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An in-silico approach to predict and exploit
synthetic lethality in cancer metabolism
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Synthetic lethality is a promising concept in cancer research, potentially opening new

possibilities for the development of more effective and selective treatments. Here, we present

a computational method to predict and exploit synthetic lethality in cancer metabolism.

Our approach relies on the concept of genetic minimal cut sets and gene expression

data, demonstrating a superior performance to previous approaches predicting metabolic

vulnerabilities in cancer. Our genetic minimal cut set computational framework is applied to

evaluate the lethality of ribonucleotide reductase catalytic subunit M1 (RRM1) inhibition in

multiple myeloma. We present a computational and experimental study of the effect of

RRM1 inhibition in four multiple myeloma cell lines. In addition, using publicly available

genome-scale loss-of-function screens, a possible mechanism by which the inhibition of

RRM1 is effective in cancer is established. Overall, our approach shows promising results and

lays the foundation to build a novel family of algorithms to target metabolism in cancer.
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Synthetic lethality is defined as a type of genetic interaction
where the co-occurrence of two (or more) genetic events
results in cellular death, while the occurrence of either event

on its own is compatible with cell viability1. Given the underlying
genetic variations in tumor cells, synthetic lethality is a promising
approach in cancer research as it largely expands the number of
possible drug targets and creates an opportunity for selectivity2.
The increasing evidence of metabolic reprogramming of cancer
cells makes it ideal to exploit the concept of synthetic lethality, as
illustrated in different previous works3, 4.

In order to accelerate the pace of discovery, a number of in
silico tools have been developed to predict metabolic targets in
cancer. In particular, constraint-based modeling (CBM) for
genome-scale metabolic networks, which takes into account mass
balance and thermodynamic constraints as well as available
–omics data, has received much attention5–8. CBM methods first
contextualize a reference metabolic network for the type of
cancer under study using –omics data and, subsequently,
computationally predict growth rate under gene knockout
perturbations (gene essentiality analysis9). Potentially effective
therapeutic strategies are those gene knockouts sufficiently
restricting the growth rate, a key phenotype to be disrupted in
cancer.

The step of building cancer-specific metabolic networks is
crucial for these approaches and strongly biases the results of
gene essentiality analysis. Previous studies have found conflicting
results between existing algorithms7, 10, as they depend on
different heuristic choices to integrate–omics data. In addition,
this step masks the concept of synthetic lethality, because it
suppresses (at least part of) repressed alternative pathways
for biomass production that may explain the essentiality of a
particular gene in cancer.

To avoid these issues, we propose here to directly calculate
knockout strategies on the reference (uncontextualized) human
metabolic network and select the most lethal ones in cancer using
available–omics data, avoiding, in consequence, the step of
cancer-specific metabolic reconstruction. To that end, we rely on
the concept of minimal cut sets (MCSs), which defines minimal
sets of reactions whose removal would render the functioning of a
given metabolic task impossible, in our case the biomass
reaction11, 12. Importantly, in order to predict synthetic lethality
in cancer, we extend the concept of MCSs to the gene level
(genetic minimal cut sets, gMCSs).

MCSs are suitable to carry out the analysis proposed above
since they have nice mathematical properties that have been

exploited for their more efficient computation even in large
networks13–15. The advances achieved in MCS computation allow
us to go beyond approaches that exhaustively analyze all possible
combinations of gene/reaction knockouts, which are restricted to
the identification of lower order synthetic lethals.

Here, we adapt a recent approach presented in Tobalina
et al.15, in order to (i) calculate gMCSs and (ii) use gene
expression data as the main criterion to guide the search. Our
approach allows us to exploit the concept of synthetic lethality
and evaluate whether and why a particular gene knockout is lethal
in cancer, showing a more accurate and informative performance
than current methods in the literature.

Our gMCS computational framework is applied to evaluate the
lethality of ribonucleotide reductase catalytic subunit M1 (RRM1)
in multiple myeloma (MM), a hematological cancer that remains
for the most part an incurable disease. RRM1 has been previously
spotted as a promising metabolic target in different cancer
studies16–18; however, a more systematic and unbiased analysis in
MM was still lacking. Here, we present a computational and
experimental analysis of the lethality of RRM1 in four different
MM cell lines. In addition, using publicly available genome-scale
loss-of-function screens, we establish a possible mechanism by
which the inhibition of RRM1 is effective in cancer. The results
obtained are promising, laying the foundation to build a novel
family of algorithms to investigate and target cancer metabolism.

Results
Genetic minimal cut sets and cancer-specific essential genes.
Minimal cut sets at the gene level, referred here to as gMCSs, are
minimal subsets of genes whose simultaneous removal directly
blocks a particular metabolic task. In cancer studies, this target
metabolic task is typically the biomass reaction, whose flux
represents the proliferation rate, a key phenotype to disrupt in
cancer.

