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ABSTRACT

Short tandem repeat (STR) variants are highly poly-
morphic markers that facilitate powerful population
genetic analyses. STRs are especially valuable in
conservation and ecological genetic research, yield-
ing detailed information on population structure and
short-term demographic fluctuations. Massively par-
allel sequencing has not previously been leveraged
for scalable, efficient STR recovery. Here, we present
a pipeline for developing STR markers directly from
high-throughput shotgun sequencing data without
a reference genome, and an approach for highly
parallel target STR recovery. We employed our ap-
proach to capture a panel of 5000 STRs from a test
group of diademed sifakas (Propithecus diadema, n
= 3), endangered Malagasy rainforest lemurs, and
we report extremely efficient recovery of targeted
loci—97.3-99.6% of STRs characterized with >10x
non-redundant sequence coverage. We then tested
our STR capture strategy on P. diadema fecal DNA,
and report robust initial results and suggestions
for future implementations. In addition to STR tar-
gets, this approach also generates large, genome-
wide single nucleotide polymorphism (SNP) panels
from flanking regions. Our method provides a cost-
effective and scalable solution for rapid recovery of
large STR and SNP datasets in any species without
needing a reference genome, and can be used even
with suboptimal DNA more easily acquired in con-
servation and ecological studies.

INTRODUCTION

Short tandem repeats (STRs; microsatellites) are highly
variable genetic markers useful for a wide variety of appli-
cations in population genetics. Germline STR mutability is
driven by DNA polymerase slippage over tandem repeat
regions of short sequence motifs, yielding highly variable
copy number repeats (1-3). Because of their high-resolution
variability at the population level, even across fine tempo-
ral scales, STRs have been used to study short-term pop-
ulation demographics and gene flow, identify conservation
units, quantify population health in endangered species,
and study the genetic basis of behavior in natural popula-
tions (4-6). Traditional methods for STR genotyping rely
on PCR amplification of genomic targets containing STRs,
followed by copy number inference from amplicon fragment
size estimated through electrophoresis (7). For high-quality
DNA samples, these methods are proven, accurate, and in-
expensive at project scales, but they introduce an unavoid-
able workflow bottleneck and restrict the scale of analysis
to dozens of markers. Due to high exogenous DNA con-
tent, the presence of PCR inhibitors, and allelic dropout
issues, STR genotyping using these methods with lower-
quality, non-invasive samples (e.g. DNA extracted from fe-
ces) is more challenging and even less efficient (8-10).
Single nucleotide polymorphism (SNP)-based analyses
have come to dominate the genomic era of DNA sequenc-
ing and genotyping. STR genotyping has, for the most part,
not yet utilized the full potential of massively parallel se-
quencing for efficient population-scale analyses during this
same era. While a wide variety of strategies for population
genomic-scale SNP data collection have been developed,
even for ancient DNA (11-13) and difficult sources such
as fecal samples (14,15), similar methods have not yet been
applied widely to STRs. However, because STRs evolve at
orders-of-magnitude greater rates than SNPs, efficient mas-
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sively parallel sequencing-based tools for their recovery and
analysis at the population level would be extremely useful
for studies requiring fine-scale geographic or recent tempo-
ral resolution (16).

A handful of strategies have emerged for applying the
genomic sequencing toolkit to components of STR geno-
typing and analysis. STR discovery has been facilitated by
shotgun sequencing with the 454 platform (no longer com-
mercially available), yielding markers that were then ana-
lyzed using conventional PCR-based genotyping (17). In-
versely, amplicon sequencing of multiplex PCR-amplified
STRs on massively parallel sequencing platforms rather
than electrophoresis can increase genotyping throughput
(18,19), although the scale of that analysis is still largely
limited by the initial PCR amplification approach. Ad-
ditionally, reduced-representation genomic datasets gener-
ated by restriction-site-associated DNA sequencing (RAD-
seq) have been shown to yield useful, though limited in
number, sets of discoverable STRs (20), and genotyping-by-
sequencing (GBS) methods have been effectively adapted
for multiplexed recovery of known STR loci, again with a
modest number of targets (21). At the genome-wide scale,
lobSTR (22) is a mature computational pipeline for high-
throughput STR genotyping from massively parallel se-
quence data, and can be robustly deployed for personal ge-
nomic applications and large datasets of human genome se-
quence reads and those for other species for which a repre-
sentative reference genome is also available. However, while
lobSTR is a high-quality tool for accurate genotyping, it is
not designed as a strategy for marker development or re-
sequencing. MIPSTR (23) is a recently developed pipeline
for targeted STR resequencing using molecular inversion
probes (MIP), with high reported marker fidelity and the
ability to discriminate somatic variation from PCR slip-
page. However, this system also relies on a high-quality ref-
erence genome assembly, precluding use with the vast ma-
jority of species at present. Further, while the per-sample
cost of MIP synthesis is modest if targeting very large num-
bers of individuals in a single species, the MIP cost advan-
tage is gained by the effectively unlimited molarity of each
probe following oligo synthesis. As such, it would typically
be cost-prohibitive to target thousands of STR markers in
a single study population using MIP. Thus while these and
other purpose-built tools are robust and useful for many
applications, there is not yet a targeted STR resequencing
strategy with the ability to make cost-effective use of NGS
data among diverse species for population genomics. The
use of reduced-representation genomic methods including
RAD-seq and GBS has produced a powerful SNP-based ge-
nomic toolkit for diverse organisms; here we complement
these methods with a targeted, high-throughput genomic
approach for STRs.

Some key goals of an STR resequencing strategy for di-
verse non-model species are: (i) no reliance on a reference
genome, (ii) cost-effective implementation even at single-
project scales, (ii1) scalability to efficiently recover thou-
sands of targets, (iv) applicability to DNA from non-tissue
sources such as fecal samples and (v) the simultaneous col-
lection of STR and SNP genotype data to facilitate analyses
of both datasets separately and/or in combination. We de-
veloped and tested a strategy to satisfy these criteria: Briefly,
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we developed a software pipeline, BaitSTR, to discover and
locally assemble simple STR loci from unassembled NGS
data without using a reference genome. We used the pipeline
to design a biotinylated RNA bait library for in-solution
capture (24), and to resequence and genotype 5000 target
STR loci in an endangered lemur. We tested the approach in
both tissue (n = 3) and fecal (n = 1) samples. Further, we im-
plemented a SNP discovery step in regions flanking the tar-
get STRs (in total, 1.2 MDb of targeted sequence), producing
a large number of co-phased STR-SNP compound mark-
ers that could facilitate analyses focused across a wide range
of spatiotemporal scales. Finally, we conducted a series of
simulations to test the sensitivity of BaitSTR at various cov-
erage levels and parameter permutations. In sum, the Bait-
STR pipeline provides a cost-effective and scalable strategy
for genomic STR discovery and targeted resequencing with-
out the need for a reference genome or tissue DNA purity.

