Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 Aug 21;73(Pt 9):1353–1356. doi: 10.1107/S2056989017011616

Bis(μ-N,N-di­allyl­dithio­carbamato)bis[(N,N-di­allyl­dithio­carbamato)cadmium]

Damian C Onwudiwe a,b, Madalina Hrubaru c, Eric C Hosten d, Charmaine Arderne e,*
PMCID: PMC5588579  PMID: 28932473

The characteristic feature of this cadmium(II) complex is the formation of a dimeric bridged structure where the two CdII cations are bridged by S atoms from the N,N-di­allyl­ldi­thio­carbamate ligands.

Keywords: crystal structure; cadmium(II) complex; N,N-di­allyl­ldi­thio­carbamate ligands; bridging dimeric structure

Abstract

The title compound, [Cd2(C7H10NS2)4], is a neutral dinuclear cadmium(II) complex bearing four bis N,N-di­allyl­di­thio­carbamate ligands coordinating to two CdII cations. In each of the monomeric subunits, there are four S atoms of two di­thio­carbamate ligands [Cd—S = 2.5558 (3), 2.8016 (3), 2.6050 (3) and 2.5709 (3) Å] that coordinate to one CdII atom in a bidentate mode. The dimers are located over an inversion centre bridged by two additional bridging Cd—S bonds [2.6021 (3) Å], leading to a substantial distortion of the geometry of the monomeric subunit from the expected square-planar geometry. The five-coordinate environment around each of the CdII ions in the dimer is best described as substanti­ally tetra­gonally distorted square pyramidal. The di­thio­carbamate groups are themselves planar and are also coplanar with the CdII ions. The negative charge on these groups is delocalized by resonance across the S atoms bound to the CdII cation. This delocalization of the π electrons in the di­thio­carbamate groups also extends to the C—N bonds as they reveal significant double bond character [C—N = 1.3213 (16) and 1.3333 (15) Å].

Chemical context  

Inter­est in the study of metal di­thio­carbamates was aroused because of their inter­esting structural features and diverse applications (Thammakan & Somsook, 2006). Di­thio­carbamate complexes have largely been prepared from the group 12 elements, mostly because they have found wide practical application as additives to pavement asphalt, as anti­oxidants, and as potent pesticides etc (Subha et al., 2010). The structural chemistry of cadmium di­thio­carbamates of the general formula Cd(S2CNRR′) where R, R′ = alkyl or aryl is dominated by its existence in binuclear form. This common feature has been ascribed to the effect of aggregated species, which they adopt in the solid state, resulting from equal numbers of μ2-tridentate and bidentate (chelating) ligands (Tiekink, 2003; Tan, Halim et al., 2016). Only a few exceptions have been reported where the complex exists in a trinuclear form (Kumar et al., 2014), or as a one-dimensional polymeric motif (Tan et al., 2013, 2016; Ferreira et al., 2016). Bis­(N,N-di­allyl­di­thio­carbamato)cadmium compounds have the advantage of having stability similar to that of the zinc complexes, but more favourable stability when compared to the mercury complexes. Cadmium di­thio­carbamate complexes have been widely used as single-source precursors for CdS nanoparticles and thin films, which have application as non-linear optical materials (Thammakan & Somsook, 2006). Another important practical application of cadmium di­thio­carbamates is their ability to efficiently collect gold from acidic solutions (Rodina et al., 2014). Here we describe the crystal structure of a CdII complex bearing a di­allyl­dithio­carabamate ligand in a chelating and bridging dimeric structure.graphic file with name e-73-01353-scheme1.jpg

