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Abstract
Using the Southern African Bird Atlas Project (SABAP2) as a case study, we examine 
the possible determinants of spatial bias in volunteer sampling effort and how well 
such biased data represent environmental gradients across the area covered by the 
atlas. For each province in South Africa, we used generalized linear mixed models to 
determine the combination of variables that explain spatial variation in sampling effort 
(number of visits per 5′ × 5′ grid cell, or “pentad”). The explanatory variables were 
distance to major road and exceptional birding locations or “sampling hubs,” percent-
age cover of protected, urban, and cultivated area, and the climate variables mean 
annual precipitation, winter temperatures, and summer temperatures. Further, we 
used the climate variables and plant biomes to define subsets of pentads representing 
environmental zones across South Africa, Lesotho, and Swaziland. For each environ-
mental zone, we quantified sampling intensity, and we assessed sampling complete-
ness with species accumulation curves fitted to the asymptotic Lomolino model. 
Sampling effort was highest close to sampling hubs, major roads, urban areas, and 
protected areas. Cultivated area and the climate variables were less important. Further, 
environmental zones were not evenly represented by current data and the zones var-
ied in the amount of sampling required representing the species that are present. 
SABAP2 volunteers’ preferences in birding locations cause spatial bias in the dataset 
that should be taken into account when analyzing these data. Large parts of South 
Africa remain underrepresented, which may restrict the kind of ecological questions 
that may be addressed. However, sampling bias may be improved by directing volun-
teers toward undersampled regions while taking into account volunteer preferences.
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1  | INTRODUCTION

Progress in macroecology, biogeography, and large-scale conservation 
planning is enabled by a growing number of nonsystematically collected 

species distribution databases in the form of museum-curated collec-
tions (specimen collections) and large-scale species atlases (Robertson, 
Cumming, & Erasmus, 2010). Such databases, representing multiple 
taxa and large regional to subcontinental spatial scales, are increasing 
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in scope (i.e., taxonomic and geographical) and detail (i.e., spatiotem-
poral resolution and types of information recorded). This development 
is aided by constant improvements in digital database management, 
accessibility (e.g., open source and Internet-based data), and analy-
sis (computing power and statistical techniques) (Boakes et al., 2010; 
Kelling et al., 2013). However, the adequate sampling of huge amounts 
of georeferenced species distribution data is a persistent challenge.

Specimen collections depend largely on professional scientists 
such as taxonomists, whereas species atlases, especially of conspicu-
ous or charismatic taxa (e.g., birds or butterflies), are often organized 
as citizen science projects supported by hundreds of volunteer observ-
ers (Bird et al., 2014; Botts, Erasmus, & Alexander, 2011; Robertson 
et al., 2010; Tulloch & Szabo, 2012). Both specimen collections and 
species atlases tend to be inherently biased in terms of when and 
where contributors decide to sample (spatiotemporal bias) and the 
skill of contributors as data collectors (e.g., variation in identification 
and record keeping) (Bird et al., 2014; Boakes et al., 2010; Peterson, 
Navarro-Sigüenza, & Benítez-Díaz, 1998; Reddy & Dávalos, 2003; 
Robertson et al., 2010; Sastre & Lobo, 2009; Tulloch & Szabo, 2012). 
Several recent studies on spatial or geographical sampling bias show 
that sampling sites tend to be chosen based on accessibility, that is, 
traveling distance and ease of traveling (e.g., roads and terrain) to or 
within the sampling site, and on the attractiveness of a site for sam-
pling, for example, the expectation of high biodiversity or of observing 
rare or charismatic species (Botts et al., 2011; Reddy & Dávalos, 2003; 
Romo, García-Barros, & Lobo, 2006; Tulloch, Mustin, Possingham, 
Szabo, & Wilson, 2013). Citizen volunteers may also be motivated 
by a esthetic (e.g., scenic landscape features) and recreational factors 
(Tulloch et al., 2013). Consequently, a large proportion of samples 
originate from a small proportion of geographical space in and around 
residential and protected areas, whereas locations that are remote or 
believed to be low in biodiversity tend to be poorly sampled (Botts 
et al., 2011; Peterson et al., 1998; Sastre & Lobo, 2009).