MATERIALS AND METHODS

The BaitSTR software pipeline (Figure 1) consists of a
modular set of programs to (i) discover STRs through a
rapid scan of short read shotgun sequence data, (ii) col-
lapse reads carrying STRs into a set of candidate loci and
(ii1) extend these candidates through a local assembly pro-
cess to characterize the flanking sequence. The result com-
prises a large set of STR loci with regional sequence infor-
mation from which DNA capture probes can then be de-
signed based on user parameters. We tested the approach
by first shotgun sequencing two diademed sifaka genomes
each to medium coverage (~12x), passing the shotgun data
through the BaitSTR pipeline to select regions for target-
ing, and carrying out a capture experiment on three tissue
and one fecal diademed sifaka samples. We also performed
a set of simulation-based analyses to test the performance
and parameter impacts of BaitSTR in the context of highly
controlled datasets of known composition, using i) a ran-
dom simulated ‘genome’, and ii) read data from the widely
studied NA12878 CEPH genome.

Marker development

The BaitSTR software proceeds in three major steps; each
executed using a separate module, for marker discovery and
development (Figure 1):

Step 1. Identify input sequences harboring STR motifs. In
a module named select_STR reads, we implement a reg-
ular expression search to identify sequence reads harbor-
ing simple STRs. For example, we may identify reads con-
taining all instances of Int to 6nt units repeated a mini-
mum of five times in tandem; ‘CG CG CG CG CG’ as a 2-
mer STR, and AAGCGT AAGCGT AAGCGT AAGCGT
AAGCGT’ as a 6-mer STR. Sequences may be option-
ally filtered to exclude homopolymer runs or may be con-
strained by the number of core repeat units and the length
of the unique flanking sequences. We filter and retain these
sequences, along with auxiliary information including the
observed core repeat motif, the number of repeat units in
the sequence, and the position of the STR in the sequence.
In cases where more than one STR is found in the sequence,
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CGCGTACAAAAGTCAGTGCAATATGACGATCCATTGATGCAGGAACAGGTGAA. . .
CACACAGCAGCACCATGCCGGTCTTGCACACTGTCTCTGAAAGGGAGCGGGGA. . .
ATCCGCTGAGGTGATCTCACCACACAGCAGCACCATGCCGGTCTTGCACACTG. ..
CAAGAAATAGCGTACAAAAGTCAGTGCAATATGACGATCCATTGACAGGTGAA. . .
GCGATTGAGGTGATCTCACCACATCAGCAGCACCATGCCGGTCTTGCACACTG. . .
TACGGGTACGATTTGAGGGGCCGGGTCCACCTCGGAGGTTCAAAGCTCAAGCA. . .
TGGCGGGGAGCGAGGAGAGTTAGCAGCCAAGTGCCAGCAAAGGGAAGCTCACA. . .

\

CG( GACTGCTGCTGCTG. . . CTGCTGCTGCTGCTGAGGE
CGAAATGAATGAATG. . . AATGAATGAATGAATGCT
Example locus: \l/
11 repeatallele reads | : : 1 TCECCRTEAGTEETE 1 | ETEETERCEERE

ACTGCTGCTG.
ACTGCTGCTG.

TG CTGCTG
CTGPA

.CTGCTG

13 repeat allele reads | e .CTGCTG!

10 repeat allele reads| s ¥

€«—TC CATGACTGCTG CTCACA—>
« «AGTCTGGCATCGGCAT ACTCACATGAC. ..
. .GGGCTTAGTCTGG etc.

GUAR GUUAUGACAGUGGARAAUUGCUAUGCCG. . .«
uRGUUACGAAAUGGACUAUUGCACACECGUUU. . .
CGAUAUACUSGCGCAUCUGUUAGACGAUGGGUA. . .

5 A
b -UAY

-AATGAATGAATGCT.
'GCTGAGGGACTCACAGTTGACC!

\AATAATGGAATG. .

"GAACGAGTGGACCG
TCGATGGGACTGTGTC

GACTGCTGCTG. . .CTGCTGCT AGTTGACCGATGGACTG

TAATAGCGGTGAACTGGCTGAC ﬁAATGAATGAATG .AATGAAT
CGGACGAAATGAATGAATG. AATGAATG\ AACGAGTGGACCGATGGACGGG
TCGATGATGACGGGCTTAGTCTGGCA TGCTGCTG. CTGCTGCTG Al

GCGGTGAACTGGCTGAGC »AATGAATGAATG
TGAATGAATG. AATGAATG AACGAGTGGACCGATGGACGGGCATGACCGT
”TGACCGATGGACTGATTCGATGGGACTGTGTCAGGTGACCAGTGAGATGACCGCGATTATT

\’

15 repeat allele
AATGAATGAATG. . . AATGAATGAATG!

AATGAATGAATG TA

Example locus:

ARCGAGTGGACCG
GCGGTGAACT! .
AACT AATGAATGAATG. . .

A
AATGAATGAATG! AACGAGT

13 repeat allele
AATGAATGAATG. . . AATGAATG!

AATGAATGAATG. . . AATGAATG!
AATGAATGAATG. . . AATGAATG!

AACGAGTGGACCGATGGACGGG
GACCCCGTAATAGCGGTGAACT
AACGAGiGGAccGAqGG

CGATGGAC! ATGAC
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a. 150 bp shotgun sequence data to ~15x coverage.

b. Identify all reads with multiple (2/3/4/5/6)-mer repeats

flanked on both ends by non-repeat sequence with
select_STR_reads.

c. Cluster reads with same (2/3/4/5/6)-mer and flanking

sequences with merge_STR_reads.

d. Extend flanks with k-mer based local assembly using

overlapping reads with extend_STR_reads.

e. Design and synthesize 100bp biotinylated RNA probes

complementary to flanks for DNA capture.

f. Shear DNAs from study population(s) to ~300 bp; make

sequencing libraries.

g. DNA capture with streptavidin-coated magnetic beads;

enrich for fragments that contain flanking sequences;
2nd round of capture for fecal samples.

h. Sequence the captured libraries 150x150 bp to high
coverage for each sample; a portion of sequence reads
will extend over the full (2/3/4/5/6)-mer repeat and into
both flanks.

i. Map captured reads to target sequences and

estimate individual genotypes at each locus.

Figure 1. BaitSTR computational pipeline and massively parallel STR enrichment strategy.

we keep the information about the STR that covers the most
number of bases in the sequence. This step speeds up com-
putations in subsequent steps, but also introduces a source
of false-negatives by allowing discovery of only one marker
per read. This module uses the ‘multiprocessing’ package
in the Python programming language to implement data
parallelism and leverage multiple cores common in mod-
ern CPUs. One of the inputs to this module is the length
of the sequence flanks required around the STR on the dis-
covery read, allowing for selection of STRs that are away
from the ends of the sequences to ensure sufficient non-
redundant flanking regions for downstream steps. However,
it also has the adverse effect of increasing the false-negative

rate by limiting discovery of STRs that effect less than L-2f
bases of the sequence, where L is the length of the read, and
f is the user-input flank requirement in base pairs. We also
use the flanking sequence along with the STR core unit to
flag candidate sequences that could support the same STR
location as described in the next step.