Structural commentary  

The coordination environment of the CdII cation is observed to have a distorted tetra­gonal–pyramidal geometry (Fig. 1). The CdII cation is coordinated by four S atoms with distances ranging from 2.5558 (3) to 2.8016 (3) Å and to a fifth S atom at a distance of 2.6021 (3) Å; these distances are similar to other complexes found to have been published previously (see Section 4: Database survey). A full geometry check carried out with the Mogul Geometry Check tool (Bruno et al., 2004) within the CSD suite of programs, showed no unusual geometrical parameters. The fifth S atom, S12i, is from a third ligand that is in the coordination sphere of a centrosymmetrically related CdII ion [symmetry code: (i) –x + 2, –y, –z + 1]. This means that each bridging S atom simultaneously occupies an equatorial coordination site on one CdII ion and an apical site on the other CdII ion to form an edge-shared tetra­gonal–pyramidal geometry. The CdII ion deviates from the S11—S12—S22—S21 mean plane by 0.704016 (17) Å towards S12i. The bridging network Cd1—S12—Cd1i—S12i is completely planar since it lies over the inversion centre with a Cd1⋯Cd1i separation distance of 3.60987 (8) Å and S12—Cd1—S12i and Cd1—S12—Cd1i angles of 96.257 (9) and 83.743 (9)°, respectively. There is substantial distortion of the geometry of the monomeric subunit from the expected square-planar geometry. Deviations from the standard 90° angles are evident in the angles of S11—Cd1—S21 [108.203 (11)°]; S22—Cd1—S21 [70.264 (10)°]; S22—Cd1—S12 [96.950 (10)°] and S11—Cd1—S12 [67.486 (10)°]. Deviations in the standard 180° angles are evident in the angles of S11—Cd1—S22 [143.705 (13)°] and S21—Cd1—S12 [152.651 (11)°]. The Cd1—S12—Cd1i—S12i and S11—S12—S22—S21 mean planes form a dihedral (twist) angle of 84.6228 (18)°. The di­thio­carbamate groups are planar and each group of the monomeric subunit is coplanar with the CdII ion (r.m.s. deviation is 0.010 Å). The mean plane consisting of atoms Cd1, S11, N1, C11, S12 and the mean plane consisting of atoms Cd1, S22, N2, C21, S21 have a plane-normal-to-plane-normal angle of 37.0291 (10)°; a centroid-to-centroid distance of 4.45354 (8) Å; a plane-to-plane shift of 4.22298 (8) Å and a plane-to-plane torsion (twist) angle of 8.0304 (12)°.

Figure 1.

Figure 1

The mol­ecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering scheme [symmetry code: (i) −x + 2, −y, −z + 1]. H atoms have been omitted for clarity.

The S12—C11 bond length [1.7532 (13) Å] is longer than the adjacent S11—C11 bond length [1.7162 (13) Å] suggesting that this bond has more double bond character in the di­thio­carbamate portion that coordinates to the CdII cation. On the opposite side of the CdII ion, both S—C bonds have approximately the same length, where S21—C21 and S22—C21 bond lengths are 1.7224 (12) and 1.7263 (12) Å, respectively, suggesting that the double bond of the di­thio­carbamate is spread over the S—C—S bond via resonance. A possible explanation for this may be because of the fact that atom S12 serves as the bridging S atom in the complex. Also, the N1—C11 and N2—C21 distances [1.3213 (16) and 1.3333 (15) Å, respectively] are shorter compared to the other N—C distances indicating considerable double-bond character. The vinyl substituents are also planar and are at an angle of 91.6049 (14)° from the di­thio­carbamate plane and at an angle of 150.9196 (6)° from the vinyl group directly opposite from it. This scenario is comparable with the other structures surveyed in the literature (see Section 4: Database survey). All highlighted and discussed geometrical parameters describing the coordination environment are given in Table 1. Weak intramolecular C—H⋯S inter­actions are observed (Table 2)

Table 1. Selected geometric parameters (Å, °).

Cd1—S11 2.5558 (3) S12—C11 1.7532 (13)
Cd1—S22 2.5709 (3) S21—C21 1.7224 (12)
Cd1—S12i 2.6021 (3) S22—C21 1.7263 (12)
Cd1—S21 2.6050 (3) N1—C11 1.3213 (16)
Cd1—S12 2.8016 (3) N2—C21 1.3333 (15)
S11—C11 1.7162 (13)    
       
S11—Cd1—S22 143.705 (13) S22—Cd1—S12 96.950 (10)
S11—Cd1—S21 108.203 (11) S12i—Cd1—S12 96.257 (9)
S22—Cd1—S21 70.264 (10) S21—Cd1—S12 152.651 (11)
S11—Cd1—S12 67.486 (10) Cd1i—S12—Cd1 83.743 (9)

Symmetry code: (i) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12B⋯S11 0.99 2.59 2.9783 (14) 103
C15—H15A⋯S12 0.99 2.50 3.0438 (14) 115
C22—H22B⋯S21 0.99 2.50 3.0381 (13) 114
C25—H25B⋯S22 0.99 2.56 2.9845 (14) 106

Supra­molecular features  

The space group of the crystal is P Inline graphic, and the asymmetric unit consists of one-half of the complex mol­ecule, so that the unit cell contains one complete complex mol­ecule. Each half of the asymmetric unit is related by an inversion centre. In the crystal, weak C—H⋯π inter­actions are observed, forming chains along [001] (see Fig. 2 and Table 3).