If ignored, spatial sampling bias may result in distorted views of 
biodiversity, biogeography, and species distributions, with observed 
patterns of variation reflecting sampling effort rather than environ-
mental or demographic causes (Bird et al., 2014; Botts et al., 2011; 
Evans, Greenwood, & Gaston, 2007). Species distribution databases 
are more useful if data are compiled with a standardized sampling 
protocol and include information about the observation process, for 
example, a measure of sampling effort for each record within the data-
base (Bird et al., 2014; Guillera-Arroita, 2017; Robertson et al., 2010). 
Further, species distribution databases may be designed with a variety 
of objectives, for example, whether sampling would attempt a wide 
coverage or whether sampling would be focused or stratified accord-
ing to habitat or protected areas (Tulloch et al., 2013). Clear under-
standing of spatial sampling bias, survey objectives, and data types is 
essential, especially when considering that various species distribution 
databases, each with particular sampling methods and biases, are inte-
grated and studied at a global scale (www.gbif.org; www.mol.org; Jetz, 
McPherson, & Guralnick, 2012).

Species distribution (Guisan & Zimmermann, 2000) or occu-
pancy (Mackenzie et al., 2006) modeling techniques relate species 

distribution data to environmental covariates (e.g., spatial variation in 
climate and habitat type) to infer species spatial distributions. These 
techniques can account for variation in sampling effort, interpolate 
geographical “gaps” in the data, or predict the geographical locations 
that should be prioritized for additional sampling (Bird et al., 2014; 
Bled, Nichols, & Altwegg, 2013; Hernandez, Graham, Master, & Albert, 
2006; Kramer-Schadt et al., 2013; Phillips et al., 2009). However, 
these techniques are most reliable if based on repeated visits of sam-
pling sites that represent the full range of variation in the environment 
(Araújo & Guisan, 2006; Bled et al., 2013; Hernandez et al., 2006; 
Phillips et al., 2009). Occupancy techniques, in particular, require mul-
tiple repeated visits to model the probability of detecting species that 
are present (Altwegg, Wheeler, & Erni, 2008; Bled et al., 2013; Broms, 
Hooten, Johnson, Altwegg, & Conquest, 2016; Guillera-Arroita, 2017). 
Species detectability may vary due to several mechanisms, such as 
species traits, observer skill, survey methods and conditions, and hab-
itat characteristics (Guillera-Arroita, 2017). Species distribution and 
occupancy techniques are an actively developing field of research, and 
are widely and increasingly used to study species spatial distributions 
and range dynamics (Guillera-Arroita, 2017; Guillera-Arroita et al., 
2015). These techniques benefit most from an environmentally strat-
ified sampling design, rather than attempting to close geographical 
gaps by sampling as much area as possible but with low effort per unit 
area (Araújo & Guisan, 2006; Guillera-Arroita, 2017; Kramer-Schadt 
et al., 2013; Tulloch et al., 2013).

In South Africa, large-scale species distribution databases facili-
tated a wealth of ecological research and conservation planning anal-
yses (e.g., Harrison, Underhill, & Barnard, 2008), with historical and 
current databases including birds, frogs, mammals, butterflies, spi-
ders, proteas, and invasive alien plants (find the host organizations at 
adu.org.za, www.proteaatlas.org.za and www.sanbi.org). The second 
Southern African Bird Atlas Project (SABAP2), which was launched in 
the year 2007, is arguably the most ambitious atlas project for the 
region in terms of scope, resolution and data volume. Citizen scientists 
record bird species presence at a relatively fine resolution (grid cells of 
5 min latitude by 5 min longitude, termed “pentads”) within eight sub-
Saharan African countries, namely South Africa, Lesotho, Swaziland, 
Namibia, Botswana, Zimbabwe, Mozambique, and Kenya. By the end 
of May 2017, nearly 2,300 observers had conducted nearly 187,000 
separate surveys, contributing more than 9.6 million records, and cov-
ering more than 17,700 pentads, and rate of contributions remain 
high (http://sabap2.adu.org.za/). However, current SABAP2 data show 
obvious and substantial spatial bias in sampling effort. Repeatedly 
sampled pentads comprise a small proportion of the total area and 
tend to be spatially clustered, forming a few well-sampled geographi-
cal regions. Conversely, outside these well-sampled regions, there still 
remain large poorly sampled geographical areas.

The second Southern African Bird Atlas Project is designed to run 
indefinitely with the aim of creating a valuable long-term dataset for 
southern Africa. Thus, an assessment of sampling bias will provide 
much-needed information for data users and future sampling endeav-
ors, and ensure that volunteers’ time and effort and their contributed 
data are used to full potential. Wright, Underhill, Keenec, and Knight 
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(2015) previously studied the motivation of SABAP2 volunteers and 
the benefits they gain. However, a spatially explicit study of the 
possible causes and consequences of spatial sampling bias has not 
been conducted for SABAP2. Moreover, accounting for and improv-
ing observation bias contributes to developing species distribution 
data that are useful in global ecological studies. Similar evaluations 
of sampling bias could benefit other new or existing species atlases 
for many taxa around the world. Our aims are (1) to reveal spatially 
explicit determinants of variation in sampling effort in SABAP2 and 
(2) to illustrate variation in data representativeness among a variety 
of environments.

2  | METHODS

2.1 | Atlas characteristics

We focused on South Africa, Lesotho, and Swaziland where data are 
accumulating most rapidly and widely, and for which comprehensive 
environmental and human-related GIS (geographical information sys-
tem) datasets are available. The sampling protocol of SABAP2 was 
designed to standardize sampling by requesting that the volunteers 
record all the birds they encounter within a pentad for at least 2 hr 
(intensive sampling period), but no longer than five consecutive days, 
and that they attempt to cover all habitat types within the pentad. 
Volunteers are coordinated through regional atlas committees and the 
SABAP2 Web site (http://sabap2.adu.org.za/), which includes train-
ing materials (e.g., how to use GIS programmes and recognize pentad 
boundaries), workshops (e.g., bird identification), and birding events. 
The online submission process links records automatically to a cover-
age map and flags unusual (e.g., out of range) records that are then 
vetted by regional atlas committees. The SABAP2 database includes 
information on sampling effort for each pentad in terms of number of 

contributed species lists (i.e., one list per visit) and number of records 
(i.e., species sightings), as well as number of hours and days spent sam-
pling per pentad.

Atlas data used in this study were contributed between June 2007 
and the end of August 2016. For this period, about 75% of the pentads 
covering South Africa, Lesotho, and Swaziland were visited at least 
once (i.e., one or more lists contributed); however, <16% of pentads 
were sampled 10 times or more; that is, enough repeated visits to en-
sure that common species were detected with high probability, even 
with relatively low detectability (Guillera-Arroita, Ridout, & Morgan, 
2010). Spatial bias could be partly attributed to coordination efforts of 
the regional atlas committees for each province and the “birding chal-
lenges” that aim to intensively sample regions of special concern for 
bird biodiversity. Areas covered by birding challenges include Kruger 
National Park, Western Cape Province, and the four degrees latitude 
and longitude encompassing Gauteng and parts of the surrounding 
provinces (the Gauteng 4D birding challenge).

2.2 | Determinants of spatial variation in 
sampling effort

For this analysis, we investigated each South African province sep-
arately (Lesotho and Swaziland were not included) to account for 
the possible influence of the regional atlas committees and birding 
challenges, and to account for regional differences in level of human 
population density and development (Figure 1, Table S1). We inves-
tigated the entire four degrees comprising the Gauteng 4D challenge 
separately from the rest of the surrounding provinces to account for 
the increased sampling in this region (Figure 1, Table S1). We ex-
plored factors representing the accessibility (1–2) and attractiveness 
(3–5) of each pentad that may explain spatial variation in sampling 
effort.

F IGURE  1 Study area: (1) Limpopo 
Province, (2) North West Province, (3) the 
four degree square comprising the Gauteng 
4D birding challenge, (4) Mpumalanga 
Province, (5) Swaziland, (6) Northern 
Cape Province, (7) Free State Province, (8) 
Lesotho, (9) KwaZulu-Natal Province, (10) 
Western Cape Province, (11) Eastern Cape 
Province. Thick lines indicate province and 
country boundaries, and fine lines indicate 
major roads. Black squares indicate the 
location of sampling hubs, that is, locations 
with exceptionally high sampling effort. 
Gray shading indicates all terrestrial formal 
and informal protected area (SANBI, 2010, 
2011)
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1.	 The pentads with the greatest number of contributed lists are 
located some distance apart and correspond to the locations 
of major cities such as Johannesburg or small towns at popular 
ecotourism or birding destinations such as Lady Grey. Sampling 
effort tends to decrease with distance from these “sampling 
hubs.” We reason that “sampling hubs” are highly accessible 
pentads, where highly active volunteers reside permanently (i.e., 
regular sampling in their home neighborhood) or temporarily 
(e.g., vacation accommodation when birding some distance from 
home), whereas the surrounding pentads require more effort to 
reach. To examine this, up to three sampling hubs were sub-
jectively identified for each province (depending on the overall 
amount and pattern of sampling) and we calculated the distance 
between the midpoints of each pentad to the midpoint of the 
closest sampling hub (Figure 1, Table S1). The sampling hubs 
were not included in subsequent analyses.