Step 2. Merge reads supporting the same STR.  In the mod-
ule named merge_STR _reads, we collect all the sequences
annotated in the previous step (select_STR _reads) that sup-
port the same observed core repeat unit or motif, and
have flanking sequences that are similar as determined us-
ing alignment identity thresholds. As a sequence identified
and retained from the previous step is read, the non-repeat
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flanks of the annotated STR are aligned to the flanking se-
quences of all the STRs that have the same repeat unit. We
use a simple implementation of the Smith—Waterman algo-
rithm (25) to perform the alignments of the flanks, and a
sequence is added as evidence for an existing STR if the
identity of the alignment and the block (a collection of
reads supporting the same STR motif identified from previ-
ous reads) exceeds 90% and allows no more than two gaps.
Consensus sequence for the segment flanking the STR is
updated as more sequences are added as evidence for that
STR. If the number of sequences in the block exceeds sta-
tistical estimates for the read coverage in a whole genome
shotgun sequencing experiment via the Poisson approxima-
tion to the Binomial distribution (26), it is considered to be
indicative of collapsed repeats or erroneous micro-assembly
around the STR, and hence filtered out during this step. The
user can also input a coverage threshold that overrides this
default setting. Only blocks that show evidence of support
for the presence of two different alleles, and hence polymor-
phic STRs, are output by default. However, a user-specified
option allows retention of all the STR blocks, which may be
desirable in cases where the discovery of STRs is performed
in one individual and then genotyping is done in others.

Step 3. Extend STR contigs on both ends. 'We use the mod-
ule extend_STR_reads to create local assemblies. This step
extends the flanking regions to serve as probe targets and
prevents inadvertently targeting (non-STR) repetitive ele-
ments or low-complexity regions. We extend the unique re-
gions flanking each of the previously identified STRs using
a k-mer based approach. Similar to BFCounter (27), we use
a Bloom filter to probabilistically identify and store all non-
singleton k-mers in a memory-efficient hash table imple-
mentation (https://github.com/google/sparsehash.git). This
approach limits the inclusion of singleton k-mers arising
from sequencing error while managing the intensive com-
putational footprint of k-mer hashing. A second round of
counting is done to remove k-mers that are only seen once
(or seen below a user-specified threshold number of times)
but are included as a result of the probabilistic nature of
Bloom filters. We use the resulting list of non-singleton k-
mers to extend both flanking sequences for an STR as fol-
lows: The leading k-mer is selected and possible extensions
in the hash table are evaluated. If only one extension is
found in the list of non-singleton k-mers, then that exten-
sion is applied and the process repeats. If two extensions
are possible and the location represents a simple SNP, we
can optionally tolerate the polymorphism by selecting the
first of the alleles sorted lexicographically and extending the
flank. If a more complex case is encountered, such as the
edge of a repeat segment or a structural variant, then we
terminate the extension. By default, the flanks are extended
up to 1024 bases on both sides of the STR, but the user can
override this default by invoking a ‘—flanks” command line
option. Extensions are also stopped if the next k-mer has
already been used in extension of the same STR earlier dur-
ing the extension process, potentially indicating a tandem
repeat in the flank.

Diademed sifaka sequencing and STR genotyping. To test
the BaitSTR pipeline, we first shotgun sequenced two di-
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ademed sifakas (male ‘Oberon’ and female ‘Titania’—now-
deceased captive individuals at the Duke Lemur Center who
were wild-caught as adults in Madagascar) for marker de-
velopment. DNA was isolated from liver tissue using Qia-
gen DNeasy Blood and Tissue kits, sheared to ~325bp frag-
ments using a Covaris S2 Ultrasonicator, and size-selected
to the same target range on a 2% agarose gel. We targeted
~325bp inserts for size selection to generate maximum non-
overlapping data per insert while minimizing physical dis-
tance between forward and reverse reads. In post-capture
libraries discussed below, this approach should increase
the on-target density of sequence data by minimizing the
proportion of insert regions captured but not sequenced,
but insert size and sequencing configuration could be co-
optimized in other ways. Illumina sequencing libraries were
prepared after Meyer and Kircher (28) with 12 cycles of
indexing PCR using KAPA HiFi DNA polymerase. Both
libraries were sequenced on one lane each of an Illumina
HiSeq 2500 in Rapid Run mode with 300 cycle paired-end
configuration (i.e. 150 x 150 bp reads), yielding an esti-
mated 12x average depth of non-redundant coverage per
individual (based on a genome size estimate of 3 Gb, i.e.
similar to that of other lemurs (29)). The sequencing run
from Titania’s library produced reads with an elevated pro-
portion of reads with missing base calls at the same single
position (a failed sequencing cycle), yielding data suitable
for genotyping but possibly compromised for marker de-
velopment. Conservatively, marker development was there-
fore carried out using reads from Oberon only, invoking
the option to output all STR blocks including both ho-
mozygous and heterozygous STR locations. The data from
Oberon were filtered to exclude reads with any ambiguous
base calls (Ns), leaving 260 598 672 reads that were car-
ried through the STR discovery pipeline described above.
select_STR _reads was configured to recover 2-6mer motifs
with at least 5 tandem repeats and 27nt of flanking non-
repeat sequence, yielding 4 014 698 STR-containing reads.
Using 16 CPU cores (Intel Xeon 2.13 GHz) on an HP server
running Ubuntu 12.04, this process required ~3 h using
<50MB of RAM per core. 475 115 putative STR loci re-
mained after read merging under default parameters us-
ing merge_STR _reads, requiring an additional ~15 min on
a single core utilizing ~400MB of RAM. Finally, 27-mers
were used for block extension into each flank, SNPs were
not tolerated during extension, and k-mer representation
was capped to 30x using extend_STR_reads. Because of k-
mer hash construction process described above, extension
is the most computationally intensive step, utilizing a max-
imum of 44GB of RAM over 18 h on a single core.

Probe design and target capture. Shotgun reads from both
sifaka individuals were then re-mapped to this set of blocks
using parameters identical to the BWA-backtrack strategy
in the BaitSTR type.pl script, and genotyping was carried
out at loci with at least four independent, non-redundant
reads with 30nt flanking alignments and an integer value
for repeat number (i.e. no partial repeats). 63 596 STR locus
genotypes were called in Oberon and 57 745 were called in
Titania, with 55 531 loci in common. We discarded loci with
more than two alleles present in either individual, suggest-
ing PCR stutter or somatic variation (n = 4915 discarded),
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and we increased the minimum repeat number for 2mers to
7 to further pare down the target set, eliminating 35 131
further loci. We then selected a custom set of loci with at
least two total alleles observed across four chromosomes,
totaling 3882 sites (1041 2mers; 1803 3mers; 908 4mers; 90
Smers; 40 6mers). To reach our target of 5000 sites for cap-
ture, we selected an additional 1637 3mers (n = 1074) and
4mers (n = 563) with only one allele observed, but with a
minimum 6 repeats. We designed four individual 100mer
probes per target: two on each flank, with one probe per
flank immediately abutting the STR, and another probe per
flank 20nt away from the STR, overlapping the first probe
by 80nt. All four probe sequences per targeted locus were
required to pass the probe design QC pipeline implemented
by MYcroarray to retain a locus. 3505 of the 3882 multi-
allele sites passed probe design QC, so 1495 of the 1637
single-allele sites were included at random (the 5000 cho-
sen target sequences are provided as supplemental dataset
S1). We used lastz (30) to identify the orthologous regions
of 5000 target regions in the hg38 human reference genome
assembly (where possible given sufficient sequence conser-
vation). We directly aligned the complete target blocks to
the hg38 assembly using default lastz parameters. We then
filtered alignment matches to a minimum 50% coverage of
the target and 70% sequence identity, and retained targets
with only one valid match across the human genome. This
strategy recovered the orthologous locations of 4249 (85%)
of the sifaka STR loci. Of the mapped loci, 2267 overlapped
annotated genic regions (including introns) and 1982 were
entirely intergenic, and excluding the Y chromosome (our
preferential selection of variable markers would have lim-
ited the inclusion of such markers; the initial discovery step
could include more male individuals in alternative designs
for future studies) the markers are distributed across the
genome (Figure 2). For applications where fewer than 5000
loci are necessary or beneficial, such as simple kinship tests,
the probe set can easily be downscaled. The probe set can
likewise be expanded to any number of targets at a decreas-
ing per-locus cost if more loci are desired.

