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Dear Editor,

Cell replacement therapy holds great therapeutic 
promise towards restoring tissue homeostasis. However, 
aging-associated functional decay and neoplastic trans-
formation following transplantation must be overcome 
before cell therapies can be effectively and safely im-
plemented in the clinical settings [1-4]. This goal can 
theoretically be achieved by developing enhancement 
strategies towards endowing stem cells with more robust 
regenerative capacities and concomitantly, a reduced risk 
for tumorigenesis [5, 6]. Here, we provide an experimen-
tal and conceptual strategy on how to genetically engi-
neer superior and safer stem cells.

We first aimed to identify and manipulate pathways or 
key genes able to repress cellular aging. To this end, we 
screened several gero-protective chemicals using Werner 
Syndrome (WS, WRN-deficient) human mesenchymal 
stem cell (hMSC) aging model [7]. We found Oltipraz, 
Metformin, and Resveratrol at indicated concentrations 
stimulated the proliferation of pre-senescent WS hMSCs 
(Supplementary information, Figure S1A). Interesting-
ly, these three chemicals are all known activators of the 
nuclear factor erythroid-2-like 2 (NRF2) pathway (Sup-
plementary information, Figure S1B). In addition, the 
protein abundance of NRF2 was decreased in WS or rep-
licative senescent hMSCs (Supplementary information, 
Figure S1C). These raise the possibility of enhancing 
NRF2 activity to augment the function and lifespan of 
hMSCs.

To activate NRF2 in a stable and controllable manner 
while retaining NRF2’s native biological function with 
minimal genomic change, we focused on generating a 
single-nucleotide variation (A245G) in the NRF2 locus, 
which results in a glutamic acid to glycine switch at ami-
no acid 82 of the NRF2 protein, and is supposed to lead 
to NRF2 stabilization and transcriptional activation of 
its target genes. We performed homologous recombina-
tion-based gene editing using helper-dependent adenovi-
ral vector (HDAdV) [7] in WT human embryonic stem 
cells (ESCs) (NRF2+/+ hESCs) and generated homozy-
gous NRF2A245G ESC lines (NRF2AG/AG hESCs) (Figure 1A 

and Supplementary information, Figure S2A and S2B). 
NRF2AG/AG hESCs exhibited features of typical human 
primed state pluripotent stem cells (Supplementary in-
formation, Figure S2C and S2D) and were subsequently 
differentiated into hMSCs (Supplementary information, 
Figure S3A and S3B). In NRF2AG/AG hMSCs, we found 
the endogenous NRF2 protein level was upregulated 
with more enrichment in the nucleus, which was accom-
panied by elevated NRF2 transcriptional activity (Figure 
1B and Supplementary information, Figure S3C-S3F). 
Importantly, genomic integrity was preserved after gene 
editing and differentiation procedures (Supplementary 
information, Figure S3G and S3H).

We next tested whether NRF2 enhancement is suffi-
cient to counteract cellular senescence. Upon serial pas-
saging, NRF2+/+ hMSCs ceased growth after passage 10 
(P10), whereas NRF2AG/AG hMSCs maintained a robust 
proliferation until P19 (Figure 1C and Supplementary in-
formation, Figure S4A and S4B). In contrast to NRF2+/+ 
hMSCs, which exhibited progressive senescence, sig-
nificantly lower percentages of senescence-associated 
(SA)-β-gal-positive cells and lower expression of senes-
cence-associated genes (p16Ink4a and p21Waf1) were ob-
served in NRF2AG/AG hMSCs (Figure 1D and Supplemen-
tary information, Figure S4C-S4E). 

In line with NRF2’s role in anti-oxidation, we ob-
served lower basal ROS levels and fewer oxidative by-
products in NRF2AG/AG hMSCs even after extensive pas-
saging (Supplementary information, Figure S4F-S4H). 
Lowered ROS levels conferred by engineered NRF2 also 
alleviated senescence-associated defects in the nuclear 
envelope (NE) and in the (epi-)genome (Supplementary 
information, Figure S5). Similarly, human vascular endo-
thelial cells (hVECs) [8] derived from NRF2AG/AG hESCs 
exhibited substantial resistance to oxidative stress (Sup-
plementary information, Figure S6). Together, these ob-
servations indicate that genetic activation of endogenous 
NRF2 helps alleviate aging-associated oxidative stress 
and subsequent cellular damage.