2.	 Accessibility by road may facilitate long-distance traveling to bird-
ing locations; therefore, the presence of roads is likely to increase 
sampling effort. We calculated the minimum distance between 
each pentad and a major road, that is, an arterial, national, main 
road, or freeway (Figure 1; AGIS, 2007). Lesser roads were not con-
sidered as they were found in almost all pentads.

3.	 Volunteers may associate protected areas with unspoilt natural 
scenic beauty and high biodiversity, in addition to infrastructure 
and facilities supplied by ecotourism, such as access roads and hik-
ing trails, information, and accommodation (Tulloch et al., 2013). 
We calculated the percentage of each pentad covered by formal 
and informal protected area (Figure 1; SANBI 2010, 2011).

4.	 Volunteers may also be attracted to a range of bird habitats outside 
reserves, which may comprise various natural and human-trans-
formed land cover types. We focused here on percentage of a pen-
tad covered by urban area and by cultivated area (the national land 
cover database, SANBI, 2009), as these are the two main trans-
formed land cover types in all provinces and also tend to be col-
linear with natural land cover (i.e., negatively related).

5.	 Finally, volunteers may prefer certain climates and avoid, for exam-
ple, extreme temperatures (e.g., Romo et al., 2006). We used mean 
annual precipitation, mean summer temperature, and mean winter 
temperature, averaged for each pentad, to examine preferred cli-
matic conditions (Mecenero, Altwegg, Colville, & Beale, 2015; 
Schulze, 2001).

We used linear regression to determine how well variables 1–5 ex-
plain spatial variation in sampling effort represented by number of lists 
per pentad. “Distance to sampling hub” was log-transformed to ensure 
a linear relationship with the response variable, because the untrans-
formed relationship is a distance-decay function. Separate generalized 
linear models for each province included all the explanatory variables 
listed, to examine their relative importance. Collinearity among predic-
tors was generally low and never severe enough to justify excluding any 
predictors (O’Brien, 2007; see Variance Inflation Factors in Table S2). The 
models were fitted via penalized quasi-likelihood using function “glm-
mPQL” in package “MASS” version 7.3-45 (Venables & Ripley, 2002) in 

program R (R Core Team, 2016). We assumed a Poisson distribution and 
included an exponential spatial correlation structure as a random vari-
able in each model to account for spatial autocorrelation.

2.3 | Representativeness of data

We examined how variation in sampling intensity and the ability to 
detect the species that are present (sampling completeness) reflect 
in both geographical and environmental space. This idea is based on 
the potential for species distribution and occupancy models to esti-
mate species distributions based on patchy species presence records 
and environmental background data (Bird et al., 2014; Bled et al., 
2013; Guisan & Thuiller, 2005; Kramer-Schadt et al., 2013). Bird 
distributions are driven by climate and vegetation type (Acevedo & 
Currie, 2003; Boone & Krohn, 2000; Van Rensburg, Koleff, Gaston, & 
Chown, 2004). Therefore, we defined environmentally distinct zones 
by partitioning all the pentads comprising South Africa, Lesotho, and 
Swaziland, into subsets of pentads with similar environments in terms 
of climate and vegetation biomes (for similar methods, see Robertson 
& Barker, 2006; Botts et al., 2011; Tulloch & Szabo, 2012). We first 
simplified the three climatic variables with a principal components 
analysis (PCA). The first PCA scores were related to mean annual pre-
cipitation, mean summer temperature, and mean winter temperature, 
with factor loadings 0.703, −0.675, and 0.225, respectively (Figs. S1 
and S2a). The mapped component scores (Fig. S2a) show the main 
gradient between hotter, drier areas in the northwest, and milder, 
wetter areas in the southeast, as well as more local-scale variations, 
such as at mountain ranges (see also Botts et al., 2011; Robertson 
and Barker, 2006). Therefore, although this component explains only 
about 57% of the variation, we deemed it a useful representation of 
climatic variation for our purposes. We then grouped the pentads into 
ten climate zones based on a histogram of the first PCA scores, which 
generally ranged from hot and dry at class 1 to moist and mild at class 
10 (Figures 2, S1 and S2a).

Further, we assigned each pentad to the plant biome that covers 
the largest percentage of the pentad (Figures 2 and S2b). Mucina and 
Rutherford (2006) defined nine biomes, namely Desert, Nama Karoo, 
Succulent Karoo, Fynbos, Grassland, Savanna, Albany Thicket, the 
Indian Ocean Coastal Belt, and Forest (Fig. S2b). However, Forest and 
Desert comprised only a few pentads, and Mucina and Rutherford’s 
(2006) Desert biome is mainly designated as Nama Karoo and 
Succulent Karoo in earlier vegetation maps for South Africa (e.g., Low 
& Rebelo, 1996; Rutherford, 1997; Rutherford & Westfall, 1994). 
Therefore, we assigned the Forest and Desert pentads to the closest 
neighboring biomes. Next, we superimposed the biomes and climate 
zones to define 43 distinct environmental zones of various geograph-
ical sizes (i.e., various numbers of pentads), representing several cli-
mate zones within each biome (Figure 2). That is, each biome was 
divided into several large (i.e., large number of pentads) climate zones 
that represent the typical climate range for that biome and several 
smaller zones that represent climate extremes for that biome.