The probe biotinylation process for target immobiliza-
tion on streptavidin beads (24) is implemented through the
integration of biotin-UTP at genomic thymine sites in the
probe sequences, so a moderate probe uracil content is re-
quired for effective target recovery. Probe sequences with
fewer than 11 Us were discarded, and 301 probes with low
U content (11-14 Us) were given U-tails of 1-5 residues to
ensure effective biotinylation. The resulting 20 000 probes
were obtained from M Ycroarray in a MYbaits-1 kit (probe
design lot 140715-31; probe sequences provided as supple-
mental dataset S2).

We prepared additional sequencing libraries from two
further samples: blood and fecal DNA from ‘Romeo’, the
male offspring of Titania and possibly Oberon, but with
uncertain paternity. Romeo was wild-caught as a juvenile
along with his mother Titania; Oberon had been captured
previously from a different group in the same population.
Romeo (now deceased) survived Titania and Oberon at the
Duke Lemur Center, making possible the collection of both
blood and feces from this individual. The fecal samples used
in this study were stored in 10 ml RNALater upon collec-
tion and stored at ambient temperature until received in
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the laboratory several days following collection, after which
these samples were stored at at —-80°C. Blood DNA for
Romeo was extracted from 50 wl whole blood using a Qi-
agen DNEasy Blood and Tissue kit following the manufac-
turer’s protocol. DNA was extracted from 200 mg of fecal
material per extraction. Following previous fecal DNA ge-
nomics capture research (14), we combined separate fecal
extractions to reach a total of 8 pg of total DNA (i.e. in-
cluding endogenous DNA from the individual, along with
presumably a much larger quantity of exogenous DNA, for
example from gut bacteria (14)) per individual, then con-
centrated the DNA samples using a Speed Vac to yield three
separate aliquots of 130 wl for shearing for each individual.
Fecal aliquots were then sheared on a Covaris M2 according
to the manufacturer’s protocol for 350 bp sheared products,
with the time reduced from 65 to 60 s to correct for observed
slight overshearing of fecal DNA. 2 g of blood DNA was
sheared to 350 bp in a 130pl aliquot according the recom-
mended Covaris M2 protocol. Following the fecal capture
protocol described by (14), sheared fecal DNA was concen-
trated to 2-3 aliquots of 25 pl per sample and size-selected
on a 2% low-melt agarose gel to ~350 bp. Gel-extracted
DNA was further purified using SPRI beads prior to en-
zymatic steps of library preparation. Barcoded sequencing
libraries were prepared from these samples using TruSeq
Nano kits (Illumina) following the manufacturer’s protocol
for a 350 bp insert size using 8§ PCR cycles. Two duplicate
libraries were made from the combined isolated fecal DNA,
using different barcodes.

All five libraries—the two original shotgun-sequenced
samples from Titania and Oberon, one new tissue library
from Romeo, and two duplicate libraries of fecal DNA from
Romeo—were enriched for the STR targets using the MY-
baits protocol version 2.3 (M Ycroarray). For blood and tis-
sue libraries, 500 ng was used for hybridization. For fecal
samples, the input DNA was increased up to 1.3 pg, and all
protocol reagents besides the capture master mix were dou-
bled, according to previous modifications (14). Hybridiza-
tion was carried out for 24 h at 65°C, and the number of
post-hybridization kit washes was increased from three to
six based on previous procedures (14). The resulting tem-
plates were each re-amplified in two separate reactions for
14 cycles according to the MYbaits PCR protocol using li-
brary primers IS5 and IS6 (28) and KAPA HiFi DNA poly-
merase. Enriched libraries were re-combined immediately
after amplification and purified with SPRI beads. Using one
of the two enriched duplicate libraries of fecal DNA, we
carried out a second capture using 300 ng of the enriched
library as input. Reagents were doubled as above, and re-
amplification PCR was carried out for 11 cycles. We se-
quenced the enriched libraries in multiplex pools on partial
lanes of either HiSeq 2500 or NextSeq instruments with 300
cycle paired-end reads, recovering between 17.4 million and
36.5 million read pairs per library (sequencing details pro-
vided in Supplemental Table S1).

Sequence reads were aligned to the targets using Bait-
STR_type.pl, a companion script to BaitSTR (https:
/lgithub.com/lkistler/BaitSTR _type). BaitSTR _type.pl can
use the complete 10bSTR pipeline (22), lobSTR with a
BWA-mem alignment or a BWA-backtrack approach (31)
for read mapping and STR genotype calling, and includes
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Orthologous locations of 4,249 genic (above chromosome, n=2267, including introns) and intergenic (below, n=1982)
diademed sifaka target STRs that could be placed on the hg38 human reference genome out of 5000 total targets.
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Figure 2. Orthologous locations of diademed sifaka STR targets on the human reference genome. (A) Genome-wide distribution of genic (blue, n = 2267)
and intergenic (red, n = 1982) diademed sifaka STR loci that could be mapped the human genome.

all pre-processing and reference indexing steps to filter
and prepare the output blocks from BaitSTR. The BWA-
backtrack pipeline was developed to accommodate di-
vergent samples with a previous version of 1obSTR that
was not yet compatible with external aligners, given lob-
STR’s limitation with divergent read mapping. It was used
to design the target markers and is included with Bait-
STR_type.pl, but should now be considered deprecated. We
used the BWA-mem/IobSTR pipeline to align the captured
reads to the complete extended blocks of the target 5000
loci (500-2276nt each block, total 5.68 Mb) and call STR
genotypes. We used default parameters with the following
changes: We modified genotype calling parameters in the
allelotype module (22) as recommended in 1obSTR docu-
mentation for handling BWA-mem alignments (-realign —
filter-clipped —min-read-end-match 10 —filter-mapq0 —max-
repeats-in-ends 3). We carried out PCR duplicate removal
using the SAMtools 0.1.19 rmdup function (32), separately
collapsing the mated and unmated reads (default behavior
in BaitSTR type.pl), and disabled duplicate removal in al-
lelotype (-no-rmdup). SAMtools rmdup default behavior
fails to collapse unmated paired reads. However, in the case
of mapping to small targets, a high proportion of read pairs
contribute only one of the two reads to the alignment, po-
tentially leaving a large set of PCR duplicates in the align-
ment, whereas treating paired reads as single reads artifi-
cially collapses inserts with differing outer coordinates. In
the shotgun data from Oberon, unmated reads constitute
58% of the aligned data. As such, these unmated reads are

separated and treated as single reads, then recombined with
the mated pairs and re-sorted.