Figure 2.

Figure 2

The crystal structure of the title compound constructed from chains formed by C—H⋯S inter­actions (red dashed lines). [Authors: Please add unit cell outline and coordinate axes]

Table 3. X—H⋯π inter­actions.

Cg3 is the centroid of the Cd1—S11—C11—S12—Cd1i—S12i ring.

C—H⋯Cg C—H H⋯Cg C⋯Cg C—H⋯Cg
C15—H15BCg3 0.99 2.94 3.9209 (17) 171
C16—H16⋯Cg3 0.99 2.90 3.7648 (17) 152

Symmetry code: (i) −x + 2, −y, −z + 1.

Database survey  

A search of the Cambridge Structural Database (version 1.19, May 2017 updates) (Groom et al., 2016) revealed that there are a number of similar types of compounds where in place of the N,N-diallyl side chain, the side-chains substituents are di-n-propyl [CSD refodes BEHNOR (Jian et al., 1999a ), BEHNOR01 (Ivanov et al., 2005)], di-isobutyl [LESVEK (Cox & Tiekink, 1999), LESVEK01 (Glinskaya et al., 1999)] and di-isopropyl [SUVTUY (Jian et al., 1999b ), SUVTUY01 (Cox & Tiekink, 1999)].

Synthesis and crystallization  

A solution of CdCl2·2H2O (0.55 g, 0.0025 mol) in ethanol (10 ml) was added to a solution of sodium N,N-diallyl di­thio­carbamate (0.98 g, 0.005 mol) in ethanol (10 ml), and the resulting suspension was stirred for 45 min at room temperature. This solution was then filtered, and rinsed several times with distilled water (Onwudiwe et al., 2015) and ethanol. Yield: 1.28 g, 56%. Analysis found: C, 36.38; H, 4.40; N, 6.50; S, 28.42%. Calculated for C14H20N2S4Cd: C, 36.79; H, 4.41; N, 6.13; S, 28.06. Crystals suitable for single-crystal X-ray analysis were obtained by recrystallization from chloro­form/ethanol. Other analytical data for this material (melting point, IR and NMR data) has been published previously (Onwudiwe et al., 2015).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 4. All H atoms were positioned geometrically and refined isotropically using the riding-model approximation with C—H = 0.99 Å and U iso(H) = 1.2 U eq(C) for methyl­ene groups and C—H = 0.95 Å and U iso(H) = 1.2 U eq(C) for all vinyl groups.

Table 4. Experimental details.

Crystal data
Chemical formula [Cd2(C7H10NS2)4]
M r 913.92
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 200
a, b, c (Å) 8.0872 (2), 9.4146 (2), 13.0721 (3)
α, β, γ (°) 75.858 (1), 78.460 (1), 77.488 (1)
V3) 930.75 (4)
Z 1
Radiation type Mo Kα
μ (mm−1) 1.62
Crystal size (mm) 0.60 × 0.44 × 0.17
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Numerical (SADABS; Bruker, 2011)
T min, T max 0.824, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 16101, 4644, 4391
R int 0.015
(sin θ/λ)max−1) 0.669
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.015, 0.037, 1.15
No. of reflections 4644
No. of parameters 191
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.28, −0.31

Computer programs: BIS and APEX2 (Bruker, 2011), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL2017 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009) and Mercury (Macrae et al., 2008).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989017011616/zl2710sup1.cif

e-73-01353-sup1.cif (482.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017011616/zl2710Isup2.hkl

e-73-01353-Isup2.hkl (369.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017011616/zl2710Isup3.mol

CCDC reference: 899314

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors wish to acknowledge their respective institutions for their facilities to carry out the synthesis and characterization of the title compound.

