trial repeatedly and 

storing the results. A given sequential decision procedure, dk, is applied to each simulated 

data set, and expected utilities using dk are obtained empirically from the simulated data. 

Since the simulation results have been stored, different dk may be evaluated and a suitable 

search algorithm can be used to find the dk that maximizes U(π, dK). This facilitates 

computation, since storing the simulated data and the results of any time-consuming 

calculations does away with the need to resimulate the trial. Thus, one needs to apply each 

dk to obtain U(π, dK). CKG use FS to obtain the 2K − 1 boundary points of their decision 

procedure to maximize the expected utility. In the case considered by CKG, the complexity 

of finding the optimal dK grows linearly with K. For a fully sequential or group sequential 

trial with large K, however, FS may become very difficult, if not impossible.

To deal with this computational problem, we propose a decision procedure that uses FS but 

does not depend on K by defining the decision boundaries in terms of two monotone 

functions, each having three parameters. Let aU, bU, aL, bL≥0 and cU, cL>0 be decision 

boundary parameters and let N + (Xnk) denote the number of treatment failures (events) in 

Xnk. We define the boundary functions
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(2)

with PL(Xnk, aL, bL, cL)≤PU(Xnk, aU, bU, cU). For K≥4, γ = (aU, bU, cU, aL, bL, cL) has 

smaller dimension than the 2K − 1 boundary points of CKG. In these boundary functions, aU 

and aL define the initial decision boundaries before any patients are enrolled, bU and bL 

determine the final boundaries when all events have been observed, and cU and cL determine 

the rate at which PU decreases and PL increases. To ensure that PL≤PU, for a given γ and k′, 

if  then for all k≥k′ we set 

.

Denote the Bayesian decision criteria by pB>A (Xnk) = Pr(δ>δ* | Xnk) and pA>B (Xnk) = 

Pr(δ<−δ* | Xnk). Using these criteria and the boundary functions in (2), the trial is conducted 

as follows:

1. Superiority: (a) If pB>A (Xnk)>PU(Xnk, aU, bU, cU)>pA>B (Xnk), then stop the 

trial and select B; that is, dk = (1, B). (b) If pA>B(Xnk)>PU(Xnk, aU, bU, 

cU)>pB>A (Xnk), then stop the trial and select A; that is, dk = (1, A).

2. Futility: If max{pB>A (Xnk), pA>B (Xnk)}<PL(Xnk, aL, bL, cL), then stop the trial 

and conclude that neither treatment is superior to the other; that is, dk = (1, 

Neither).

3. Continuation: If either (a) PL(Xnk, aL, bL, cL)≤pB>A (Xnk), pA>B (Xnk)≤PU(Xnk, 

aU, bU, cU) or (b) min{pA>B (Xnk), pB>A(Xnk)}≥PU(Xnk, aU, bU, cU), then 

continue enrolling patients; that is, dk = (0, C).

Part (b) of rule 3 is included to deal with cases where var(δ | Xnk) is large and both pA>B 

(Xnk) and pB>A (Xnk) are large, although in practice both values being ≥PU occurs rarely. 

Thus, from the decision rules above, ϕnk(Xnk) = A, B, continue or neither, and τnk (Xnk) = 1 

if the trial is terminated, 0 if continued. At the final analysis, if the superiority rule does not 

apply for either treatment then we conclude that the treatments are equivalent.

Together, γ and rules 1–3 determine dK. Denote the optimal decision rule by  and let 

γOPT be the corresponding design parameter vector. Note that  maximizes the expected 

utility. To find γOPT, we first simulate the trial 10 000 times under each of the two cases θB 