PCR Stutter.  PCR ‘stutter,” the physical slippage of DNA
polymerase on the template strand resulting in loss of re-
peat fidelity (33), is a known obstacle for traditional PCR-
based STR analysis (e.g. (5)). We tested for the effects of
PCR stutter in our dataset by comparing (i) Oberon’s shot-
gun and capture data, expected to match, (i) Titania’s shot-
gun and capture data, expected to match, (iii) Romeo’s tis-
sue and fecal capture data, expected to match and (iv) Ti-
tania and Romeo’s capture data, expected to share at least
one allele in common. We categorized markers into three
groups for each pairwise comparison between libraries: (a)
full matches at both alleles, (b) ‘half matches’, where one al-
lele matches and the other does not match (this category in-
cludes markers where one library appears homozygous and
the other appears heterozygous with one ‘allele’ matching
the homozygote) and (c) mismatches, where neither ‘allele’
matches between libraries, with libraries appearing as any
configuration of homozygous and heterozygous. Further,
PCR stutter usually skips or adds only one repeat period at
a time, yielding a decay profile peaking at the true biolog-
ical allele (22). Therefore, we further divided half-matches
into ‘stutter half-matches,” where the mismatching ‘allele’
differed by only a single repeat period, and ‘non-stutter
half-matches’ representing any other configuration. Finally,
we note that any half-matches with one ‘homozygous’ call
might represent failure to observe a true heterozygote due
to dips in coverage or recovery biases.
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Simulations. In order to assess the limits of STR detection
and assembly under variable levels of data coverage and k-
mer size parameters, we performed several simulations to
test the sensitivity and practical limitations of the BaitSTR
pipeline.

STR discovery in a simulated random genome

We simulated a 2 Mb long chromosome of entirely ran-
dom DNA to understand the constraints imposed by se-
quence coverage and k-mer length for automated STR dis-
covery and extension using BaitSTR. We added bi-allelic
STRs after every 2000 bp stretch of random sequence in this
synthetic genome, and then ran our pipeline to investigate
the recovery rate of the STRs. In the absence of repeat se-
quences, the rate of recovery of such STRs should be high,
and only depend k-mer length and genomic coverage as fol-
lows:

e k-mer length. Sequences that harbor STRs with non-
repeat flanking sequence at least equal to the k-mer length
are required for STR discovery in select_STR _reads, so
that the candidate region of reads for STR discovery de-
creases with larger k-mers given a constant read length.
Additionally, k-mer length is an important factor in
later stages, as the flanking regions are used to col-
lapse candidate STR loci in merge_STR _reads, and ex-
tend_STR _reads uses a k-mer based extension process
sensitive to variable k-mer lengths.

e Average coverage. This variable determines the number of
reads that support a STR allele. By default, we require at
least three reads to support a polymorphic STR location,
before it becomes a candidate for subsequent extension.

We performed two sets of simulations with this dataset.
First, we focused on understanding the limitations of our
approach and the effects of the various design decisions that
were made during the discovery step in select_STR_reads.
To accomplish this goal, we ran the pipeline but did not
impose any restrictions on the minimum length of the ex-
tended contigs prior to calculation of performance metrics.
For the second simulation, we required that the extended
contigs satisfy minimum total length of 500nt, and min-
imum non-repeat flanks of 200nt (similar to the require-
ments imposed for our analyses with real datasets) before
calculation of performance metrics. In each of these sim-
ulations, Illumina short-read sequences were simulated us-
ing pIRs (34). The average coverage of the sequences was
varied between 5-fold to 39-fold, and BaitSTR was run us-
ing k-mer lengths between 9 and 31 bps for each of those
coverage values. In each of those runs, we required a flank-
ing sequence around the STR to be at least equal to the
k-mer length used in that run. The extended contigs from
extend_STR _reads were then aligned back to the reference
genome using BLAT (35). The alignments were processed
to calculate the mapping locations of identified STRs on
the reference sequence using an in-house custom script, and
the true positives and false-positives were subsequently cal-
culated using BEDtools (36). False-positives are defined as
(1) chimeric contigs where extension resulted in incorrect
local assembly, (ii) contigs incorrectly aligned back to the
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reference, (iii) collapsed repeats that could masquerade as
polymorphic segments or (iv) STRs detected by the pipeline
that were not explicitly introduced during genome simula-
tion. Importantly, the fourth type are legitimately present
at random in a simulated genome, and so are not strictly
false-positives concerning pipeline specificity. For instance,
12 out of 41° (1 048 576) possible 10nt DNA sequences are
2-mer STRs repeated five times, predicting ~23 instances
of random 10nt 2-mer STRs (95% CI: 14-33) in a 2 Mb
random sequence. In a biological sequence, these would be
correctly identified as true STRs rather than false positives.

STR discovery in human genome sequence read data

To analyze the detection performance of BaitSTR in a
non-random genomic landscape, we used previously pub-
lished shotgun Illumina sequencing data from the widely
studied human NA12878 CEPH individual. We down-
loaded the read data alignment to the human reference
assembly hgl9 from ftp:/ftp.sra.ebi.ac.uk/voll/ERA172/
ERA172924/bam/NA12878_S1.bam, comprising 791 385
507 sequence pairs resulting in ~50-fold coverage of the hu-
man genome. We used SAMtools (32) to identify and geno-
type putative STRs using the variant calling workflow for
WGS described at http://www.htslib.org/workflow, followed
by filtering to only keep putative STR variants. We con-
verted the downloaded BAM alignments to raw FASTQ se-
quences using bam?2fastx script supplied with TopHat (37),
and then used lobSTR (22) to identify, align, and geno-
type all putative heterozygous STRs in the individual us-
ing the lobSTR index for hgl9. We were able to genotype
1 518 346 of the putative STR locations using lobSTR, out
of which 692 499 were non-homopolymers repeated a mini-
mum of five times in tandem, 97 064 were called as heterozy-
gous in NA12878, and 61 343 were exact repeats in at least
one of the two genotyped alleles in NA12878. Importantly,
BaitSTR targets only simple STRs whereas lobSTR detects
complex motif combinations that include non-exact repeats,
so that the all members of the lobSTR set may not be de-
tectable using BaitSTR. We created a combined file in BED
format that was used to represent the set of STRs found us-
ing SAMtools or lobSTR, and we treated them as the ‘true’
set of calls for the following analyses.

We measured the detection capabilities of BaitSTR with
the NA 12878 genome resequencing dataset by randomly re-
sampling read datasets with sequencing coverage ranging
from 1-fold to 25-fold. We required a flank of 29 bases dur-
ing STR discovery (select_STR_reads), and used an exten-
sion k-mer length of 27 (extend_STR_reads). As above in
the second simulation with the random reference genome,
we required extended contigs to contain 200nt non-repeat
flanks with a minimum 500nt overall length. The assem-
bled contigs were aligned back to the human reference using
BLAT (35), and only the alignment with the highest score
was included to identify the putative STR locations on the
reference. This set of aligned contigs was then compared to
the ‘true’ set of calls using BEDtools (36), and STR discov-
ery was quantified across coverage levels.


ftp://ftp.sra.ebi.ac.uk/vol1/ERA172/ERA172924/bam/NA12878_S1.bam
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RESULTS
STR enrichment

Briefly, we shotgun sequenced two diademed sifaka indi-
viduals and designed an STR bait library using the Bait-
STR pipeline. We then tested STR target capture by RNA
hybridization using three tissue DNA samples and one fe-
cal DNA sample. The three tissue libraries were highly en-
riched for the target loci compared to shotgun datasets,
with a large proportion of captured regions yielding suitable
non-redundant sequence read coverage for genotype calling
(Figure 3). Given the composition of our target STR loci,
there are 498 606 genomic positions from which 150nt reads
requiring 15nt non-repeat flanks could be initiated and yield
a genotype call, predicting that 0.000156 of shotgun reads
should yield target genotype calls in a 3.2 Gb genome. In
the shotgun data from Oberon and Titania, we observed a
slightly lower proportion of callable reads than this genomic
expectation (0.000128 and 0.000118, respectively), which is
likely due to PCR redundancy and read filtration. In the
capture data from these two individuals, we observed 0.0187
and 0.0127 of STR-callable reads—reads completely span-
ning the STR according to the parameters described above
for allelotype (22)—constituting empirical enrichments of
145x and 109 x, respectively. In total, the three tissue sam-
ples yielded 4710 (94.2%; Romeo), 4939 (98.7%; Oberon)
and 4953 (99%; Titania) of the 5000 target loci callable at
minimum 10x non-redundant coverage—or with at least
ten independent sequence reads spanning the STR for geno-
type calling. Assuming a 100-fold enrichment factor, one
Illumina HiSeq 3000/4000 lane producing 87.5 Gb of read
data would thus be predicted to yield an average of 37x cov-
erage of the target regions for each of 96 samples sequenced
in parallel.

We randomly subsampled all read alignments to approx-
imately 30 million input reads using the SAMtools view
function with the ‘-s’ option (32) to compare results between
samples (Figure 3). Coverage was found to be highly corre-
lated between samples, with Oberon and Titania’s capture
data showing a strong linear relationship in per-locus cov-
erage (Pearson’s product moment correlation: > = 0.70, P
< 2 x 107'%; Figure 3B). Romeo’s per-locus coverage also
correlates significantly with Oberon (> = 0.31, P < 2 x
1071%) and Titania (r* = 0.18, P < 2 x 107'%), but lower
correlation coefficients likely reflect different biases intro-
duced during the two different library preparation strate-
gies used (38). Moreover, in the subsampled data, the three
tissue capture samples yielded 4933 (Oberon), 4909 (Tita-
nia), and 4516 (Romeo) marker genotypes at 10x cover-
age or greater. Thus, at random, ~4374 ten times genotyped
markers would be expected to be common among the three,
but instead we observed 4497 ten times genotyped markers
in common. This result further demonstrates that marker
dropout occurs systematically rather than at random, likely
as a function of hybridization efficiency, which is advanta-
geous in terms of retaining overlapping genotype calls be-
tween samples in larger test populations. That said, in gen-
eral the overall bias in terms of marker coverage introduced
by the capture process was subtle, so that this systematic
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dropout does not lead to major unevenness in marker cov-
erage across samples.

Our method also successfully enriched Romeo’s fecal
DNA test libraries, although the poorer DNA quality and
the high proportion of exogenous DNA in these samples
did affect the genotyping process as expected (14). Follow-
ing one round of capture, 4815 markers were called with at
least one read in the entire dataset before subsampling to 30
million, and 3858 were present at the 5x level or greater. We
recovered 0.00113 of reads yielding genotype calls, repre-
senting 7.27x ‘effective’ enrichment—that is, given genomic
expectations of 0.000156 in a completely endogenous tem-
plate. However, fecal samples are dominated by exogenous
DNA, with major contributions from gut microbiota and
other sources (14). Assuming a conservatively high estimate
of 5% endogenous DNA content in feces (14), our results
would constitute an actual 145x enrichment of the STR tar-
gets, which would be on par with enrichment levels observed
in the tissue samples. Previously, a serial capture approach
was used to further boost the on-target proportion of reads
from fecal libraries (14), and so we tested a second capture
with one of the fecal libraries. In our case, serial capture in-
creased dramatically the proportion of on-target reads prior
to PCR duplicate removal from 0.00381 to 0.0628, a 15-fold
increase, but the added PCR cycles ultimately lowered li-
brary complexity to a problematic degree. After removal of
duplicate reads, the on-target proportion of reads declined
slightly to .000738. Thus in this case, the serial capture ap-
proach yielded fewer genotypes than a single capture due to
a loss in library complexity.

Familial genotyping

As a test of STR fidelity, we used KING (39)—which com-
putes a kinship coefficient reflecting the degree of related-
ness on the basis of genomic data—to test for relationships
among the putative familial trio of Titania, Oberon and
Romeo using the genotype. The kinship coefficient statis-
tic calculated by KING in the ranges of >0.354, between
0.177 and 0.354, between 0.0884 and 0.177, and between
0.0442 and 0.0884 correspond to duplicate/monozygotic
twin, first-degree, second-degree and third-degree relation-
ships, respectively (39). Titania is the known mother of
Romeo, while Oberon’s paternity was suspected but un-
certain. The KING analysis reported a kinship coefficient
of 0.2974 between Romeo and Titania, confirming a first-
degree relationship between the two consistent with either
parent-offspring or full sibling relatedness (39). However,
results from KING were inconsistent with 1st or 2nd degree
familial relationships between Oberon and Romeo (kinship
coefficient = 0.0519). Given the robust result supporting Ti-
tania’s known parenthood of Romeo, we can conclude that
Oberon is not the father or a close relative of Romeo. Our
method’s high genomic resolution holds substantial poten-
tial for determining relatedness within groups and popula-
tions for which relationship structures cannot be fully un-
derstood from behavioral observation, as is often the case
for Propithecus species, for which there is both variation in
the number of adults of each sex within social groups and
one previous study identified a high rate of extra-group pa-
ternity (40).
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Figure 3. Target Enrichment Results. (A) Number of target STR loci recovered in shotgun (n = 2) and captured (n = 5) libraries. Read data were ran-
domly downsampled using SAMtools (32) after read mapping and before genotype calling to normalize all libraries to 30 million input reads for cross-
comparability. Actual reads generated per captured sample ranged from 34.8 million to 73 million (Supplemental Table S1). (B) Per-site coverage is highly
correlated among samples, illustrating non-random variation in marker enrichment. Marker coverage in the 30 million read subsample is compared be-
tween Titania Oberon capture data (left axis, blue), and Titania and Romeo’s tissue library (right axis, red). (C) Enrichment of reads carrying target STRs
in subsamples of 30 million reads. Left axis shows the proportion of callable reads, right axis shows the estimated enrichment level given the genomic
expectation of 0.000156 of reads on target with no enrichment. For the fecal libraries, enrichment values are given without any correction for the high
proportion of exogenous DNA, whereas previous estimates of endogenous fecal DNA content suggest actual enrichment similar to the tissue samples.