supplementary crystallographic information

Crystal data

[Cd2(C7H10NS2)4] Z = 1
Mr = 913.92 F(000) = 460
Triclinic, P1 Dx = 1.631 Mg m3
a = 8.0872 (2) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.4146 (2) Å Cell parameters from 9892 reflections
c = 13.0721 (3) Å θ = 3.1–28.4°
α = 75.858 (1)° µ = 1.62 mm1
β = 78.460 (1)° T = 200 K
γ = 77.488 (1)° Platelet, colourless
V = 930.75 (4) Å3 0.60 × 0.44 × 0.17 mm

Data collection

Bruker APEXII CCD diffractometer 4644 independent reflections
Radiation source: sealed tube 4391 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.015
Detector resolution: 8.3333 pixels mm-1 θmax = 28.4°, θmin = 2.5°
φ and ω scans h = −10→10
Absorption correction: numerical (SADABS; Bruker, 2011) k = −12→12
Tmin = 0.824, Tmax = 1.000 l = −16→17
16101 measured reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.015 w = 1/[σ2(Fo2) + (0.0111P)2 + 0.3546P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.037 (Δ/σ)max = 0.002
S = 1.15 Δρmax = 0.28 e Å3
4644 reflections Δρmin = −0.31 e Å3
191 parameters Extinction correction: SHELXL2017 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.0173 (7)
Primary atom site location: dual