Moreover, we demonstrated this gene-editing strategy 
could elicit a therapeutic effect in the WS background. 
Genetic enhancement of NRF2 in WS hMSCs increased 
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Figure 1 (A) Schematic diagram of gene editing at NRF2 locus and Sanger sequencing results of NRF2+/+, NRF2AG/+, and 
NRF2AG/AG hESCs. (B) Western blot analysis of NRF2 proteins in the cytoplasmic and nuclear extracts of hMSCs. β-tubulin 
and Lamin B1 were used as cytoplasmic and nuclear loading controls, respectively. (C) Growth curve showing the accumula-
tive population doubling of hMSCs, n = 3, ns, not significant, *P < 0.05, **P < 0.01. (D) SA-β-gal staining of NRF2+/+ and NRF-
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NRF2 contents, diminished ROS levels and alleviated 
accelerated aging phenotypes (Supplementary informa-
tion, Figure S7).

To understand the molecular mechanism by which 
genetic manipulation of NRF2 antagonizes cellular se-
nescence in hMSCs, we performed RNA sequencing 
(RNA-seq) analysis (Supplementary information, Figure 
S8A-S8D). In P5 hMSCs, 36 upregulated (NRF2AG/AG vs 
NRF2+/+ > 1.5) NRF2-responsive cytoprotective genes 
were identified (Figure 1E). The upregulated genes were 
involved in stress response, cell viability, and cell prolif-
eration (Supplementary information, Figure S8E), con-
sistent with the stress resistance and improved survival 
and proliferation observed in NRF2AG/AG hMSCs. In P11 
hMSCs, ~15% (159/1 090) of the upregulated genes were 
involved in cell cycle regulation (Supplementary infor-
mation, Figure S8F), in line with the sustained prolifer-
ation of NRF2AG/AG hMSCs. Expression of over 50 DNA 
damage repair genes, NE protein-encoding genes and 
chromosome organization-associated genes  was largely 
maintained in NRF2AG/AG hMSCs at P11 (Supplementary  
information, Figure S9A and S9B), consistent with 
well-preserved DNA damage repair systems and nuclear 
architecture in NRF2AG/AG hMSCs. In addition, transcrip-
tomic analysis revealed less pronounced transcriptional 
changes in NRF2AG/AG hMSCs during passaging (Supple-
mentary information, Figure S9C and S9D).

To determine whether these genetically enhanced stem 
(GES) cells would confer better survival, engraftment 
and injury repair in vivo, we first implanted luciferase-la-
beled hMSCs into the muscle of nude mice [7, 8]. As 
expected, compared to WT hMSCs, NRF2AG/AG hMSCs 
exhibited slower in vivo decay after transplantation (Sup-
plementary information, Figure S10A). Next, we utilized 
a well-established hind-limb ischemia murine model to 

evaluate the in vivo regenerative capacity of hMSCs [9]. 
After ligation of the femoral artery, blood perfusion of the 
left hind limb was reduced to about 10% that of the right 
hind limb in all mice examined (Figure 1F-1G). When 
compared to mice receiving WT hMSCs, a significantly 
faster blood flow recovery was observed in mice receiv-
ing NRF2AG/AG hMSCs starting from day 8. In addition, 
we identified the presence of more human vascular endo-
thelial and smooth muscle cells in NRF2AG/AG hMSCs-im-
planted muscles (Figure 1F-1G and Supplementary infor-
mation, Figure S10B and S10C). These data indicate that 
edited hMSCs are superior to WT hMSCs in repairing 
tissue damage in vivo.

Oncogenic transformation of genetically modified 
cells constitutes a major safety concern [4]. Continuous 
monitoring for 8 months after NRF2AG/AG hMSCs trans-
plantation did not indicate any sign of tumor formation 
in immunodeficient mice (Supplementary information, 
Figure S11A), demonstrating that tumor susceptibility 
was not elevated in NRF2AG/AG hMSCs. However, it is 
still possible that NRF2AG/AG hMSCs are susceptible to 
tumorigenic transformation in the presence of strong on-
cogenic insults. To examine this possibility, we adopted a 
reported in vitro MSC transformation system [10] which 
is capable of transforming hMSCs into cancer cell-like 
transformed MSCs (TMSCs) (Supplementary infor-
mation, Figure S11B-S11E). Interestingly, NRF2AG/AG  
TMSCs exhibited strikingly compromised in vitro an-
chorage-independent growth (Supplementary informa-
tion, Figure S11F and S11G), an important feature of 
cancer cells characteristic of their transition into a solid 
tumor. We next evaluated the in vivo tumor forming abil-
ities of the NRF2AG/AG TMSCs. While palpable tumors in 
NRF2+/+ TMSCs-injected left legs were observed within 
6 weeks after the implantation, NRF2AG/AG TMSCs failed 