STR-linked SNPs

The library capture approach generates a large amount of
resequencing data beyond the direct genotype information
at STR loci, and therefore also functions as a reduced-
representation genomic dataset with a substantial number
of incidentally captured single nucleotide polymorphisms
(SNPs) across samples. These data could be utilized for a
wide range of analyses, either as an independent data class
or in conjunction with STR data. In fact, compound mark-
ers consisting of an STR and one or more tightly linked
SNPs are potentially useful for high-resolution population
genomic applications (41), and the incidental capture of
SNP panels during STR targeting yields numerous of these
linked markers (Figure 4). We used the SAMtools mpileup

function (32) and VarScan (42) to screen the alignment files
produced by BaitSTR _type.pl for SNPs with at least 4 x cov-
erage per sample. We excluded SNPs within the targeted re-
peat region itself, and we called SNPs only where they could
be linked directly to a called STR allele, either on the same
read or on a mated read, facilitating secure phasing. This
approach identified 13 955 SNPs in total, including 13 005
genotyped (with minimum 4x coverage) in all three tissue
samples. Increasing the coverage threshold to a 20x mini-
mum, we retain 10 715 SNPs that were genotyped in com-
mon among the three tissue samples. Although SNP detec-
tion was only carried out in the flanking regions and not
in the STRs themselves, we tested whether local misalign-
ment around STR indels led to inflated SNP discovery as
follows: We summarized the number of STR-linked SNPs
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Figure 4. SNP-STR compound markers. (A) Simulated example of a phased STR-linked SNP locus, where the ‘A’ SNP allele associates with six repeats of
the TC motif and the ‘G’ allele associates with seven. (B) Proportions of genic, non-genic, and unplaced STR loci (based on mapping analysis to the human
reference genome; see Figure 1) with number of SNPs detected at >4 x coverage on associated inserts from three lemur tissue sample libraries (Oberon,
Titania, and Romeo). Forty two STR loci associated with >15 SNPs (n = 8 genic, n = 25 non-genic, n = 9 unplaced) are not shown.

in non-genic STR loci across three bins: Int to 20nt from
the STR (n = 653), 21nt to 40nt from the STR (n = 642)
and 41nt to 60nt from the STR (n = 616), expecting signif-
icantly more SNPs in the adjacent bin (Int to 20nt) in the
case of misalignment. We compared SNP frequencies in the
three regions using a G-test for independence in the ‘Desc-
Tools’ R package (43). We found no significant differences
in SNP frequency according to proximity to the STR (P =
0.532 comparing all three bins; P = 0.690 comparing the
nearest to most distant bin). Thus, we find no evidence that
misalignment inflates SNP discovery estimates near STRs.
Diademed sifakas have the highest level of mitochondrial
genome sequence diversity among a sample of eight ex-
tant and two extinct lemur species for which population mi-
togenomic data are available (44). However, the STR-linked
SNP data that we generated for diademed sifakas in this
study could not be used for comparison to nuclear genome
estimates of nucleotide diversity to those available for other
lemurs (45), because our STR marker selection (based on
Oberon’s shotgun sequencing data) excluded loci with evi-
dence of flanking region SNPs, thereby also artificially re-
ducing the observed number of heterozygous sites in other
individuals with shared population history to Oberon (i.e.
Titania and Romeo). While we have subsequently modi-
fied BaitSTR to allow users to select STRs irrespective of
the presence of flanking region SNPs in the individual(s)
on whose shotgun genome sequence data those steps were
performed, this experience does illustrate the importance of
considering the effects of various study design options. For
example, if at the marker development step the user chooses
to preferentially select variable STR loci, then the individ-
uals whose shotgun genome sequence data were used for

that step should be excluded from population genetic diver-
sity analyses of any type of marker in to avoid inflation of
diversity statistics.

PCR stutter

We found that PCR stutter was ubiquitous in our captured
libraries, due to both the initial library amplification and the
subsequent reamplification step required after target cap-
ture to reach molarity sufficient for cluster generation. We
quantified this effect as described above, tallying match-
ing, half-matching (stutter and non-stutter), and mismatch-
ing alleles between datasets. We first compared mother Ti-
tania and her offspring Romeo at 10x sites in common,
where we expect either complete or half matches at all al-
leles. With a minimum of 10x non-redundant read cover-
age we expect both alleles at heterozygous sites to be rep-
resented >99.8% of the time based on binomial sampling
probability, thus limiting false-positive PCR stutter identi-
fications and false-negative matches from allelic dropout.
On the basis of Romeo’s blood library and Titania’s cap-
ture dataset, 99.5% of sites satisfied this requirement of full
or half matches (4676 out of 4701 sites present in both li-
braries at 10x). Similarly 99.7% of sites (2852 out of 2862)
satisfied the requirement with Romeo’s lower coverage fecal
DNA library.

We also compared the shotgun and capture libraries for
consistency within a single sample for Oberon and Tita-
nia. These comparisons necessarily included fewer mark-
ers because of the lower overall coverage of the shotgun
datasets. Nonetheless, out of 1338 markers compared be-
tween Oberon’s shotgun and capture data at a minimum
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10x depth of coverage, 1233 (92.2%) were full matches at
both alleles and none were full mismatches. Among the
105 half-matches, 97 (92.4% of half-matches, 7.2% of mark-
ers compared) are classified as ‘stutter half-matches’ as de-
scribed above. The remaining eight loci are ‘non-stutter
half-matches.” Representing only 0.6% of compared mark-
ers, these observations could reflect the small expected pro-
portion of heterozygous sites for which both reads were no
represented even at 10x coverage. A comparison of Titania’s
10x shotgun and capture genotypes (1413) yielded very sim-
ilar results, comprising 91.3% matches, 8.4% stutter half-
matches, 0.4% non-stutter half-matches, and a no full mis-
matches. Finally, when comparing 2860 markers called in
Romeo’s tissue and fecal libraries, we observed 89.8% per-
fect matches, 8.6% stutter half-matches, 1.6% non-stutter
half-matches, and no complete mismatches. A slightly el-
evated stutter rate is expected in this comparison given
that both libraries were captured and re-amplified, unlike
Oberon and Titania’s shotgun datasets.

Results of simulations

STR discovery in a simulated random genome. As de-
scribed above, simulations in a random genomic context
were undertaken to test basic limits of the BaitSTR ap-
proach in response to kmer variation and sequencing depth.
As expected, our ability to recover STRs in the random
genome increases with coverage (Figure 5). Higher cover-
age allows for an increased probability that STR alleles at a
location fall within the acceptable region on the reads and
are supported by sufficient number of reads to become can-
didates for extension. Increasing k-mer length initially in-
creases, and then decreases our ability to find the STRs,
similar to the expectation in genome assembly using De-
Bruijn graphs (46). We also find that the false positive rate of
our pipeline is low, and falls to zero at k-mer lengths higher
than 9. That is, given sufficient k-mer length, all contigs are
correctly assembled and placed. It is important to note that
the reference in this case is composed of random sequences
and is only 2 Mb long, so significantly greater k-mer length
would likely be necessary in the case of mammalian genome
size and complexity. Roughly 10% of STRs are not recov-
ered in these simulations. As described above, we select and
store information for the STR that impacts the most num-
ber of bases in a sequence using select_STR_reads, and in
cases with multiple STRs are detected in the same input
sequence, this can lead to a situation where one of the al-
leles for a motif is always missed. Such a situation is more
likely for 2mers with small numbers of repeats even in a ran-
dom reference genome, compared to larger STRs or STRs
with longer motifs. An analysis of the false-negatives reveals
that they are indeed enriched for 2mers with smaller num-
ber of repeats. This result informs us of one of the current
shortcomings of our computational approach. A polymor-
phic STR is missed if one of the alleles is not discovered;
i.e. in those cases it is found to be homozygous for an allele,
which can happen in situations where there is another STR
within a distance less than a read length away from it. One
improvement that could be explored would be to store in-
formation about all non-overlapping STRs in the first step,

Nucleic Acids Research, 2017, Vol. 45, No. 15 el42

followed by subsequent selection of the motif that results in
a polymorphic marker in the second step.