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Carbon-bound H atoms were placed in calculated positions and were included in the refinement in the riding model approximation, with U(H) set to 1.2 Ueq(C).Two reflections with large differences between their observed and calculated intensity were omitted. This is probably due to obstruction by the beam stop.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cd1 0.89235 (2) −0.00613 (2) 0.63560 (2) 0.02744 (4)
S11 0.78076 (5) −0.22154 (4) 0.60114 (3) 0.03471 (8)
S12 0.78142 (4) 0.06086 (3) 0.43671 (3) 0.02551 (7)
S21 0.84065 (5) −0.02186 (4) 0.84095 (3) 0.03026 (7)
S22 0.80123 (4) 0.25713 (4) 0.67413 (2) 0.02688 (7)
N1 0.66681 (14) −0.17652 (12) 0.41751 (9) 0.0263 (2)
N2 0.76538 (14) 0.25083 (12) 0.88135 (8) 0.0252 (2)
C11 0.73731 (15) −0.12060 (14) 0.47817 (10) 0.0234 (2)
C12 0.61897 (18) −0.32572 (16) 0.45381 (11) 0.0323 (3)
H12A 0.522086 −0.328088 0.418787 0.039*
H12B 0.579076 −0.343192 0.531802 0.039*
C13 0.7621 (2) −0.44839 (16) 0.43028 (13) 0.0402 (3)
H13 0.865773 −0.457570 0.456951 0.048*
C14 0.7529 (3) −0.54414 (18) 0.37491 (16) 0.0535 (5)
H14A 0.650843 −0.537598 0.347257 0.064*
H14B 0.848334 −0.620204 0.362346 0.064*
C15 0.6278 (2) −0.09675 (16) 0.31078 (11) 0.0342 (3)
H15A 0.641253 0.008254 0.299629 0.041*
H15B 0.506864 −0.097581 0.307348 0.041*
C16 0.74035 (18) −0.16349 (18) 0.22396 (11) 0.0367 (3)
H16 0.860609 −0.180714 0.223617 0.044*
C17 0.6869 (2) −0.2001 (2) 0.14846 (13) 0.0468 (4)
H17A 0.567516 −0.184585 0.146136 0.056*
H17B 0.767061 −0.242477 0.095478 0.056*
C21 0.79907 (15) 0.16963 (13) 0.80674 (10) 0.0221 (2)
C22 0.78373 (18) 0.18663 (15) 0.99407 (10) 0.0302 (3)
H22A 0.861484 0.238077 1.015705 0.036*
H22B 0.836930 0.080256 1.001404 0.036*
C23 0.6172 (2) 0.19957 (18) 1.06666 (12) 0.0420 (4)
H23 0.528018 0.158623 1.053323 0.050*
C24 0.5865 (3) 0.2647 (2) 1.14844 (14) 0.0635 (6)
H24A 0.673453 0.306597 1.163574 0.076*
H24B 0.477492 0.269906 1.192382 0.076*
C25 0.72097 (18) 0.41463 (14) 0.85522 (11) 0.0307 (3)
H25A 0.640375 0.449151 0.915541 0.037*
H25B 0.662323 0.445861 0.791634 0.037*
C26 0.8754 (2) 0.48598 (16) 0.83349 (13) 0.0407 (3)
H26 0.964495 0.461004 0.777955 0.049*
C27 0.8956 (3) 0.5809 (2) 0.88618 (19) 0.0629 (5)
H27A 0.808789 0.608066 0.942160 0.075*
H27B 0.997242 0.622596 0.868496 0.075*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cd1 0.02830 (6) 0.03364 (6) 0.02419 (6) −0.00931 (4) −0.00001 (4) −0.01311 (4)
S11 0.0509 (2) 0.03708 (18) 0.02178 (15) −0.02237 (16) −0.00800 (14) −0.00194 (13)
S12 0.02576 (15) 0.02429 (14) 0.02685 (15) −0.00332 (11) −0.00321 (12) −0.00771 (11)
S21 0.04427 (19) 0.02305 (14) 0.02257 (15) −0.00670 (13) −0.00156 (13) −0.00538 (11)
S22 0.03366 (16) 0.02749 (15) 0.02034 (14) −0.00547 (12) −0.00683 (12) −0.00441 (11)
N1 0.0255 (5) 0.0302 (5) 0.0262 (5) −0.0061 (4) −0.0051 (4) −0.0093 (4)
N2 0.0296 (5) 0.0239 (5) 0.0214 (5) 0.0007 (4) −0.0052 (4) −0.0070 (4)
C11 0.0198 (5) 0.0288 (6) 0.0225 (5) −0.0051 (4) 0.0005 (4) −0.0093 (5)
C12 0.0311 (7) 0.0389 (7) 0.0328 (7) −0.0180 (6) −0.0036 (5) −0.0096 (6)
C13 0.0388 (8) 0.0292 (7) 0.0493 (9) −0.0108 (6) −0.0098 (7) 0.0045 (6)
C14 0.0623 (11) 0.0312 (8) 0.0604 (11) −0.0166 (7) 0.0138 (9) −0.0086 (7)
C15 0.0404 (8) 0.0328 (7) 0.0330 (7) 0.0007 (6) −0.0179 (6) −0.0098 (6)
C16 0.0267 (6) 0.0527 (9) 0.0279 (7) −0.0097 (6) −0.0037 (5) −0.0010 (6)
C17 0.0537 (10) 0.0539 (10) 0.0336 (8) −0.0058 (8) −0.0040 (7) −0.0163 (7)
C21 0.0188 (5) 0.0252 (6) 0.0227 (5) −0.0039 (4) −0.0028 (4) −0.0064 (4)
C22 0.0365 (7) 0.0318 (6) 0.0212 (6) 0.0017 (5) −0.0062 (5) −0.0089 (5)
C23 0.0427 (8) 0.0414 (8) 0.0309 (7) −0.0007 (7) 0.0002 (6) 0.0023 (6)
C24 0.0823 (14) 0.0469 (10) 0.0345 (9) 0.0170 (10) 0.0156 (9) −0.0033 (7)
C25 0.0376 (7) 0.0243 (6) 0.0286 (6) 0.0035 (5) −0.0072 (5) −0.0091 (5)
C26 0.0487 (9) 0.0285 (7) 0.0445 (9) −0.0070 (6) −0.0074 (7) −0.0067 (6)
C27 0.0769 (14) 0.0452 (10) 0.0796 (14) −0.0149 (9) −0.0308 (12) −0.0187 (10)

Geometric parameters (Å, º)