= θA and θB = θA + δ*. For each simulated trial, we generate the accrual times and 

outcomes for the maximum N patients. At each interim analysis in each simulated trial, we 

calculate pB>A (Xnk) and pA>B (Xnk). The results of these calculations and all patients’ data 

are stored for later use. To calculate the expected utility U(π, dK), we apply dK to each 

simulated data set and obtain the expected sample size Na (θ, dK) for each of the cases θB = 
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θA and θB = θA + δ*. The expected utility is the negative of the average of the expected 

samples sizes under θA = θB and θB = θA + δ. If the resulting design has α≤α* and β≥β*, 

then the expected utility is the sample mean of the utilities from the 10 000 simulated trials; 

otherwise we exclude dK from the set of possible decision procedures. If the expected utility 

using γ is not the maximum, then another γ is tried. Because pB>A(Xnk), pA>B(Xnk), and the 

simulated data sets have been stored and do not depend on γ, there is no need to resimulate 

the trial or repeat any time-consuming calculations. Therefore, in the search for γOPT, we 

only need to apply the sequential decision procedures using each proposed γ and obtain the 

expected utility, which is extremely fast. By using FS, we have the ability to search over a 

very large set of γ in a relatively short amount of time. To find γOPT, we begin with a coarse 

grid of γ and refine the grid around potential γOPT. Using this general procedure, the 

particular method used to find γOPT is not critical, and any efficient grid search algorithm 

can be used.

4. MODEL SELECTION

Bayesian model selection and model averaging have been used extensively in many settings 

[20, 21]. However, Bayesian model selection has not been used in clinical trial design. We 

use posterior model probabilities based on the current data each time an interim decision is 

made to choose the most likely model empirically. Denote the set of J models under 

consideration, by ℳ = (ℳ1, ℳ2, …, ℳJ). To simplify notation, we temporarily suppress 

treatment information and all subscripts on X. The posterior probability of ℳℓ for ℓ = 1, 2, 

…, J is

(3)

where f (ℳℓ) is the prior probability of ℳℓ, f (X | ℳℓ) = ∫ f (X | ψℓ, ℳℓ)π(ψℓ | ℳℓ)d ψℓ is the 

marginal likelihood, ψℓ is the parameter vector, and π (ψℓ | ℳℓ) is the prior density of ψℓ 
under ℳℓ.

Since computing f (X | ℳℓ) can be very time-consuming, especially if the dimension of each 

ψℓ is large, we use an approximation of the Bayes factor (BF) given in Raftery [14] to 

compute the posterior probability of each ℳℓ given by (3). The BF for model ℳℓ versus ℳ1 is 

the ratio of the posterior to prior odds,

(4)

with B1, 1 = 1. Let ℒℓ (X | ψℓ, ℳℓ) denote the likelihood, 

, n the number of observations,  the 

MLE of ψℓ under ℳℓ, and pℓ = dim(ψℓ) Raftery [14] gives the approximation
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(5)

where the notation an ≈ bn means that limn→∞ (an/bn) = 1. To compute f (ℳℓ | X), we 

express the posterior model probabilities in (3) in terms of BFs, and then exploit the method 

of Raftery [14] to obtain Bℓ, 1 for ℓ = 2, 3, …, J. Denote the prior odds ξℓ = f (ℳℓ)/f (ℳ1) with 

ξ1 = 1. Combining (3) and (4), the posterior probability of ℳℓ is

(6)

Substituting (5) into (6) gives an approximate value of f (ℳℓ | X) for ℓ = 2, …, J. The main 

computational requirements are obtaining the MLEs of ψ1, ψ2, …, ψM under their 

respective models. While Raftery provides other approximations that are more accurate, 

since our method requires model selection to be done repeatedly during simulation, we 

require a fast method for calculating the posterior model probabilities in (6). We thus use the 

slightly less accurate approximation in (5) to gain speed.

5. THE BDOGS DESIGN

In this section, we combine the methods described in Sections 2–4 to obtain a BDOGS 

design. Intuitively, it may seem that a flexible model for the event time distribution should 

give a robust design. However, our preliminary simulations showed that this is not the case, 

since  depends heavily on the true model, specifically the shape of the hazard. 

Therefore, rather than finding a single  under one highly flexible model, we find 

for each of J prespecified models (hazards), thus deriving J sets of optimal decision rules 

( ), where  is the optimal sequential decision procedure under 

ℳℓ for ℓ = 1, 2, …, J. Since an essential feature of our procedure is its ability to switch 

decision boundaries based on repeated adaptive model selection, this makes the method 

inherently robust (Section 7).