Next, to quantify variation in sampling effort for each environmen-
tal zone, we counted all of the pentads with at least one list (i.e., total 
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geographical coverage) as well as the pentads with ten lists or more 
(i.e., repeated samples necessary to model the observation process, 
Guillera-Arroita et al., 2010). To examine sampling bias among envi-
ronmental zones, we conducted G-tests of independence comparing 
all pentads with sampled pentads, for both levels of sampling intensity, 
that is, at least one list and at least ten lists. To ensure that expected 
frequencies are above 5% in the G-test, we pooled the smallest sim-
ilar environmental zones within each biome to increase the number 
of pentads (Figure 2). This final process combining the smallest zones 
resulted in 27 environmental zones that were used for all further anal-
yses (Figures 2 and S3).

We ranked the 27 zones according to sampling effort by calcu-
lating the difference between observed and expected frequency, 
where expected frequency is the number of lists that would have 
been contributed for each zone if sampling effort was geographically 
homogeneous. Expected frequencies were calculated for both levels 
of sampling intensity, using the following formula (see also Tulloch & 
Szabo, 2012): expected frequency = (number of pentads comprising 
an environmental zone ÷ total number of pentads) × total number of 
sampled pentads.

Assuming that number of species recorded would increase with 
number of pentads sampled (the species–area relationship), we used 
species accumulation curves to assess sampling completeness for each 
zone (see Moreno & Halffter, 2000; Tulloch & Szabo, 2012), for both 
levels of sampling intensity. For each zone, we calculated Mao Tau 
species richness estimates (R package “vegan,” version 2.4-0, Oksanen 
et al., 2016), that is, a smoothed species accumulation curve produced 
by adding the pentads in random order (i.e., the average curve of 
1,000 runs). We then fitted the Mao Tau estimates to an asymptotic 
Lomolino curve to estimate the total species richness (i.e., the asymp-
tote) for each environmental zone (R package “vegan”; Lomolino, 2000; 
Dengler, 2009; Oksanen et al., 2016). We also tested the Clench and 
Weibull models (Hortal, Borges, & Gaspar, 2006; Moreno & Halffter, 
2000; Tulloch & Szabo, 2012); however, the Lomolino model per-
formed best in terms of fit and robustness. We then ranked the en-
vironmental zones according to sampling completeness by dividing 
each zone’s observed species richness by the total estimated species 
richness, giving a percentage of completeness of the species inventory 
for that zone.

3  | RESULTS

3.1 | Determinants of spatial variation in sampling 
effort

The variables that best explained spatial variation in sampling effort 
varied somewhat among the provinces (Table 1, see Table S3 for more 
detailed results). Nevertheless, for most provinces sampling effort was 
significantly negatively related to distance to sampling hub (except for 
Limpopo and Northern Cape provinces) and distance to major road 
(except for Gauteng 4D and Mpumalanga Province), and significantly 
positively related to protected area cover (all provinces) and urban 
cover (except for Mpumalanga and North West provinces) (Table 1). 
Cultivated area, mean annual precipitation, mean summer tempera-
ture, and mean winter temperature were less important explanatory 
variables, being significant in only a few provinces (Table 1).

3.2 | Representativeness of data

The 27 environmental zones were not equally represented by pentads 
for both levels of sampling intensity (≥1 lists: G = 579.088, p < .0001; 
≥10 lists: G = 1765.687, p < .0001; 26 degrees of freedom). For sepa-
rate biomes, only the climate zones within the Albany Thicket, Fynbos, 
Indian Ocean Coastal Belt, and Succulent Karoo were evenly repre-
sented by pentads with at least one list, whereas only the Indian Ocean 
Coastal Belt’s climate zones were evenly represented by pentads with 
ten lists or more (Figures 3 and 5; see also Fig. S4 for more details). 
The climate zones within the Grassland, Indian Ocean Coastal Belt, 
Fynbos, and Albany Thicket, and the wetter zones within the Savanna 
and Succulent Karoo have been especially well covered (more than 
70% of pentads have been sampled at least once), with a substantial 
proportion of these pentads having ten or more lists (Figures 3 and 5, 
Table S4). However, the Nama Karoo’s climate zones and the driest 