A key requirement of marker development is to identify
STR locations with suitable flanking non-repeat sequence
for targeting with RNA probes. The above simulation does
not impose any extension requirements on the extended
contigs, but marker development imposes a restriction that
only bi-allelic STR locations satisfying criteria on length
and uniqueness of the flanking region be selected for down-
stream processing. In order to assess these limitations, we
also ran the above simulation at varying coverage requiring
that the extended contigs satisfy minimum overall contig
length of 500nt and minimum non-repeat flanks of 200nt,
reflecting the requirements imposed for our lemur marker
development. As expected, the false-positive rate remains 0,
and the number of recovered STRs is constrained as above
by k-mer length and depth of coverage (Figure 5). This re-
quirement inevitably excludes some true STR loci that co-
occur with repeat regions or difficult extension targets (low-
complexity or highly heterozygous regions), but omitting
these targets is important for in-solution capture to preempt
saturation of the probes by repetitive reads. That is, only
high-quality, securely non-repetitive markers should be tar-
geted.

STR discovery in human genome sequence read data. ~ As ex-
pected, the STR recovery rate in a human genomic dataset
under varying simulated sequence coverage levels increased
with coverage, as more STRs gain sufficient support and
fall within the valid window for annotation and extension.
At 25-fold coverage of the reference, we were able to re-
cover 5149 polymorphic markers, 5085 of which overlapped
with the ‘true’ set of STR calls identified using a reference
sequence by lobSTR and SAMtools—those markers that
were heterozygous in NA12878 and could be extended on
both sides of the STR with at least 200nt on either side
with a total contig length of 500nt or greater. Further anal-
ysis showed that the calls at lower coverage are enriched for
false-positives, and the fraction of false-positives decreases
with increasing coverage. The false positive rate drops to
<2% at 15x coverage. False-positives in this case are defined
to be STR locations identified as polymorphic using Bait-
STR, but which are not called as polymorphic by lobSTR
or SAMtools. Although BaitSTR detected only 8.3% of po-
tentially detectable polymorphic STR loci, our pipeline is
designed to be conservative with respect to the risk of non-
specific hybridization. Specifically, by implementing strict
constraints on coverage, contig and flank size, and flank
polymorphism, we limit the risk of inadvertently target-
ing non-STR repeat regions and low-complexity sequence
for enrichment. Otherwise, the sequencing library could be
swamped by repetitive element reads, which would decrease
dramatically the effective enrichment of single-copy targets.
As such, our pipeline errs on the side of avoiding this out-
come, although user-defined inputs can be used to modify
these variables with respect to target composition and speci-
ficity.

We also used the NA 12878 data at various coverage levels
to measure the capability of BaitSTR to identify and geno-
type compound markers that include both an STR locus
along with one or more tightly linked single nucleotide vari-
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Figure 5. Simulated performance of STR discovery using BaitSTR. (A) At variable k-mer lengths and coverage levels, the number of discoverable simulated
bi-allelic STRs in a random synthetic genome that could be discovered with no requirement of local extension. 1000 total markers were present. (B) Using
the same simulated STRs in a synthetic genome, this simulation required successful block extension to 200nt non-repeat flanks and a total contig length
of 500nt. (C) At variable coverage levels, the number of heterozygous STRs discovered in the NA 12878 genome data, along with a low frequency of false
positives and the number of heterozygous SNPs recovered from extended blocks.

ants (SNPs). We only considered SNPs that could be linked
to an STR allele on the same read to facilitate phasing. The
raw sequences were aligned to the assembled contigs using
BWA (31), and the SNPs were called using SAMtools (32)
with analysis only of those sequences that also covered the
polymorphic STR marker (i.e., such that the SNP allele is
empirically phased with the STR allele; see Figure 4A). We
removed SNPs with a Phred-scaled SNP quality score <10
as calculated by SAMtools, as well as cases where we did
not find at least two reads supporting each allele. We found
that the number of STR-linked SNPs also increase with in-
creasing coverage, and we find such tightly-linked SNPs as-
sociated with 6.66% of the STRs in this dataset at coverage
of 25x.

DISCUSSION

Our approach facilitates the robust identification of STR
loci from short read data for species without a reference
genome, enrichment for thousands of those STR targets
from both high-quality and non-invasive samples using hy-
bridization capture, and genotyping of both the targeted
STR markers and nearby SNPs. From the data we gener-
ated for three diademed sifaka individuals with, we could
correctly recover the parent-offspring relationship between
two of the individuals (mother Titania and child Romeo),
and reject a parent-offspring relationship with the third in-
dividual and the child (Oberon is not the father of Romeo).

We found that PCR stutter is present in data resulting
from our method, but also that this is a tractable issue.
Specifically, our kinship analysis provides support for the
validity of genotype calls, and the high concordance be-
tween genotype calls from the fecal versus tissue samples
from Romeo further demonstrates the robustness of our
strategy. In future implementations of BaitSTR, we rec-
ommend steps to mitigate PCR stutter, with care taken to

limit the number of PCR cycles to an absolute minimum.
For example, we would recommend testing the use of PCR-
free library preparation kits, which are commercially avail-
able from several manufacturers. A round of PCR follow-
ing target capture is currently necessary to reach sufficient
sequencing molarity, so we recommend 1) maximizing input
DNA to the probe hybridization step, and ii) using gPCR
quantification approaches to optimize the number of post-
capture PCR cycles performed (e.g. after (28)). The choice
of DNA polymerase for library reamplification following
capture, as well as PCR cycling parameters, could also be
optimized to improve STR fidelity (47). Finally, as our
method is utilized in future experiments with population-
level samples allowing large re-analyses of PCR stutter, a
more comprehensive quantification of the risks and solu-
tions for genotyping error can be further refined.

Our strategy for massively parallel STR discovery and re-
sequencing is scaleable, cost-efficient, and appropriate for
non-model species and non-invasive samples. For these rea-
sons, it is suited especially to ecological genomics and con-
servation contexts where, for example, fecal samples are a
particularly useful source of DNA from endangered and
otherwise difficult-to-study species. Necessarily, the full po-
tential of genome-scale STR analysis will only become ap-
parent as subsequent work continues to deploy these meth-
ods and develop analytical tools that take full advantage of
the data produced at a genomic scale. Here, we introduce an
efficient front-end strategy for obtaining datasets of this va-
riety, and we are confident that continuing research will re-
sult in the development of powerful methods for leveraging
these data in population genomic settings. Our approach
could be applied to studies of population genetic structure,
the relationship between relatedness and behavior, and mate
selection. In populations suffering from habitat loss and
fragmentation, genomic-scale STR datasets could be ana-
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lyzed to rapidly assess changes in population genetic struc-
ture and outbreeding due to discontinuity of habitat, and as
necessary assist in the active management of small and/or
subdivided populations.

ACCESSION NUMBER

Raw sequencing data are available under Study Accession
numbers SRP073167 (genomic shotgun data for Oberon
and Titania) and SRP076225 (targeted re-sequencing data)
from the NCBI Sequence Read Archive.

AVAILABILITY

BaitSTR software is available at Github (core Bait-
STR programs: https://github.com/aakrosh/BaitSTR; Bait-
STR _type.pl companion script for genotyping and block
manipulation: https://github.com/Ikistler/BaitSTR _type).
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