Our approach avoids the step of building cancer-specific
metabolic networks and determines gMCSs for biomass
production on a reference human genome-scale metabolic
network. In addition, using cancer gene expression data as source
of evidence for reaction activity, we can exploit synthetic lethality
and identify cancer-specific essential genes. In particular, we
search for gMCSs that can be targeted using a single gene
knockout because the rest of the genes comprising the gMCSs are
lowly expressed.

Our approach is illustrated in Fig. 1. Assuming the example
metabolic network shown in Fig. 1a and one-to-one gene-reaction
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relationships (GPR rules) (Fig. 1b), we find a gMCS (gMCS2)
involving genes 2, 4 and 5 (g2, g4 and g5) (Fig. 1c). This gMCS
explains here the essentiality of g2 for producing metabolite E,
given that g4 and g5 are not active in this particular context. Full
details as to how to identify this type of gMCSs can be found in
“Methods” section. A more detailed toy example illustrating the
novelty brought by our method can be found in Supplementary
Note 1. We describe the need to move from MCSs to gMCSs,
showing that minimal subsets of reactions which block a given
metabolic task are not necessarily minimal knockout strategies at
the gene level as a consequence of non-trivial GPR rules.

Our main hypothesis is, thus, that the essentiality of a gene
can be predicted by finding a gMCS where all its partner
genes are lowly expressed, as in Fig. 1c. In order to provide a
large-scale validation to our hypothesis, we used genome-scale
loss-of-function screens provided by the Project Achilles v2.4.319.
Given the underlying noise in these experiments, we focused on
the 30 cell lines with the highest quality score calculated as done
in Hart et al.20 and with expression data available in the Cancer
Cell Line Encyclopedia21 (Supplementary Table 1). For each cell
line, we derived the top 20 most and least essential metabolic
genes, according to the essentiality score calculated in Hart
et al.20, which permits to rank the genes according to their
essentiality within a cell line.

A 5 min time limit was set to our algorithm for the calculation
of gMCSs for each of the 600 Achilles-based essentiality and
600 Achilles-based non-essentiality cases (20 essential and 20
non-essential genes for each of the 30 cell lines considered).
We used Recon2.v04 as the reference network22 and RPMI1640
culture medium6. In addition, for each cell line, the sets of lowly
expressed genes and reactions (L) were obtained following
the Gene Expression Barcode 3.0 algorithm using standard
parameters23 and the Gene–protein-reaction rules provided by
Recon2.v04 (see “Methods” section).

Under these conditions, our algorithm found a solution for
308 out of 600 Achilles-based essentiality cases within the time
limit, predicting as essential 167 of them and incorrectly
categorizing 141. Among the Achilles-based non-essentiality
cases, on the other hand, out of 451 solutions found within the
time limit, 340 were correctly identified as non-essential and 111

were incorrectly identified as essential. The results are
summarized in Fig. 1d. A logistic regression was used to check
whether more Achilles-based essentiality cases are predicted to be
essential by our algorithm than Achilles-based non-essentiality
ones, and the results are highly significant (p-value= 3.78×10−16,
odds ratio (OR)= 3.62) (see “Methods” section).

These results were compared with standard gene essentiality
analysis on metabolic reconstructions conducted with two
well-known algorithms: GIMME24 and iMAT25. The aim of
reconstruction methods is to identify a subset of reactions
from the reference metabolic network that best fits to
available expression data and satisfies steady-state condition,
thermodynamic constraints and biomass production. Once the
reference network is contextualized using gene expression
data, gene essentiality analysis is conducted, i.e., identification
of single gene knockouts that disrupt biomass production.
In this analysis we used the same input data as in our
gMCS approach: Recon2.v04 and gene expression levels for
cancer cell lines considered above. Full details about the
implementation of GIMME and iMAT can be found in
Supplementary Notes 1 and 2.

Out of the 600 Achilles-based essentiality cases, 49 were
identified as essential by GIMME and 35 by iMAT. On the
other hand, out of the 600 Achilles-based non-essentiality
cases, 576 and 571 were identified as non-essential by
GIMME and iMAT, respectively. As done with our gMCSs
approach, we used a logistic regression to provide
statistical significance to the aforementioned results: GIMME:
p-value= 0.003, OR= 2.13; iMAT: p-value= 0.44, OR= 1.22
(Supplementary Tables 2 and 3).

It is remarkable that the gain in sensitivity brought by our
algorithm while keeping a similar precision value (0.6–0.7).
This is also observed with the statistical significance analysis of
the logistic regression, which validates our hypothesis
about essential genes and gMCSs discussed above. It is
noteworthy to mention the significant number of potential
cancer-specific essential genes obtained (in different cell lines)
that are in agreement with Achilles data (Supplementary Data 1).
They constitute an attractive subset of genes to explore in the
future.
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RRM1 essentiality in MM. Previous research has shown
that RRM1 plays an important role in cancer16, 18. RRM1
constitutes the large regulatory subunit of the enzyme
ribonucleotide reductase, which catalyzes the conversion of
ribonucleoside diphosphates into deoxyribonucleoside
diphosphates. RRM1 binds to RRM2 or RRM2B to conduct
metabolic activity17. The expression of RRM1 is increased in
some tumor types and seems to correlate with cell proliferation26.
Early promising results were found in different MM cell lines
using an RRM1 inhibitor didox (3,4-dihydroxybenzohydroxamic
acid)27; however, several studies have shown the possible
interaction of didox with additional targets aside from RRM128.
Here, using our predictive algorithm presented above, we present
a systematic and unbiased analysis of the role of RRM1 in four
different MM cell lines: JJN-3, H929, KMS-28-BM and U266. We
also provide in vitro siRNA silencing experiments in the same
four MM cell lines.

gMCSs associated to RRM1 which block proliferation (i.e., the
biomass reaction) were computed using Recon2.v04 as the
reference network22 and RPMI1640 as culture medium6.
Note that GPR rules for reactions involving RRM1 were modified
according to revised literature (Supplementary Note 3). We
calculated up to three gMCS for seven samples of JJN-3, nine
samples of H929, one sample of KMS-28-BM, and four samples
of U266 (Supplementary Table 4). For each sample the sets of
lowly expressed genes and reactions (L) were obtained following
the Gene Expression Barcode 3.0 algorithm using standard
parameters23 and the Gene–protein-reaction rules provided by
Recon2.v04. Overall, after removing repeats and cases not
reaching feasible solution within the time limit (see “Methods”
section), we obtained 20 gMCSs (gMCS1–gMCS20). It is
important to emphasize that gMCSs are inherent to the target
reaction and the reference network they have been calculated
from (in our case Recon2.v04). For this reason, computed gMCSs
can be mapped onto the gene expression data of all samples
considered. Full details can be found in Supplementary Data 1.

Figure 2a shows a heatmap that represents the Barcode
expression z-scores23 of the genes involved in one of the 20
gMCSs calculated in the different samples analyzed, i.e., gMCS6.
All genes involved in this gMCS show a low expression in the

majority of the samples (13 out of 21), except for RRM1 which is
highly expressed in all of them (Fig. 2b). In other words, this
gMCS successfully explains the essentiality of RRM1 in 13 samples
out of 21 (in four samples of JJN-3, six samples of H929, the
unique sample of KMS-28-BM, and two samples of U266).

The same analysis was repeated for all the gMCSs
(Supplementary Figs. 3–22). Note that not all gMCSs are equally
important and they do not present the same explanatory
power regarding the essentiality of RRM1 in MM. The
importance of each gMCS was measured by means of a Binomial
test, where the statistical significance of the frequency of
appearance of each gMCS within the samples was assessed
(see “Methods” section). After correcting the p-values, six gMCSs
remain significant, namely, gMCS2, gMCS3, gMCS4, gMCS6,
gMCS9 and gMCS11 (Supplementary Table 5). Considering these
six gMCSs, we could explain the essentiality of RRM1 in all
samples considered, except for two samples of U266, which
questions the essentiality of RRM1 in this cell line.

In order to provide a more objective comparison with
experimental data, we summarized the results obtained at
the cell line level (see “Methods” section). JJN-3, H929 and
KMS-28-BM resulted to have at least one gMCS with all partner
genes unexpressed while U266 did not. As a consequence, our
gMCS approach concluded that RRM1 is essential in JJN-3, H929,
and KMS-28-BM, but not in U266.

We also conducted the essentiality analysis of RRM1 on
reconstructed networks of the four cell lines considered using
GIMME and iMAT. GIMME predicted the essentiality of RRM1
in all cell lines except for H929, while iMAT identified RRM1
as essential in JJN-3 and H929, but not in KMS-28-BM and U266.
See Supplementary Table 6 for further details.

We carried out an experimental validation of the aforemen-
tioned hypothesis. We examined the effect of two different
siRNAs specific to RRM1 on cell proliferation of four MM
cell lines (JJN-3, H929, KMS-28-BM and U266). Both RRM1
siRNAs efficiently decreased RRM1 expression in the four cell
lines analyzed as detected by qRT-PCR (Fig. 3a). Downregulation
of RRM1 expression with any of the two siRNAs significantly
reduced cell proliferation (Fig. 3b) in the first three MM cell lines
tested, but not in U266. Note that we also observed apoptosis
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induction in JJN-3, H929, and KMS-28-BM after RRM1
expression downregulation (Supplementary Fig. 23). These results
support the essential role of RRM1 in JJN-3, H929, and KMS-28-
BM but not in U266, as predicted by our algorithm. Regarding
GIMME and iMAT, the essential role of RRM1 is not well
predicted in two and one cell lines, respectively. These results
show again that our approach outperforms competing
approaches in the literature. Importantly, the role of RRM1 in
MM seems to depend on the transcriptomic profile of cell
lines considered.

Synthetic lethality and RRM1: in contrast with reconstruction-
based methods (such as iMAT or GIMME), our approach not
only allows us to predict metabolic targets but to hypothesize the
mechanism under which the knockout strategy is effective.
Particularly for the RRM1 knockout, given that identified gMCSs
are synthetic lethals, we expect a higher essentiality of RRM1
when we have a lower expression of its partner genes in the
gMCSs identified. This could lead to disentangle the distinct
outcome of U266 with respect to JJN-3, H929 and KMS-28-BM
after RRM1 inhibition.