2AG/AG hMSCs. Scale bar, 50 μm. Data were presented as mean ± SEM, n = 6, ns, not significant, **P < 0.01. (E) Heatmap of 
36 NRF2-responsive cytoprotective genes upregulated in NRF2AG/AG hMSCs at P5 (NRF2AG/AG vs NRF2+/+ > 1.5, q < 0.05). All 
FPKMs of the indicated genes were normalized by the ones in NRF2+/+ group and the relative expression level were present-
ed as Log1.5 (NRF2AG/AG/NRF2+/+). (F) Representative blood flow imaging of hindlimb ischemic mice injected with PBS (Control), 
NRF2+/+ and NRF2AG/AG hMSCs (P8). Laser Doppler blood perfusion measurement was performed every 4 days to monitor 
changes in hindlimb blood flow. The white rectangles indicate the ischemic legs. (G) Blood flow recovery kinetics of each 
hindlimb ischemic mouse (n = 8) after transplantation. Statistical significance was compared between the following: NRF2 AG/

AG group vs PBS group (upper); and NRF2 AG/AG group vs NRF2+/+ group (lower); ns, not significant, **P < 0.01, ***P < 0.001. (H) 
The in vivo tumor forming abilities of the TMSCs. NRF2+/+ and NRF2AG/AG TMSCs were injected into the same immunodeficient 
mouse in the left and right tibia, respectively, proximal to the knee-joint. While palpable tumors in NRF2+/+ TMSC-injected left 
legs were detectable within 6 weeks after the implantation, NRF2AG/AG TMSC failed to form tumors even after 10 weeks. Left, 
A representative image showing the in vivo tumor formation after TMSCs transplantation. Scale bar, 1 cm. Right, Statistic 
results of the in vivo tumor-formation of TMSCs. The weight of the left leg was, on average, 2.73-fold higher than that of the 
right leg. Leg weight data were presented as mean ± SD, n = 8, ***P < 0.001. Leg image and tumor incidence were recorded 
10 weeks after transplantation. (I) Images and relative weights of hESC-derived teratomas from 6 transplanted NOD/SCID mice 
(#1-6). NRF2+/+ and NRF2AG/AG hESCs were subcutaneously implanted into both flanks of the same NOD/SCID mouse. Terato-
ma images were recorded 8 weeks after transplantation. 
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to form any tumor even after 10 weeks (Figure 1H and 
Supplementary information, Figure S11H). Genomic 
copy number variation (CNV) analysis revealed a gained  
CNV pattern on chromosome 4 only in NRF2+/+ but not 
in NRF2AG/AG TMSCs (Supplementary information, Fig-
ure S12A), suggesting that genetically activated NRF2 
pathway might help safeguard genomic stability against 
oncogenic insults. RNA-seq and ChIP-qPCR analyses 
further demonstrated that enhanced endogenous NRF2 
selectively activated the expression of specific target 
genes associated with tumor suppression in TMSCs 
(Supplementary information, Figure S12B-S12D and 
Figure S13A-S13C). These data indicate that NRF2AG/AG 
hMSCs are refractory to tumorigenic transformation.

Finally, we observed that the implantation of genet-
ically edited hESCs (NRF2AG/AG hESCs) resulted in the 
generation of much smaller teratomas in vivo (Figure 1I), 
supporting a possibility that even if residual undifferen-
tiated NRF2AG/AG hESCs are present in their MSC deriva-
tives, the teratoma-forming ability of these cells are min-
imalized. This will pose less risk for teratoma formation, 
which is a major concern for cell replacement therapies 
using hESC derivatives.

In conclusion, our study provides an experimental 
proof-of-concept that recoding a single nucleotide with-
in NRF2 gene endows cultured hMSCs with enhanced 
self-renewal ability, increased stress resistance, delayed 
cellular senescence and functional decay, better engraft-
ment efficiency and functional regeneration in vivo, as 
well as greater resistance to oncogenic transformation, 
and thereby allows for the generation of superior and saf-
er GES cells for regenerative medicine therapies (Sup-
plementary information, Figure S14).
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