Cd1—S11 2.5558 (3) C15—C16 1.483 (2)
Cd1—S22 2.5709 (3) C15—H15A 0.9900
Cd1—S12i 2.6021 (3) C15—H15B 0.9900
Cd1—S21 2.6050 (3) C16—C17 1.297 (2)
Cd1—S12 2.8016 (3) C16—H16 0.9500
S11—C11 1.7162 (13) C17—H17A 0.9500
S12—C11 1.7532 (13) C17—H17B 0.9500
S21—C21 1.7224 (12) C22—C23 1.484 (2)
S22—C21 1.7263 (12) C22—H22A 0.9900
N1—C11 1.3213 (16) C22—H22B 0.9900
N1—C15 1.4735 (17) C23—C24 1.315 (3)
N1—C12 1.4779 (17) C23—H23 0.9500
N2—C21 1.3333 (15) C24—H24A 0.9500
N2—C22 1.4738 (16) C24—H24B 0.9500
N2—C25 1.4749 (16) C25—C26 1.490 (2)
C12—C13 1.490 (2) C25—H25A 0.9900
C12—H12A 0.9900 C25—H25B 0.9900
C12—H12B 0.9900 C26—C27 1.307 (2)
C13—C14 1.308 (2) C26—H26 0.9500
C13—H13 0.9500 C27—H27A 0.9500
C14—H14A 0.9500 C27—H27B 0.9500
C14—H14B 0.9500
S11—Cd1—S22 143.705 (13) N1—C15—H15A 109.1
S11—Cd1—S12i 103.129 (12) C16—C15—H15A 109.1
S22—Cd1—S12i 111.289 (11) N1—C15—H15B 109.1
S11—Cd1—S21 108.203 (11) C16—C15—H15B 109.1
S22—Cd1—S21 70.264 (10) H15A—C15—H15B 107.8
S12i—Cd1—S21 110.826 (11) C17—C16—C15 124.89 (14)
S11—Cd1—S12 67.486 (10) C17—C16—H16 117.6
S22—Cd1—S12 96.950 (10) C15—C16—H16 117.6
S12i—Cd1—S12 96.257 (9) C16—C17—H17A 120.0
S21—Cd1—S12 152.651 (11) C16—C17—H17B 120.0
C11—S11—Cd1 91.26 (4) H17A—C17—H17B 120.0
C11—S12—Cd1i 100.48 (4) N2—C21—S21 120.81 (9)
C11—S12—Cd1 82.68 (4) N2—C21—S22 119.72 (9)
Cd1i—S12—Cd1 83.743 (9) S21—C21—S22 119.47 (7)
C21—S21—Cd1 84.58 (4) N2—C22—C23 112.57 (11)
C21—S22—Cd1 85.57 (4) N2—C22—H22A 109.1
C11—N1—C15 123.59 (11) C23—C22—H22A 109.1
C11—N1—C12 121.48 (11) N2—C22—H22B 109.1
C15—N1—C12 114.93 (11) C23—C22—H22B 109.1
C21—N2—C22 123.16 (10) H22A—C22—H22B 107.8
C21—N2—C25 122.11 (11) C24—C23—C22 123.46 (19)
C22—N2—C25 114.53 (10) C24—C23—H23 118.3
N1—C11—S11 120.74 (10) C22—C23—H23 118.3
N1—C11—S12 120.64 (10) C23—C24—H24A 120.0
S11—C11—S12 118.58 (7) C23—C24—H24B 120.0
N1—C12—C13 113.50 (11) H24A—C24—H24B 120.0
N1—C12—H12A 108.9 N2—C25—C26 111.95 (11)
C13—C12—H12A 108.9 N2—C25—H25A 109.2
N1—C12—H12B 108.9 C26—C25—H25A 109.2
C13—C12—H12B 108.9 N2—C25—H25B 109.2
H12A—C12—H12B 107.7 C26—C25—H25B 109.2
C14—C13—C12 123.61 (16) H25A—C25—H25B 107.9
C14—C13—H13 118.2 C27—C26—C25 123.99 (18)
C12—C13—H13 118.2 C27—C26—H26 118.0
C13—C14—H14A 120.0 C25—C26—H26 118.0
C13—C14—H14B 120.0 C26—C27—H27A 120.0
H14A—C14—H14B 120.0 C26—C27—H27B 120.0
N1—C15—C16 112.59 (12) H27A—C27—H27B 120.0
C15—N1—C11—S11 −179.31 (10) N1—C15—C16—C17 128.82 (17)
C12—N1—C11—S11 1.48 (17) C22—N2—C21—S21 8.51 (17)
C15—N1—C11—S12 2.97 (17) C25—N2—C21—S21 −176.94 (10)
C12—N1—C11—S12 −176.24 (9) C22—N2—C21—S22 −171.47 (10)
Cd1—S11—C11—N1 −178.09 (10) C25—N2—C21—S22 3.08 (17)
Cd1—S11—C11—S12 −0.33 (7) Cd1—S21—C21—N2 −176.69 (10)
Cd1i—S12—C11—N1 −99.72 (10) Cd1—S21—C21—S22 3.29 (6)
Cd1—S12—C11—N1 178.07 (10) Cd1—S22—C21—N2 176.65 (10)
Cd1i—S12—C11—S11 82.51 (7) Cd1—S22—C21—S21 −3.33 (7)
Cd1—S12—C11—S11 0.30 (6) C21—N2—C22—C23 −114.38 (14)
C11—N1—C12—C13 −86.54 (16) C25—N2—C22—C23 70.69 (16)
C15—N1—C12—C13 94.18 (15) N2—C22—C23—C24 −123.84 (16)
N1—C12—C13—C14 −123.54 (16) C21—N2—C25—C26 −91.28 (15)
C11—N1—C15—C16 110.28 (15) C22—N2—C25—C26 83.71 (15)
C12—N1—C15—C16 −70.47 (16) N2—C25—C26—C27 −122.19 (18)

