Skip to main content
. 2016 Dec 14;26(2):101–107. doi: 10.1159/000455101

Table 1.

Main findings of omics associated with renal fibrosis: positive and negative correlations

Field Positive correlation Negative correlation Suppl. ref. No.
Genomics IL-18 (+137 GG, −607CC); TGF-β1 (–509 TT); AS (int 2 CC); UMOD (rs12917707; rs12446492); ELMO1 gene; Nox2 gene TGF- β1 (+869 TT); UMOD (rs13333226, rs12917707); Sirt1 gene 1 – 10

Epigenomics DNA methylation (e.g., Klotho promoter); histone modifications (e.g., profibrotic and ER stress-related genes) apelin-13, KLF4 11 – 16

Transcriptomics miR-192, miR-29, miR-21, miR-150, mRNA (e.g., APE1, AT1R, CXCR4, THBS1, TRIB1) miR-93, miR-217, miR-200a, miR-26a, mRNA (e.g., BMP7, CD2AP) 13, 17 – 25

Proteomics TGF-β1, α-SMA, NGAL, KIM-1, CD147, CXCL1, annexin A1, HE4, NGAL, MBL, MMP-7, MMP-9, CTGF, uVDBP, periostin, CKD273 peptides HO-1, E-cadherin 26 – 37

Metabolomics cystatin C, lipids (e.g., ectopic, oxidized), glycolysis, acetoacetate, phosphorylcholine/choline, H-1 NMR-based metabonomics pyruvate, glycine, L-carnitine 12, 38 – 43