F IGURE  2 We defined 27 subsets of pentads to represent 
environmentally distinct zones. First, pentads were each assigned one 
of the seven biomes and one of the ten climate classes. The biome 
and climate classes were superimposed to form several climate zones 
within each biome, that is, altogether 43 environmental subsets 
comprised of varying numbers of pentads. Finally, the climate zones 
with the fewest pentads within each biome were pooled (symbol “+” 
indicates pooled subsets), resulting in a total of 27 environmental 
zones. IOCB refers to the Indian Ocean Coastal Belt, and climate 
classes range from hot and dry at “1” to moist and mild at “10.” See 
the main text and Figs. S1, S2a and S3 for more details on how 
climate classes were defined
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zones of the Succulent Karoo and Savanna are less well covered, and 
a negligible number of these pentads (fewer than 5% of pentads) have 
ten or more lists (Figures 3 and 5).

The recorded species inventories for most of the environmental 
zones are more than 80% complete for both levels of sampling inten-
sity, when comparing observed species richness to total estimated 
species richness given by the asymptote of the species accumula-
tion curves (Figures 4 and S5, Table S4). Environmental zones were 
ranked differently (Figures 5, S4 and S5) when considering sampling 
completeness (i.e., species accumulation curves) compared to sam-
pling effort (i.e., observed vs. expected sampling effort). For example, 
although the arid Savanna Zone is poorly sampled in terms of sam-
pling effort, the species inventory is more than 87% complete because 
fewer species occur there (Figures 3–5). Conversely, climate zone 3 of 
the Fynbos biome is well sampled; however, its species inventory is 
<72% complete (Figures 3–5).

4  | DISCUSSION

Volunteers are indispensable to the development of species atlases 
given the sheer magnitude of their contributed data and associated 
time, labor, and costs (Robertson et al., 2010; Tulloch et al., 2013). The 
second Southern African Bird Atlas Project covers an extensive geo-
graphical area, with large amounts of data especially for several sub-
regions that are of special concern for bird diversity and conservation. 
However, like other species atlases (e.g., Botts et al., 2011; Tulloch & 
Szabo, 2012) SABAP2 is subject to pronounced spatial sampling bias, 
due to purposefully focused sampling in regions of special concern 
and due to the preferences of volunteers for certain sampling sites. 
Here we explored the causes and consequences of spatial variation in 
sampling effort, and we discuss current trends, strategies, and tools to 
mitigate bias and to improve the data accumulation process in species 
distribution atlases.

We found that variation in sampling effort is generally best ex-
plained by amount of urban area and protected area, and by the prox-
imity of major roads, cities, and towns known for ecotourism (i.e., the 
“sampling hubs”). These findings agree with previous studies exam-
ining variation in sampling effort, including butterflies in the Iberian 
Peninsula (Romo et al., 2006), frogs in South Africa (Botts et al., 2011), 
and birds in Australia (Tulloch et al., 2013). In the current study, the im-
portance of these determinants varied among the provinces (Table 1). 
For example, distance to nearest major road is not significant in the 
Gauteng 4D region, probably because of the relatively good road ac-
cess (Figure 1, Tables 1 and S1). In contrast, distance to major road 
is important in the Northern Cape Province where the lack of major 
roads could restrict the movements of volunteers (Figure 1; Tables 1 
and S1). Based on the overall results, we reason that many volunteers 
are likely resident in major cities and regularly conduct sampling in 
their own neighborhood and surroundings. When volunteers sample 
some distance from home, they prefer easy road access to a preferred 
destination such as a protected area or ecotourism town where they 
expect good birding opportunities. For the other southern African T
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countries that we have not examined here, most areas remain unsam-
pled and sampling appears to be closely linked to cities, towns, roads,. 
and other developed areas, or popular tourism destinations, more 
so than for South Africa (http://sabap2.adu.org.za/coverage.php, as 
viewed on 31 May 2017).

Spatial sampling bias affects how well the available data represent 
geographical and environmental space (Bird et al., 2014). We found 
that sampling coverage and intensity in current SABAP2 data are 
unequal among a set of distinct environmental zones across South 
Africa, Lesotho, and Swaziland. Large arid zones tend to be charac-
terized by low sampling effort, unsampled gaps, and a small propor-
tion of pentads with ten or more lists. Similar patterns were reported 
for other species distribution datasets in southern Africa (e.g., frogs, 
Botts et al., 2011; the first SABAP, Harrison & Underhill, 1997; plants, 
Robertson & Barker, 2006). The arid zones may be less attractive to 
volunteers due to expected low species richness and low accessibility 
to remote locations or private property (e.g., the mostly arid Northern 
Cape Province, Figure 1 and Tables 1 and S1; Tulloch et al., 2013). In 

contrast, wetter, milder environmental zones tend to coincide with 
the more densely populated areas of South Africa and have therefore 
been sampled more intensively, with a greater area covered and larger 
proportion of repeatedly sampled pentads. These well-sampled zones 
also tend to be smaller compared to the arid zones, suggesting a higher 
turnover in environmental conditions across a smaller geographical 
area. Therefore, intensive sampling in these environmental zones may 
be beneficial and necessary to detect a higher species turnover and 
higher overall species richness that is often linked to environmen-
tal heterogeneity (Botts et al., 2011; Robertson & Barker, 2006; Van 
Rensburg et al., 2004). This is supported given that zones with high 
species richness and low species detectability may require a greater 
sampling effort (Figure 5; Garrard, Bekessy, Mccarthy, & Wintle, 2008; 
Wintle, Walshe, Parris, & Mccarthy, 2012).

Survey designs contend with a trade-off between wider coverage 
of a geographical area and repeated sampling of representative sam-
pling sites, depending on the objectives and the amount of sampling 
effort possible. SABAP2 currently comprises both wide-coverage 

F IGURE  3 A comparison between the 
total number of pentads, the number of 
pentads that had been sampled at least 
once, and the number of pentads sampled 
at least ten times. This is shown for distinct 
environmental zones (subsets with varying 
numbers of pentads) comprising seven 
biomes, (a) Albany Thicket, (b) Fynbos,  
(c) Grassland, (d) Indian Ocean Coastal 
Belt, (e) Nama Karoo, (f) Savanna, and 
(g) Succulent Karoo, subdivided into ten 
climate zones, with the smallest zones 
concatenated. At each biome, we indicate 
the results of G-tests of independence 
comparing all pentads with sampled 
pentads among the climate zones within 
each biome

http://sabap2.adu.org.za/coverage.php
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low-intensity data and high-intensity data from repeated sampling 
that are limited to certain geographical regions, biomes, and climates. 
Spatial and environmental sampling bias may have several conse-
quences in terms of how well the spatial bias can be mitigated through 
data processing, how statistical and modeling techniques may be af-
fected, and the type of ecological questions that can be adequately ad-
dressed (Bird et al., 2014; Guillera-Arroita et al., 2015; Peterson et al., 
1998). Therefore, researchers and conservation planners need to be 
aware of the region-specific limitations of the data.

An environmental bias may affect the accuracy of species dis-
tribution and occupancy models that rely on environmental back-
ground data (Araújo & Guisan, 2006; Bird et al., 2014; Bled et al., 
2013; Hernandez et al., 2006; Phillips et al., 2009). Wide-coverage 
low-intensity data are often used in broad-scale species distribution 
modeling (Guillera-Arroita et al., 2015). In addition, some species may 
not be present in the proportion of geographical and environmental 
space that had been repeatedly sampled, although they are likely to 
be observed through a wide-coverage strategy covering a greater 
geographical area (Figure 4, Table S4). However, repeated sampling 

increases the probability of detecting the species that are present (Gu 
& Swihart, 2004). Moreover, sufficient repeated sampling is necessary 
to model the observation process (occupancy modeling), obtain abun-
dance estimates, and examine species range dynamics (Bled et al., 
2013; Broms et al., 2016; Guillera-Arroita et al., 2015). Occupancy 
modeling can be refined with information about species’ probability of 
detection (Guillera-Arroita, 2017). Therefore, it would be useful to ex-
amine whether variation in detectability is predictable or quantifiable 
(Gu & Swihart, 2004), perhaps depending on environmental covariates 
(e.g., restricted visibility due to dense vegetation) or species traits (e.g., 
coexistence of species that are difficult to distinguish, or cryptic or 
nocturnal species).

Spatial biases in sampling effort may affect the conservation 
decision-making process. For example, sampling bias in favor of regions 
with dense human populations may exaggerate any existing broad-
scale positive correlation between humans and bird species richness 
(Chown, Van Rensburg, Gaston, Rodrigues, & Van Jaarsveld, 2003; 
Evans et al., 2007; Van Rensburg et al., 2004). Consequently, conser-
vation planning efforts often emphasize areas with high biodiversity 

F IGURE  4 A comparison of observed, 
S(obs), and estimated, S(est), species 
richness for pentads that had been sampled 
at least once and at least ten times. 
This comparison was made for distinct 
environmental zones comprising seven 
biomes, (a) Albany Thicket, (b) Fynbos,  
(c) Grassland, (d) Indian Ocean Coastal 
Belt, (e) Nama Karoo, (f) Savanna, and 
(g) Succulent Karoo, subdivided into ten 
climate zones (Fig. S3). Labels indicate the 
ratio (as percentage) between S(obs) and 
S(est), which indicates the completeness 
of the species inventory for each 
environmental zone
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near human settlements where there may be stronger competition 
between conservation goals and human development, while neglect-
ing poorly sampled remote locations that may have high conservation 
potential (Evans et al., 2007). Further, an inability to account for the 
observation process could confound spatial changes in sampling ef-
fort with species range changes, in turn misrepresenting the species’ 
conservation status (Broms, Johnson, Altwegg, & Conquest, 2014; 
Guillera-Arroita et al., 2015; Péron & Altwegg, 2015).

The current study focused on natural environmental variation; 
however, future studies could examine sampling bias among land 
cover types. For example, relatively pristine and remote environmental 
zones might be underrepresented if data are mainly collected from the 
transformed areas within these zones, especially if species composi-
tion differs from the nearby natural environment (Dean, Anderson, 
Milton, & Anderson, 2002). For SABAP2, sampling effort in the arid 
zones tends to be close to human settlements and along roads (e.g., 
the Northern Cape Province, Table 1), that is, habitats that are atypical 
of the relatively untransformed arid zones. Over the past few decades, 

bird species such as pied crows (Corvus albus) that are native to more 
mesic areas of South Africa expanded their ranges into the arid areas, 
where they are associated with transformed areas and woody alien 
plants (Cunningham, Madden, Barnard, & Amar, 2016; Dean, 2000; 
Dean & Milton, 2003; Macdonald, 1986; Macdonald, Richardson, & 
Powrie, 1986). Increasing sampling in natural habitat may address this 
bias, and it may be helpful to incorporate land use as a covariate in 
species distribution models (Thuiller, Araújo, & Lavorel, 2004).

Recent developments in statistical methods provide many op-
tions for mitigating observation bias. However, ultimately, sampling 
bias should be actively monitored and addressed in all new or existing 
species distribution atlases. Wright et al. (2015) showed that SABAP2 
volunteers are motivated by experiencing nature, recreation, personal 
growth, and the opportunity to contribute toward research and con-
servation. Communication and coordination among all participants are 
necessary to address sampling bias without sacrificing volunteer satis-
faction and contribution (Bird et al., 2014; Sastre & Lobo, 2009). Atlas 
organizers play an essential role in maintaining volunteer participation 

F IGURE  5 Environmental zones were ranked according to (1) sampling effort (a and c), that is, whether the zone had been sampled more 
or less than expected (number of lists contributed, see figure key) given the size of the zone and the overall number of lists contributed in the 
study area (Fig. S4) and (2) sampling completeness (b and d), that is, how much (percentage) of the total estimated number of species have been 
observed in each zone (Fig. S5). Two levels of sampling intensity were considered, namely, at least one list contributed per pentad (a and b) and 
at least ten lists per pentad (c and d)
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by organizing a variety of birding events and challenges and supporting 
the online volunteer community (http://sabap2.adu.org.za). However, 
the link between volunteers and species atlases is becoming increas-
ingly automatic and interactive. SABAP2 and other atlases such as eBird 
(http://ebird.org) link the online record submission process with tools to 
improve data accumulation (Kelling et al., 2013). Doubtful records, such 
as observing a bird species out of its known range, are automatically 
flagged during the submission process for vetting by experts (e.g., re-
gional atlas committees). Online submissions are automatically linked to 
sampling effort coverage maps on the atlas Web sites, to inform volun-
teers’ future sampling efforts. Species atlases and other citizen science 
projects benefit from increasingly sophisticated machine learning algo-
rithms to facilitate the interaction between databases and volunteers 
(Kelling et al., 2013). Additional tools can be added to enhance the data 
accumulation process. For example, for an environmentally stratified 
sampling protocol, occupancy modeling could be applied to existing 
data to model the observation and detection processes and identify 
sampling sites to prioritize for additional sampling (Williams et al., 
2009). Further, spatially predictable volunteer preferences could be 
taken into account when creating sampling coverage maps to encour-
age volunteers to visit priority sampling areas (current study, Tulloch 
et al., 2013). Thus, species atlasing is moving toward an iterative pro-
cess whereby current data inform future priority sampling areas, and 
data accumulation is continually improved (Kelling et al., 2013).
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