To provide a general validation of this hypothesis regarding
the aforementioned gMCS, again we used genome-scale loss-of-
function screens provided by the Project Achilles v2.4.319. In this
case, however, we used the ATARiS score presented in Shao
et al.29 as a measure of essentiality for the gene under analysis,
in our case, RRM1. Note that the ATARiS score ranks cell lines
according to their level of sensitivity to the silencing of a
particular gene and, therefore, it is suitable for the analysis
proposed here. This data was downloaded from the Project
Achilles Data Portal. Finally, the gene expression data was
normalized with the Gene Expression Barcode algorithm 3.023

using standard parameters.
Figure 4a shows the relationship between the ATARiS score of

RRM1 in the 30 cell lines included in the Achilles Project and the
expression of the RRM1 partner genes in the gMCS discussed in
Fig. 2, i.e., gMCS6. Note that we took the maximum expression
level among the different partner genes for each cell line
(Supplementary Data 1). This is because each gene represents
an escape pathway for the silencing of RRM1 and, therefore,
the one with the highest expression restricts the most its effect.

If we use the average or sum of the expression of the partner
genes of RRM1, we obtain similar results (Supplementary Table 7).
Calculating Spearman’s correlation for this case, we can observe
that the trend obtained for the gMCS under study is the one
expected and is indeed significant (ρs: 0.5208; adj. p-value:
0.0072).

Furthermore, in Fig. 4b red bars represent cell lines where
at least one partner gene of the gMCS is expressed and blue bars
show cell lines where all partner genes of the gMCS are lowly
expressed. The height of the bars is the ATARiS score of RRM1
in each cell line. We expect a higher ATARiS score for RRM1
(i.e., a lower essentiality) in those cell lines where at least one
partner gene of the MCS is expressed (red bars). In the same
way as it happens with Fig. 4a, the result for the gMCS under
study makes sense under our hypothesis. In addition, in order
to give statistical significance to this analysis, we carried out a
one-tailed Mann–Whitney test as done in Shao et al.29. In this
case, those cell lines with expressed partner genes have a
significantly higher ATARiS score for RRM1 (adj. p-value=
0.0298).

The same analysis was conducted for all gMCSs identified
in the previous section (Supplementary Figs. 3–22) and, overall,
statistical significance analyses seem consistent (Supplementary
Table 5). After carrying out a correction of p-values for multiple
testing, six gMCSs remained significant regarding the scatterplot
(gMCS5, gMCS6, gMCS8, gMCS10, gMCS18 and gMCS20).
These six gMCSs show a common pattern and differences mainly
arise from the subunit introduced to delete the mitochondrial
complex ATP synthase, which is known to be repressed in
many tumor cells30. This result is certainly interesting because
the dependence of RRM1 in MM seems to be linked to the
Warburg effect31.

However, some gMCSs significant in the Binomial test do not
exhibit such a behavior here. Using both Barcode and RNA-seq
data (Supplementary Figs. 24 and 25), we could provide further
insights for this result. For example, gMCS2–gMCS4 involve
GUK1, which is highly expressed in MM, according to RNA-seq
data, which restricts the explanatory power of these three gMCSs.
This is not an issue since gMCS6 (individually), the only
significant gMCS in all statistical analyses developed in this
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work, would be sufficient to explain the essentiality of RRM1 in
those MM cell lines where it has been found to be essential.

With the results presented above, we hypothesize that the
essentiality of RRM1 in MM (in light of the cell lines analyzed)
depends on the expression of its partner genes in gMCS6 (Fig. 2).
This mechanism could be important in other tumors. To illustrate
this, we carried out additional experimental validation in H23, a
lung cancer cell line used in Fig. 4 where our algorithm predicted
its dependence on RRM1 using gMCS6. Experimental results
again confirmed our prediction (Supplementary Fig. 26).

Discussion
This work presents, to the best of our knowledge, the first
application of the concept of MCSs to cancer research. Thanks to
the significant advances in the computation of MCSs made in the
last years, we can more accurately and efficiently explore the
solution space of knockout strategies to disrupt growth, going
beyond exhaustive strategies typically limited to lower order
synthetic lethals.

In this article, we adapted the computational framework
presented in Tobalina et al.15 in order to calculate gMCSs
(a generalization at the gene level of MCSs). gMCSs is a
more natural concept of synthetic lethality, which accounts for
non-trivial GPR rules, neglected when we focused on reaction
knockouts. The integration of gene expression data allows us to
exploit the concept of synthetic lethality for the identification of
metabolic vulnerabilities in cancer. Although it is not considered
in this work, the integration of other genomic events, such as
mutations or copy number variations, is possible and will be
considered in the future.

It is also important to emphasize that the search of gMCSs is
conducted on the reference (uncontextualized) human genome-
scale metabolic network, in our case Recon2.v04. This element of
our approach presents two advantages: (1) avoiding unnecessary
heuristic choices as done in context-specific reconstruction
algorithms and (2) identification of possible testable mechanisms
by which the inhibition of a certain target is lethal, information
which is lost when using cancer-specific metabolic
reconstructions. These features make it more accurate and
informative than previous approaches in the literature, as shown
by our side-by-side comparison with iMAT and GIMME.

The predictive power of our approach was illustrated in the
study of RRM1 inhibition in four different MM cell lines.
We confirmed the essentiality of RRM1 in JJN-3, H929, and
KMS-28-BM, but not in U266, which illustrates the heterogeneity
found in MM and the need of the approaches as the one shown
here. In vitro experimental validation showed the relevance of
RRM1 to sustain growth in the same MM cell lines as predicted
by our algorithm.

Our approach enables to spot potential mechanisms
explaining the effectiveness of a particular gene knockout to
disrupt growth. Again, this was illustrated in the study of RRM1,
where, using genome-scale loss-of-function screens from
Project Achilles19, we observed that cell lines with a lower
expression of the partner genes of RRM1 in the gMCS6 (reported
in Fig. 2) are more sensitive to the anti-proliferative effect of
RRM1 silencing (Fig. 4). This result is important and shows
the value of our gMCS approach presented here in comparison
with existing methods, which eliminate this information
when the reference metabolic network is contextualized. In our
opinion, this information is certainly relevant and could open
new avenues for the development of tools for personalized
medicine in cancer, since the expression of partner genes
of RRM1 can be used as a signature to predict the response to
RRM1 inhibition.

Overall, our approach lays the foundation to build a novel
family of algorithms to understand and target metabolism in
cancer. We would like to clarify that our methodology is general
and its success depends on the quality of the metabolic network,
GPR rules, the definition of the biomass equation and a
correct classification of genes into expressed/unexpressed. As this
information is continuously improving day-by-day, we expect
that our approach will gain in acceptance and general use in the
area of personalized medicine in the following years.

Methods
gMCSs computation. A metabolic network of m metabolites and n reactions is
usually represented as an m × n stoichiometry matrix where reactions are organized
into columns and metabolites into rows. For each reaction, positive coefficients
correspond to products while negative ones to educts. The activity of the reactions
is represented by the flux vector r. Here, we split reversible reactions into two
irreversible steps and, therefore, reaction fluxes are non-negative (Eq. (1)).

r � 0: ð1Þ
Under the steady-state assumption (represented in Eq. (2)), the sum of fluxes

which produce a certain metabolite must be equal to the sum of fluxes which
consume it.

S � r ¼ 0: ð2Þ
To calculate S in the analyses conducted in “Results” section, we applied

fastFVA32 to Recon2.v0422 under RPMI1640 growth medium conditions6 and
removed blocked reactions and directionalities.

Our goal is to block a given metabolic task employing the least number of gene
knockouts. The metabolic task to target is shown in Eq. (3):

tT � r � r�; ð3Þ

being t a null vector with a 1 in the position of the reactions involved in the
metabolic task to target and r* a positive constant. The target metabolic task in our
case is the biomass reaction. We used the biomass reaction available in Recon2.v04.

We are interested in the minimum number of gene knockouts which would
make the biomass reaction impossible to occur. In order to exploit the concept of
synthetic lethality and identify metabolic vulnerabilities in cancer, we are
particularly interested in knockouts from the set of lowly expressed genes (L).
To that end, we introduce the binary g × n matrix G, which defines for each row
the set of blocked reactions arising from the knockout of a particular subset of
genes in L. Genes associated with each row in G are functionally interrelated
and their simultaneous knockout is required to delete at least one of the reactions
in the metabolic network. The number of genes for each row in G is stored in the
g× 1 vector a.

Note that if we focus on reaction knockouts instead of gene knockouts, as in
previous works14, 15, in the case that all reactions are irreversible, G would be the
identity matrix In. In order to calculate G, we used the GPR rules available in
Recon2.v04. The use of G allows us to move from MCSs at the reaction level to
MCSs at the gene level (gMCSs). For specific examples of Gmatrix and details of its
calculation in our MM study, see Supplementary Note 4.

Based on the above, we include all the possible reaction knockouts arising from
the combination of genes in L:

G � r � 0: ð4Þ
Note here that we only limit the right-hand side in Eq. (4) because the

irreversibility constraint represented in Eq. (1) limits the left-hand side.
Next, similarly to von Kamp and Klamt14, we computed the dual problem

(Eqs (5–7)) of the set of equations shown above.

N �
u

v

w

0
B@

1
CA ¼ ST GT �t

� � �
u

v

w

0
B@

1
CA � 0 ð5Þ

v � 0; w � 0 ð6Þ

u 2 Rm; v 2 Rg ; w 2 R: ð7Þ
In order to simplify the understanding of this new set of equations, the dual

problem can be viewed as a new stoichiometry matrix (N) with a new set of flux
variables, namely, u, v and w. Following the duality theory, each variable of the
dual problem is related to a constraint in the primal problem in the following way:
the primal constraints related to dual variables which take values different from
zero are active and limiting. In particular, ui variables stand for the steady-state
constraints, vi variables refer to the flux limitation constraints associated to
combinations of gene knockouts in L, and w is the dual variable related to Eq. (3).

As explained in Ballerstein et al.13, because the primal problem is infeasible,
the dual problem is unbounded. Importantly, elementary flux modes (EFMs) of
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the dual problem which contain w and have minimal support in v will be gMCSs of
the primal problem. In order to force w to be active, we included the following
constraint:

�r� � w � �c; c>0; ð8Þ
where c is a positive constant that forces Eq. (3) (in the primal problem) to be a

limiting constraint.
So far, we are able to compute gMCSs which deprive the metabolic network

from carrying out a given task by calculating the EFMs of its dual network. In order
to calculate gMCSs which pass through a particular gene knockout, however, we
need to include additional constraints15. Firstly, we force the gene knockout of
interest to be included in the solution:

0 d 0ð Þ �
u

v

w

0
B@

1
CA � b; b>0; ð9Þ

where d is a null 1 x g vector with a “1” in the position of vector v related with
the gene knockout of interest. For example, in our MM study, we searched for
gMCSs involving the knockout of RRM1. Note that, because of its knockout, we
included RRM1 in the set L.

Secondly, in order to guarantee that the solution is still a gMCS, we need to
ensure that Eq. (9) is redundant with respect Eqs (5–8), as detailed in Tobalina
et al.15. To that end, we included Eqs (10–12), which force Eq. (9) to be written as a
linear combination with non-negative coefficients (xi variables) of Eqs (5 and 8).
Such linear combination constraint only applies to active dual variables. For this
reason, ɛi and δi variables are introduced, being both non-negative.

S 0

G 0

�tT r�

2
64

3
75 � x ¼

0

dþ ε� δ

0

0
B@

1
CA ð10Þ

ε � 0; δ � 0; x � 0 ð11Þ

ε 2 Rg ; δ 2 Rg ; x 2 Rnþ1: ð12Þ
Equations (13–15) allow us to link binary zi variables with vi variables

(zi= 0↔ vi= 0, zi= 1↔ vi> 0) and ɛi and δi (zi= 1→ ɛi= δi= 0):

α � z � v � M � z ð13Þ

M � 1� zð Þ � εþ δ ð14Þ

z ¼ z1; z2; ¼ ; zg
� �

; zi 2 0; 1f g; ð15Þ

where α and M are small and large positive constants, respectively.
The set of constraints presented above guarantees that any feasible solution

(if any exists) includes at least one gMCS involving the gene knockout of interest.
In order to obtain exactly one gMCS, we need to minimize the number of gene
knockouts involved.

The objective function used here was the following:

minimize
Xi¼g

i¼1

ai � zi; ð16Þ

where ai represents the number of genes in L associated with a given dual vi
variable, which is equivalent to find the gMCS that minimizes the total number of
genes in L.

It is important to emphasize that, if optimality is achieved, the solution is
certainly a gMCS. The reason comes from the constraints presented above, which
guarantee that any feasible solution does include at least one gMCS involving the
gene knockout of interest. Therefore, by minimizing the number of genes in L, a
gMCS is obtained. If optimality is not achieved, we can only guarantee that the
solution returned includes one gMCS involving the gene knockout of interest, but it
will not necessarily be the optimal one.

Finally, we can iteratively enumerate gMCSs by introducing a new constraint
that eliminates previously obtained solutions, as done in previous works14, 33:

Xi¼g

i¼1

zki zi �
Xi¼g

i¼1

zki � 1: ð17Þ

For the different studies conducted in this article, we fixed a five-minutes time
limit to find a gMCS on a 64 bit Intel Xeon E5-2670 at 2.60 GHz (16 cores) and 64
GB of RAM. MATLAB was used to implement the algorithm, with help of IBM
Ilog Cplex for the underlying mixed-integer linear programming model. The most
time consuming step was the calculation of the G matrix, requiring ∼20 min.

Gene and reaction classification. In order to build G and a matrices, which are
required in Eqs. (5, 10 and 16), respectively, we need to determine the set of lowly

expressed genes and reactions. This was done from gene expression experiments, in
our case collected from GEO database34. We focused on Affymetrix HGU133plus2
arrays, which can be processed using Barcode23. This method is designed to be able
to work with just one sample and make it comparable to others, instead of needing
several samples at the same time. We preprocessed the data using Barcode’s R
script, using one sample at a time. We retrieved the z-score values obtained from
this algorithm, which is equivalent to processing each sample with fRMA35.

Because the z-scores retrieved from Barcode were given at the probe-set level,
using gene-probe relationships annotated in hgu133plus2.db R package, we
obtained the gene z-score value as the median value of the corresponding z-scores
of its associated probe-sets. In case we have several samples for the same condition
and we want to obtain a consensus expression (e.g., at the cell line level), we took
the median value of the expression of each gene in the samples considered. Each
gene value was transformed into present(1)/absent(0) call using Barcode’s criteria,
i.e., genes with z-score ≥ 5 are expressed. Absent genes are stored in L.

Similarly, reactions are classified into L set using gene–protein-reaction rules
annotated in Recon2.v04 and the gene expression classification described above.
These rules establish a relationship between the enzymes that catalyze each reaction
and the genes that code for those enzymes36. A reaction may be catalyzed by a
single enzyme, different isozymes or a protein complex. Reactions having OR rules
associated can be catalyzed by different isozymes, while those having AND rules
involve protein complexes.

If a reaction is associated with a single gene, it is classified as L if its
corresponding gene is also in L. If it involves an OR rule, it is classified as L if all the
genes are classified as L. If a reaction involves an AND rule, it is classified as L if
any of the genes is classified as L.

Cell culture. The MM cell lines KMS-28-BM, H929, U266, and H23 were
maintained in culture in RPMI1640 medium supplemented with 10% fetal bovine
serum (Gibco, Grand Island, NY), penicillin/streptomycin (BioWhitaker,
Walkersvill, MD) at 37 °C in a humid atmosphere containing 5% CO2. JJN-3 were
cultured with 40% DMEM, 40% IMDM, and 20% fetal bovine serum. Cell lines
were obtained from the DSMZ or the American Type Culture Collection (ATCC).
All cell lines were authenticated by performing an short tandem repeat allele profile
and were tested for mycoplasma (MycoAlert Sample Kit, Cambrex), obtaining no
positive results.

Cell transfection. Cells were passaged 24 h before nucleofection, and cells for
nucleofection were in their logarithmic growth phase. The transfection of siRNAs
was done with the Nucleofector II device (Amaxa GmbH, Köln, Germany)
following the Amaxa guidelines. Briefly, 1 × 106 of JJN-3, H929, KMS-28-BM, and
U266 cells were resuspended in 100 µL of supplemented culture medium with 50
nM of RRM1 siRNAs or Silencer Select Negative Control-1 siRNA (Ambion,
Austin, TX) and nucleofected with the Amaxa nucleofector apparatus using
programs G-016, A-033, A-023 and X-005, respectively. In the case of H23,
siRNAs were transfected using lipofectamine transfection reagent 2000 (Invitrogen,
Carlsbad, CA) according to manufacturer’s protocol. Briefly, H23 cells (20,0000
cells per well) were seeded in a six-well plate with antibiotic-free medium 24 h
before transfection. Cells were then incubated with transfection mixtures
containing 50 nM of siRNAs or Silencer Select Negative Control-1 siRNA
(Ambion, Austin, TX) for 4 h. Then, medium was replaced with full culture
medium. We used two different siRNAs against RRM1 target (siRRM1 A:
GGAUCGCUGUCUCUACUU; siRRM1 B: AGAUCUUUGAAACUAUUUA) to
demonstrate that the results obtained with RRM1 siRNA nucleofection are not due
to a combination of inconsistent silencing and sequence specific off-target effects.
Silencer Select Negative Control-1 siRNA was used to demonstrate that the
nucleofection did not induce non-specific effects on gene expression. Nucleofection
was performed twice with a 24 h interval. After 48 h of the second nucleofection,
the RRM1mRNA expression was analyzed by qRT-PCR (GUS was employed as the
reference gene). Cell proliferation was analyzed 0, 2, 4 and 6 days after two
repetitive transfections. Transfection efficiency was determined by flow cytometry
using the BLOCK IT Fluorescent Oligo (Invitrogen Life Technologies, Paisley, UK).

Cell proliferation assay. Cell proliferation was analyzed using the CellTiter 96
Aqueous One Solution Cell Proliferation Assay (Promega, Madison, W). This is a
colorimetric method for determining the number of viable cells in proliferation.
For the assay, 100 µL of nucleofected cells were plated in 96 wells plates 0, 2, 4 and
6 days after the last nucleofection. Plates with suspension cells were centrifuged at
800 × g for 10 min and medium was removed. Then, cells were incubated with 100
μL per well of medium and 20 μL per well of CellTiter 96 Aqueous One Solution
reagent. After 1–3 h of incubation at 37 °C, the plates were incubated for 1–4 h,
depending on the cell line at 37 °C in a humidified, 5% CO2 atmosphere. The
absorbance was recorded at 490 nm using 96-well plate readers until absorbance of
control cells without treatment was around 0.8. The background absorbance was
measured in wells with only cell line medium and solution reagent. First, the
average of the absorbance from the control wells was subtracted from all other
absorbance values. Data were calculated as the percentage of total absorbance of
RRM1 transfected cells/absorbance of control cells.
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Apoptosis assay. The FITC Annexin V Apoptosis Detection Kit I (cat. no.
556419, BD Pharmingen) was used following the manufacturer’s instructions, with
some modification. Firstly, 100 µL of nucleofected cells were washed twice with
phosphate-buffered saline and resuspended in 1× binding buffer at a concentration
of 1 × 106 cells per mL. 1 µL of FITC Annexin V (AV) antibody and 2 µL of
propidium iodide (PI) were added and incubated for 15 min at RT in the dark.
Finally, 400 µL of 1× binding buffer were added to each tube and analyzed by flow
cytometry within 1 h. We represented the addition of FITC AV positive and PI
negative cells (early apoptosis) and FITC AV positive and PI positive cells (end
stage apoptosis, death).

Quantitative RT-PCR. The expression of RRM1 was analyzed by qRT-PCR in JJN-
3, H929, KMS-28-BM MM and U266 cell lines. First, total mRNA was extracted
with Trizol Reagent 5791 (Life Technologies, Carlsbad, CA, USA) following the
manufacturer instructions. RNA concentration was quantified using NanoDrop
Specthophotometer (NanoDrop Technologies, USA). cDNA was synthesized
from 1 µg of total RNA using the PrimeScript RT reagent kit (Perfect Real Time)
(cat. no. RR037A, TaKaRa) following the manufacturer’s instructions. The quality
of cDNA was checked by a multiplex PCR that amplifies PBGD, ABL, BCR, and
β2-MG genes. qRT-PCR was performed in a 7300 Real-Time PCR System (Applied
Biosystems), using 20 ng of cDNA in 2 µL, 1 µL of each primer at 5 µM (RRM1
F:5ʹ-AAAGAGCAACCAGCAGAACC-3ʹ; RRM1 R:5ʹCCAGGGAAGCCAAATTA
CAA-3ʹ; GUS F:5′GAAAATATGTGGTTGGAGAGCTCATT-3ʹ; GUS R:5ʹ-CCG
AGTGAAGATCCCCTTTTTA-3ʹ), 6 µL of SYBR Green PCR Master Mix 2X (cat.
no. 4334973, Applied Biosystems) in 12 µL reaction volume. The following
program conditions were applied for qRT-PCR running: 50 °C for 2 min, 95 °C for
60 s following by 45 cycles at 95 °C for 15 s and 60 °C for 60 s; melting program,
one cycle at 95 °C for 15 s, 40 °C for 60 s and 95 °C for 15 s. The relative expression
of each gene was quantified by the Log2(−ΔΔCt) method using the gene GUS as an
endogenous control.

Statistical analyses. In Results section “Genetic minimal cut sets and
cancer-specific essential genes”, we conducted a logistic regression to investigate
whether our gMCS approach recovers as essential more Achilles-based essential
cases than Achilles-based non-essential cases:

log
p essential in Achillesð Þ

1�p essential in Achillesð Þ xj
� �

¼ β0 þ β1 � x; ð18Þ

where x= {0, 1}, being 1 when our gMCS approach returns an essential gene, 0
otherwise. We evaluated the statistical significance of β1, whose magnitude can be
transformed to the OR as follows:

OR ¼ exp β1ð Þ ¼
p essential inAchilles xj ¼1ð Þ

1�p essential inAchilles xj ¼1ð Þ
p essential inAchilles xj ¼0ð Þ

1�p essential inAchilles xj ¼0ð Þ
ð19Þ

In “Results” section “RRM1 essentiality in MM”, for each gMCS, we calculated
an adjusted p-value using the one-sided Binomial test in order to evaluate whether
its frequency in the MM samples considered is significantly high. In particular, for
the null hypothesis, we used a conservative strategy and fixed p = 0.25, based on the
analysis conducted in section “Genetic minimal cut sets and cancer-specific
essential genes”, where we could infer, using the Project Achilles data as
gold-standard, the probability of obtaining a false positive with our approach,
namely: p(nonessential in Achilles | essential gene in gMCS approach).

Finally, in “Results” section “Synthetic lethality and RRM1”, for each gMCS, the
Spearman’s correlation was used to calculate the linear association between the
RRM1 ATARiS score and the gene expression levels of the partner genes of RRM1
of considered Project Achilles cell lines. In addition, for each gMCS, the
Mann–Whitney test was used to compare the RRM1 ATARiS score in two different
groups: (1) considered Project Achilles cell lines where all partner genes of RRM1
are expressed and (2) considered Project Achilles cell lines where at least one
partner gene is expressed. Both statistical analyses have been carried out one-tailed.

In order to correct the p-values in different analyses considered above, we used
the FDR approach available in the function p.adjust of R software.

RNA sequencing data. We used Illumina RNA-seq data generated in Agirre
et al.37, which involves 11 samples of MM patients and four samples of normal
plasmatic cells from tonsils. Reads in raw FASTQ files were aligned to the human
reference genome (hg19) using TopHat version 2.0.938. Annotated reads were then
assembled using Cufflinks 2.0239 and Gencode v.1940 as reference file. We used
CuffDiff2 to estimate gene abundance in log2(fpkm).

Code availability. The code used to generate the results shown in this article is
provided as Supplementary Software.

Data availability. The authors declare that all data supporting the findings of this
study are available within the article and its Supplementary Materials, or from the
corresponding authors upon request.
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