Theoretically, the optimal boundary should be computed at every interim analysis given the 

current data. However, this computation is impractical and thus we combine FS and model 

selection to obtain J sets of optimal decisions as an approximation. An important practical 

requirement is that J must be small enough to allow the necessary computations to be carried 

out within a reasonable time frame to facilitate application. However, ℳ must include a 

broad array of different hazard functions. After examining the behavior of our method using 

a wide variety of possible ℳ with varying J, we chose J = 5 specific models from the three-

parameter-generalized gamma (GG) family, selected in terms of the shapes of their hazards. 

The GG distribution is characterized by pdf
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(7)

This distribution has survival function S(y) = 1 − ΓI ({y/η}β, κ) and median θ = ηθI (κ)1/β, 

where ΓI (a, κ) is the cdf and θI (κ) is the median of a Gamma (κ, 1) distribution with pdf 

Γ(κ) −1 zκ−1 e−z. We chose the GG family because its hazard function may take many 

shapes, and it contains the gamma, lognormal and Weibull as special cases. ℳ1 was chosen 

to have a constant hazard, and Figure 1 displays possible forms of the hazards under models 

ℳ2, …, ℳ5, each of which was obtained by constraining (β, η, κ). ℳ2 and ℳ3 were chosen 

to have, respectively, a wide variety of increasing and decreasing hazards. ℳ4 is lognormal 

with scale parameter, , chosen so that its hazard first increases then levels off or decreases 

slightly. In contrast, the scale parameter, , was chosen for the lognormal ℳ5 to have an 

increasing hazard followed by a sharp decrease.

Denote the GG parameter vector under treatment t = A or B by ψt = (βt, ηt, κt). At each 

interim analysis, the data for patient i are  where the observed time  is the 

minimum of the event time Yi and the time of right-censoring, Ci = 1 if  and Ci = 0 if 

, and treatment ti = A or B. We assume Yi ~ GG (βti, ηti, κti). The likelihood at the 

kth interim analysis after enrolling nk patients and observing Xnk is

(8)

At each interim analysis, we calculate the posterior decision criteria pB>A (Xnk) and pA>B 

(Xnk) using the likelihood in (8). For priors, we assume βti ~ Gamma and ηti, κti ~ Inverse 

Gamma. Numerical prior hyperparameters values will be given in Section 7.1 in the context 

of the simulation study. Since the prior and likelihood are non-conjugate, obtaining the 

posterior probabilities needed for decision making requires time-consuming Markov chain 

Monte Carlo (MCMC) methods. Thus, the use of FS is crucial in order to examine even a 

small set of decision rules.

Using the current data at each analysis, we base our decision on  under the optimal 

model, denoted by ℳℓ*. To find  for each ℳℓ, we use FS described in Section 3. The 

 are then stored for later use. Specific computational details are provided in Section 6. 

Since we have five sets of optimal decision rules, one set for each model, we need the ability 

to switch  repeatedly based on the accumulating data. Therefore, we compute the 

posterior model probabilities, f (ℳℓ | Xnk), ℓ = 1, …, 5, based on the current data each time 

an interim decision is made to choose the most likely model empirically, assuming that the 

five models are equally likely a priori.
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6. COMPUTATIONAL ALGORITHMS

To determine how well our method performs, we must simulate the trial repeatedly to obtain 

its operating characteristics (OCs) under each of several different cases, varying the true 

model as well as δ. The BDOGS method is implemented using the following algorithm.

Algorithm 1

The first algorithm is used to compute ( ) the optimal bounds. The 

following steps are carried out for each ℳℓ in ℳ.

Step 1: Simulate one replication of the trial, and for each interim analysis calculate 

pB>A(Xnk) and pA>B(Xnk) using (8).

Step 2: Store the simulated data and calculated values from Step 1.

Step 3: Repeat steps 1 and 2 each 10 000 times.

Step 4: Combine the results of the 10 000 replications.

Step 5: Obtain  using the details described in Section 3.

Step 6: Store  for use in Algorithm 2.

To calculate pB>A(Xnk) and pA>B(Xnk), we implement four MCMC chains and begin 

sampling with an initial burn-in of 5000 followed by an additional 30 000 samples. 

Convergence is monitored using the potential scale reduction method given in [22]. We use 

parallel processing for Steps 1–3 to obtain 10 000 replications within a reasonable time 

frame.

In order to conduct the simulation study reported here that examines the robustness of 

BDOGS and compares it with each conventional method, we employed the following 

computational algorithm. In practice, one may conduct a similar robustness study to 

determine how well the design will do in cases where the proportional hazards assumption is 

not met, although this is not strictly necessary when applying BDOGS.

Algorithm 2

Step 1: Simulate one replication of the trial. For each interim analysis, compute 

pB>A(Xnk) and pA>B(Xnk) using (8) and the posterior model probability f(ℳℓ | X) 

given in Section 4.

Step 2: Store the simulated data and the calculated values from Step 1.

Step 3: Repeat steps 1 and 2 each 5000 times.

Step 4: Combine the results of the 5000 replications.

Step 5: For the kth interim analysis, apply  from Algorithm 1 and store the 

sample size and the decision.

Step 6: Average the results from Step 5 to obtain the OCs.
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7. SIMULATION STUDIES

7.1. Group sequential design specifications

The conventional group sequential designs, used as a basis for comparison in the 

simulations, were chosen because they are used routinely in practice. To compare BDOGS 

to each of the three conventional methods, we specified all designs to test H0 : δ = 0 versus 

H1 : δ ≠ 0, with overall type I error rate α* = 0.05 and power β* = 0.80 to detect 

improvement δ* = 3, assuming median failure times  under H0 and 

 under H1. For each method, a maximum of K = 5 analyses were 

conducted, with up to four interim tests and one final test. For all simulated trials, we 

assumed an accrual rate of 150 patients per year, simulated as a Poisson process.

For all methods, at each interim analysis, the trial could be terminated for superiority of 

either treatment, or because it was unlikely that either treatment would ultimately prove to 

be superior (futility). For each of the OF, Pocock, and HSD designs we obtained N, the 

monitoring times and boundaries from East Version 3.0 [23]. Since the boundaries for 

superiority and futility were based on spending functions and the details are complex and 

lengthy, we refer the reader to the East documentation [23] Appendix A.2, page 469 under 

the LD(OF), LD(PK), and Gamma(γ) subsections for the OF, Pocock, and HSD boundaries, 

respectively. To obtain the HSD optimal design, a custom Excel macro was written to 

perform a grid search over all possible combinations of the spending function parameters 

and N. For each combination, the macro called East to calculate the expected sample sizes 

under H0 and H1, and the HSD parameterization minimizing the equally weighted average 

of these values was chosen.

To compare the average behaviors of the different methods, we simulated 5000 trials using 

each design. Since the OF, Pocock, and HSD designs assume proportional hazards, we first 

simulated event times from an exponential distribution. Since, in general, one does not know 

the true hazard or if the assumption of proportional hazards is met, we also performed a 

sensitivity analysis to determine how the performance of each method was affected if the 

proportional hazard assumption is violated under particular alternative models. Specifically, 

we generated event times from each of nine different distributions, summarized graphically 

in terms of their hazards in Figure 2. These included six parametric distributions (a–f) as 

well as three non-parametric distributions, denoted by PI (piecewise-increasing), PD 

(piecewise-decreasing) and VS (vee-shaped). To ensure fair comparisons, we first simulated 

all patients’ accrual times and event times and presented all four methods with the same 

data.

Because the three standard group sequential methods do not maintain the desired power in 

many cases, we provide two simulation studies. In the first simulation study, we calibrated 

BDOGS to match the achieved power of the design to which it was compared. In addition, 

since the three conventional designs have different interim test times and maximum sample 

sizes, N, to ensure that each comparison was fair the interim test times and the value of N for 

BDOGS were set to match those of the conventional design to which it was compared. Thus, 

for each pairing, BDOGS and the conventional method received the same data. In the second 
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simulation study, since the maximum sample sizes under the conventional designs were not 

adequate to maintain the desired power in all cases, we allowed all methods to have an 

equal, larger maximum sample size and calibrated BDOGS to maintain the nominal power 

in all cases. The stopping boundaries for the conventional methods were derived assuming a 

piece-wise linear hazard.

7.2. Simulation study 1

In the first simulation study (Tables I–III), the OF method enrolled up to N = 716 patients 

with tests when 211,337,463,589, and 715 events are observed, corresponding outer Z-score 

test boundaries ± (3.61, 2.86, 2.49, 2.16, 1.96) for superiority and inner futility boundaries 

± (0, 0.57, 1.14, 1.59, 1.96). For the Pocock method, N = 1058 with tests when 211, 423, 

634, 846, and 1057 events are observed, and boundaries ± (2.33, 2.33, 2.33, 2.33, 2.33) for 

superiority and ± (0.33, 1.00, 1.52, 1.96, 2.33) for futility. For the HSD design, N = 680 with 

tests when 211, 328, 445, 562 and 679 events are observed, and boundaries ± (3.05, 2.87, 

2.61, 2.33, 1.97) for superiority and ± (0.13, 0.27, 0.76, 1.37, 1.97) for futility. For OF, 

Pocock, and HSD, the trial is terminated for superiority of E(S) if the Z-sore is greater than 

(less than) the test boundaries for superiority, and stopped for futility if the Z-score falls 

within the futility boundaries. The initial look at 211 events was set to be the same for all 

methods, and subsequent analyses were equally spaced between 211 events and the 

maximum sample size for each given method. Thus, when comparing BDOGS to the OF, 

Pocock and HSD designs, BDOGS had maximum sample sizes 716, 1058, and 680, 

respectively, also matching the conventional method’s times of interim analysis, as noted 

earlier. BDOGS was calibrated to have nominal power 80 per cent, with the important 

exception that, in cases where the OF, Pocock, or HSD design had <80 per cent power, to 

ensure comparability BDOGS was calibrated to match the observed power of the respective 

design. An important difference between BDOGS and conventional designs is that BDOGS 

does not use Z-score boundaries. Rather, the six BDOGS decision parameters (aU, bU, cU, 

aL, bL, cL) are optimized under each of the five GG models given in Figure 1 and thus can be 

calibrated to have a different power for each of the five GG models.

The first simulation study is summarized in Tables I–III. When the event times are simulated 

from an exponential model, the assumptions for the OF, Pocock, and HSD designs are met 

and, as expected, all four methods maintain α* and β*. In addition, the sample size 

distributions are very similar for all four methods.

Since the results of the sensitivity analysis are extensive, and moreover the results for true 

hazards WI (Weibull-increasing), GI (gamma-increasing), and LN1 (lognormal 1) (Figure 2) 

are very similar, we only present the WI case. Similarly, because the results under the WD 

(Weibull-decreasing) and LN3 (lognormal 3) models are very similar we only present the 

WD case. To facilitate explanation, we provide a brief description of the key differences and 

direct the reader to Tables I–III for complete results.

In cases where the achieved power of the conventional methods is ≥ 0.80, BDOGS achieved 

power closer to the targeted 0.80 than OF, Pocock, or HSD. Consequently, BDOGS provides 

a substantial reduction in expected sample size compared to all three conventional methods, 

with the largest reduction when δ = 0.

Wathen and Thall Page 11

Stat Med. Author manuscript; available in PMC 2017 September 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In cases where the targeted power is not reached by the conventional methods, BDOGS 

obtains a slightly higher power. Specifically, the desired power is not maintained by any of 

the four methods in the PD case, and also is not maintained by OF or Pocock in the WD 

case. In general, if the targeted false-positive rate is maintained, BDOGS has at least the 

same power as the alternative method and has a much smaller expected sample size.

To assess the performance of BDOGS for values of δ other than 0 and 3, we performed 

additional simulations in which we set θA = 12 and varied θB over the range from 8 to 16. 

We did this in the case where the true hazards were either WI or lognormal with a hazard 

similar to LN2 with the specified median survival times. Figure 3 displays the probability of 

selecting the best treatment and expected sample size for BDOGS and HSD. The results for 

OF and Pocock are similar to those for HSD. For the Weibull case, OF, Pocock, and HSD 

are all overpowered at the expense of a much larger trial, on average. For the lognormal 

case, OF, Pocock, and HSD are all severely underpowered.

Decision making is most difficult, regardless of method, in cases where the hazard is 

initially high and then decreases quickly and remains low, such as WD. The difficulty arises 

since the information is accruing at a low rate and the majority of patients are enrolled 

before a treatment difference can be detected.

7.3. Simulation study 2

In the second simulation study (Table IV), we compared BDOGS with two designs that do 

not assume a constant hazard. Specifically, we compared BDOGS with an OF design 

obtained from East that assumes a piece-wise constant hazard that initially increases then 

decreases. We refer to this design as OF*. The second design assumes a GG likelihood with 

a single set of group sequential boundaries optimized under this model. We denote this 

design by GG*. Thus, the GG* design is a conventional group sequential procedure under 

one assumed general model, in contrast with the BDOGS design that adaptive selects among 

five particular GG models. For comparability, all three methods enrolled up to N = 1650 

patients and the interim decision are conducted when 142, 423, 634, 946, and 1625 events 

are observed. For the second simulation study, we calibrated BDOGS to have power 80 per 

cent for all cases. This was in contrast with simulation study 1, where for each comparison 

the power of BDOGS was calibrated to match that of the design to which it was compared.

For the priors on the GG parameters (β, η, κ) in (7) used in the BDOGS design, for both j = 

A and B we assumed βj ~ Gamma(0.5, 2), which has mean 1 and variance 2, ηj ~ Inverse 

Gamma(2.03, 17.83) which has mean 17.312 and variance 10 000, and κj ~ Inverse 

Gamma(2.0001, 1.0001) which has mean 1 and variance 10 000. The mean of ηj was chosen 

to give median failure time 12 months if the data were exponentially distributed. The means 

of βj and κj were set equal to 1 so that, if these parameters were replaced by their mean 

values, then the likelihood would be exponential with median 12 months. If the data were 

exponentially distributed, the information in this prior would correspond to observing two 

patients.

Since the results for true hazard WI, GI, or LN1 (Figure 2) in the second simulation study 

are very similar, we only present the WI case; similarly, because the results under the WD 
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and LN3 models are very similar we only present the WD case. The results are summarized 

in Table IV in terms of the achieved type I error, power, and sample size distribution.

To facilitate explanation, we provide a brief description of the key differences and direct the 

reader to Table IV for complete results. By assuming a decreasing hazard, the maximum 

sample size was large enough for BDOGS to maintain the desired power in all cases. 

Because BDOGS adaptively switches between decision boundaries, it does not inflate the 

expected sample sizes in cases where a difference can be detected between the treatments 

early in the trial. In general, the achieved power figure for BDOGS is closer to the desired 

level, thus resulting in a substantially smaller trial. In some cases, the reduction in expected 

sample size is greater than 60 per cent when compare to OF*. The achieved power figure 

with the GG* design is typically lower than the desired power, illustrating the benefit of 

BDOGS’s adaptively model selection.

7.4. Illustrative trial

To illustrate how BDOGS works in practice, we simulated one data set in the case where the 

true hazard is WI and δ = δ* = 3 months, and applied both BDOGS and OF to the simulated 

data. The information needed for decision making by OF consists of the Z-score and the 

boundaries given in Section 7.1, while BDOGS requires pA>B(Xnk) and pB>A(Xnk) for k = 1, 

…, 5, ( ), shown in Figure 4, and the interim posterior model 

probabilities of (ℳ1, …, ℳ5). In the simulated data set, at the first evaluation, the Z-score 

was 2.9, pA>B(Xnk) = 0.005, pB>A(Xnk) = 0.51>0.48 = PU(Xnk, aU, bU, cU) and the interim 

posterior probability of ℳ2 was 0.98. Since 0<2.9<3.61, OF would continue the trial to the 

second analysis and thus enroll more patients. However, based on the observed data, 

BDOGS would use the optimal boundaries under ℳ2, and thus would stop the trial at the 

first analysis and conclude that B is superior to A. If the constant hazard model had been 

most likely then BDOGS, like OF, would have continued to the second analysis. Thus, the 

BDOGS adaptive model selection played a critical role in making the correct decision.

8. DISCUSSION

We have presented a Bayesian adaptive decision-theoretic approach to designing a 

randomized group sequential clinical trial with time-to-event outcomes. An advantage of our 

computational procedure for finding optimal decision boundaries, when compared with the 

FS method of Carlin et al. [19], is that our approach does not increase in complexity with the 

number of interim analyses. We use Bayesian model selection to adaptively choose decision 

boundaries during the trial, since the optimal boundaries depend on the selected model. A 

critical component contributing to the performance of our method is the fact that, rather than 

using historical data to pick a single model at the start of the trial, we use the accumulating 

data to continually update our choice of the ‘best’ model. Our simulations show that, 

compared with standard group sequential designs, on average BDOGS provides a smaller 

trial and does a better job of maintaining the targeted power.

One important question is how often the model selection algorithm selects the correct model 

at the early evaluations. We found that, under most models, BDOGS had an 80–90 per cent 
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chance of selecting the correct model at the initial evaluation. In the cases with a decreasing 

hazard, the model selection was only correct approximately 50 per cent of the time at the 

first evaluation. However, in the decreasing hazards case pA>B(Xnk) and pB>A(Xnk) typically 

were both large for the first three evaluations, so that the trial would continue under all 

models.

In our implementation of the BDOGS method, we included J = 5 possible different models, 

characterized in terms of their hazards. Initially, we investigated the method’s behavior for 

several larger values of J , and evaluated the OPs of the resulting designs. We removed 

models that resulted in optimal boundaries that were very similar to other models and then 

examined the OPs of the new design with a reduced J. Once the five models that we used 

here were determined, we found that the performance of BDOGS was substantially degraded 

when J <5. However, in practice, if substantial information is available about possible 

hazards one could use this information in building the set of potential models.

Although we have assumed that the event times follow a GG distribution, for the three cases 

that we examined where the true distribution follows a piece-wise hazard, including PI, PD, 

and VS, BDOGS was still superior to conventional methods. We also conducted simulations, 

not shown here, under many other distributions not in the GG family, and the results were 

very similar to those presented here. These simulations indicate that BDOGS is robust.

In our simulations, we formulated BDOGS using large prior variances so that the 

accumulating data would quickly overwhelm the prior. To assess the effects of a more 

informative prior, we multiplied each prior variance by 0.001 and reran all of the 

simulations. The results were very similar to what we have presented here.
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Figure 1. 
Summary of potential hazards in ℳ. ℳ1 is generalized gamma(1, η, 1), equivalent to an 

exponential, which has constant hazard and thus is not shown: (a) ℳ2; (b) ℳ3; (c) ℳ4; and 

(d) ℳ5.
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Figure 2. 
Hazard functions used in the simulation study for A (solid line) and B (dashed line). The 

exponential (Exp) distribution has a constant hazard, and thus is not shown: (a) WI; (b) GI; 

(c) LN1; (d) LN2; (e) WD; (f) LN3; (g) PWI; (h) PWD; and (i) VS.
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Figure 3. 
Power curve and expected sample size when θA = 12 and the true event time distributions 

are Weibull with an increasing hazard (A and B) and lognormal with an increasing then 

decreasing hazard (C and D) for BDOGS (solid line) and HSD (dashed line). Results for 

Pocock and OF (not shown) are similar to those for HSD.
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Figure 4. 
The boundary functions, PU(Xnk, aU, bU, cU) (top curve) and PL(Xnk, aL, bL, cL) (bottom 

curve) under the optimal decision rules .
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