Symmetry code: (i) −x+2, −y, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C12—H12B···S11 0.99 2.59 2.9783 (14) 103
C15—H15A···S12 0.99 2.50 3.0438 (14) 115
C22—H22B···S21 0.99 2.50 3.0381 (13) 114
C25—H25B···S22 0.99 2.56 2.9845 (14) 106

Funding Statement

This work was funded by North-West University, South Africa grant .

References

  1. Bruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2011). BIS, APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144. [DOI] [PubMed]
  4. Cox, M. J. & Tiekink, E. R. T. (1999). Z. Kristallogr. 214, 670–676.
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Ferreira, I. P., de Lima, G. M., Paniago, E. B., Pinheiro, C. B., Wardell, J. L. & Wardell, S. M. S. V. (2016). Inorg. Chim. Acta, 441, 137–145.
  7. Glinskaya, L. A., Zemskova, S. M. & Klevtsova, R. F. (1999). Zh. Strukt. Khim. (Russ. J. Struct. Chem.), 40, 979–983.
  8. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  9. Ivanov, A. V., Konzelko, A. A., Gerasimenko, A. V., Ivanov, M. A., Antsutkin, O. N. & Forsling, W. (2005). Russ. J. Inorg. Chem. 50, 1827.
  10. Jian, F., Wang, Z., Bai, Z., You, X., Fun, H. & Chinnakali, K. (1999a). J. Chem. Crystallogr. 29, 227–231.
  11. Jian, F.-F., Wang, Z.-X., Fun, H.-K., Bai, Z.-P. & You, X.-Z. (1999b). Acta Cryst. C55, 174–176.
  12. Kumar, V., Singh, V., Gupta, A. N., Manar, K. K., Drew, M. G. B. & Singh, N. (2014). CrystEngComm, 16, 6765–6774.
  13. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  14. Onwudiwe, D. C., Hrubaru, M. & Ebenso, E. E. (2015). J. Nanomaterials, 2015, 1–9.
  15. Rodina, T. A., Ivanov, A. V. & Gerasimenko, A. V. (2014). Russ. J. Coord. Chem. 40, 100–108.
  16. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  17. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  18. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  19. Subha, P. V., Valarmathi, P., Srinivasan, N., Thirumaran, S. & Saminathan, K. (2010). Polyhedron, 29, 1078–1082.
  20. Tan, Y. S., Halim, S. N. A. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 113–126.
  21. Tan, Y. S., Sudlow, A. L., Molloy, K. C., Morishima, Y., Fujisawa, K., Jackson, W. J., Henderson, W., Halim, S. N. B. A., Ng, S. W. & Tiekink, E. R. T. (2013). Cryst. Growth Des. 13, 3046–3056.
  22. Thammakan, N. & Somsook, E. (2006). Mater. Lett. 60, 1161–1165.
  23. Tiekink, E. R. T. (2003). CrystEngComm, 5, 101–113.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989017011616/zl2710sup1.cif

e-73-01353-sup1.cif (482.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017011616/zl2710Isup2.hkl

e-73-01353-Isup2.hkl (369.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017011616/zl2710Isup3.mol

CCDC reference: 899314

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES