The characteristic feature of this cadmium(II) complex is the formation of a dimeric bridged structure where the two CdII cations are bridged by S atoms from the N,N-diallylldithiocarbamate ligands.
Keywords: crystal structure; cadmium(II) complex; N,N-diallylldithiocarbamate ligands; bridging dimeric structure
Abstract
The title compound, [Cd2(C7H10NS2)4], is a neutral dinuclear cadmium(II) complex bearing four bis N,N-diallyldithiocarbamate ligands coordinating to two CdII cations. In each of the monomeric subunits, there are four S atoms of two dithiocarbamate ligands [Cd—S = 2.5558 (3), 2.8016 (3), 2.6050 (3) and 2.5709 (3) Å] that coordinate to one CdII atom in a bidentate mode. The dimers are located over an inversion centre bridged by two additional bridging Cd—S bonds [2.6021 (3) Å], leading to a substantial distortion of the geometry of the monomeric subunit from the expected square-planar geometry. The five-coordinate environment around each of the CdII ions in the dimer is best described as substantially tetragonally distorted square pyramidal. The dithiocarbamate groups are themselves planar and are also coplanar with the CdII ions. The negative charge on these groups is delocalized by resonance across the S atoms bound to the CdII cation. This delocalization of the π electrons in the dithiocarbamate groups also extends to the C—N bonds as they reveal significant double bond character [C—N = 1.3213 (16) and 1.3333 (15) Å].
Chemical context
Interest in the study of metal dithiocarbamates was aroused because of their interesting structural features and diverse applications (Thammakan & Somsook, 2006 ▸). Dithiocarbamate complexes have largely been prepared from the group 12 elements, mostly because they have found wide practical application as additives to pavement asphalt, as antioxidants, and as potent pesticides etc (Subha et al., 2010 ▸). The structural chemistry of cadmium dithiocarbamates of the general formula Cd(S2CNRR′) where R, R′ = alkyl or aryl is dominated by its existence in binuclear form. This common feature has been ascribed to the effect of aggregated species, which they adopt in the solid state, resulting from equal numbers of μ2-tridentate and bidentate (chelating) ligands (Tiekink, 2003 ▸; Tan, Halim et al., 2016 ▸). Only a few exceptions have been reported where the complex exists in a trinuclear form (Kumar et al., 2014 ▸), or as a one-dimensional polymeric motif (Tan et al., 2013 ▸, 2016 ▸; Ferreira et al., 2016 ▸). Bis(N,N-diallyldithiocarbamato)cadmium compounds have the advantage of having stability similar to that of the zinc complexes, but more favourable stability when compared to the mercury complexes. Cadmium dithiocarbamate complexes have been widely used as single-source precursors for CdS nanoparticles and thin films, which have application as non-linear optical materials (Thammakan & Somsook, 2006 ▸). Another important practical application of cadmium dithiocarbamates is their ability to efficiently collect gold from acidic solutions (Rodina et al., 2014 ▸). Here we describe the crystal structure of a CdII complex bearing a diallyldithiocarabamate ligand in a chelating and bridging dimeric structure.
Structural commentary
The coordination environment of the CdII cation is observed to have a distorted tetragonal–pyramidal geometry (Fig. 1 ▸). The CdII cation is coordinated by four S atoms with distances ranging from 2.5558 (3) to 2.8016 (3) Å and to a fifth S atom at a distance of 2.6021 (3) Å; these distances are similar to other complexes found to have been published previously (see Section 4: Database survey). A full geometry check carried out with the Mogul Geometry Check tool (Bruno et al., 2004 ▸) within the CSD suite of programs, showed no unusual geometrical parameters. The fifth S atom, S12i, is from a third ligand that is in the coordination sphere of a centrosymmetrically related CdII ion [symmetry code: (i) –x + 2, –y, –z + 1]. This means that each bridging S atom simultaneously occupies an equatorial coordination site on one CdII ion and an apical site on the other CdII ion to form an edge-shared tetragonal–pyramidal geometry. The CdII ion deviates from the S11—S12—S22—S21 mean plane by 0.704016 (17) Å towards S12i. The bridging network Cd1—S12—Cd1i—S12i is completely planar since it lies over the inversion centre with a Cd1⋯Cd1i separation distance of 3.60987 (8) Å and S12—Cd1—S12i and Cd1—S12—Cd1i angles of 96.257 (9) and 83.743 (9)°, respectively. There is substantial distortion of the geometry of the monomeric subunit from the expected square-planar geometry. Deviations from the standard 90° angles are evident in the angles of S11—Cd1—S21 [108.203 (11)°]; S22—Cd1—S21 [70.264 (10)°]; S22—Cd1—S12 [96.950 (10)°] and S11—Cd1—S12 [67.486 (10)°]. Deviations in the standard 180° angles are evident in the angles of S11—Cd1—S22 [143.705 (13)°] and S21—Cd1—S12 [152.651 (11)°]. The Cd1—S12—Cd1i—S12i and S11—S12—S22—S21 mean planes form a dihedral (twist) angle of 84.6228 (18)°. The dithiocarbamate groups are planar and each group of the monomeric subunit is coplanar with the CdII ion (r.m.s. deviation is 0.010 Å). The mean plane consisting of atoms Cd1, S11, N1, C11, S12 and the mean plane consisting of atoms Cd1, S22, N2, C21, S21 have a plane-normal-to-plane-normal angle of 37.0291 (10)°; a centroid-to-centroid distance of 4.45354 (8) Å; a plane-to-plane shift of 4.22298 (8) Å and a plane-to-plane torsion (twist) angle of 8.0304 (12)°.
Figure 1.
The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering scheme [symmetry code: (i) −x + 2, −y, −z + 1]. H atoms have been omitted for clarity.
The S12—C11 bond length [1.7532 (13) Å] is longer than the adjacent S11—C11 bond length [1.7162 (13) Å] suggesting that this bond has more double bond character in the dithiocarbamate portion that coordinates to the CdII cation. On the opposite side of the CdII ion, both S—C bonds have approximately the same length, where S21—C21 and S22—C21 bond lengths are 1.7224 (12) and 1.7263 (12) Å, respectively, suggesting that the double bond of the dithiocarbamate is spread over the S—C—S bond via resonance. A possible explanation for this may be because of the fact that atom S12 serves as the bridging S atom in the complex. Also, the N1—C11 and N2—C21 distances [1.3213 (16) and 1.3333 (15) Å, respectively] are shorter compared to the other N—C distances indicating considerable double-bond character. The vinyl substituents are also planar and are at an angle of 91.6049 (14)° from the dithiocarbamate plane and at an angle of 150.9196 (6)° from the vinyl group directly opposite from it. This scenario is comparable with the other structures surveyed in the literature (see Section 4: Database survey). All highlighted and discussed geometrical parameters describing the coordination environment are given in Table 1 ▸. Weak intramolecular C—H⋯S interactions are observed (Table 2 ▸)
Table 1. Selected geometric parameters (Å, °).
| Cd1—S11 | 2.5558 (3) | S12—C11 | 1.7532 (13) |
| Cd1—S22 | 2.5709 (3) | S21—C21 | 1.7224 (12) |
| Cd1—S12i | 2.6021 (3) | S22—C21 | 1.7263 (12) |
| Cd1—S21 | 2.6050 (3) | N1—C11 | 1.3213 (16) |
| Cd1—S12 | 2.8016 (3) | N2—C21 | 1.3333 (15) |
| S11—C11 | 1.7162 (13) | ||
| S11—Cd1—S22 | 143.705 (13) | S22—Cd1—S12 | 96.950 (10) |
| S11—Cd1—S21 | 108.203 (11) | S12i—Cd1—S12 | 96.257 (9) |
| S22—Cd1—S21 | 70.264 (10) | S21—Cd1—S12 | 152.651 (11) |
| S11—Cd1—S12 | 67.486 (10) | Cd1i—S12—Cd1 | 83.743 (9) |
Symmetry code: (i)
.
Table 2. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| C12—H12B⋯S11 | 0.99 | 2.59 | 2.9783 (14) | 103 |
| C15—H15A⋯S12 | 0.99 | 2.50 | 3.0438 (14) | 115 |
| C22—H22B⋯S21 | 0.99 | 2.50 | 3.0381 (13) | 114 |
| C25—H25B⋯S22 | 0.99 | 2.56 | 2.9845 (14) | 106 |
Supramolecular features
The space group of the crystal is P
, and the asymmetric unit consists of one-half of the complex molecule, so that the unit cell contains one complete complex molecule. Each half of the asymmetric unit is related by an inversion centre. In the crystal, weak C—H⋯π interactions are observed, forming chains along [001] (see Fig. 2 ▸ and Table 3 ▸).
Figure 2.
The crystal structure of the title compound constructed from chains formed by C—H⋯S interactions (red dashed lines). [Authors: Please add unit cell outline and coordinate axes]
Table 3. X—H⋯π interactions.
Cg3 is the centroid of the Cd1—S11—C11—S12—Cd1i—S12i ring.
| C—H⋯Cg | C—H | H⋯Cg | C⋯Cg | C—H⋯Cg |
|---|---|---|---|---|
| C15—H15B⋯Cg3 | 0.99 | 2.94 | 3.9209 (17) | 171 |
| C16—H16⋯Cg3 | 0.99 | 2.90 | 3.7648 (17) | 152 |
Symmetry code: (i) −x + 2, −y, −z + 1.
Database survey
A search of the Cambridge Structural Database (version 1.19, May 2017 updates) (Groom et al., 2016 ▸) revealed that there are a number of similar types of compounds where in place of the N,N-diallyl side chain, the side-chains substituents are di-n-propyl [CSD refodes BEHNOR (Jian et al., 1999a ▸), BEHNOR01 (Ivanov et al., 2005 ▸)], di-isobutyl [LESVEK (Cox & Tiekink, 1999 ▸), LESVEK01 (Glinskaya et al., 1999 ▸)] and di-isopropyl [SUVTUY (Jian et al., 1999b ▸), SUVTUY01 (Cox & Tiekink, 1999 ▸)].
Synthesis and crystallization
A solution of CdCl2·2H2O (0.55 g, 0.0025 mol) in ethanol (10 ml) was added to a solution of sodium N,N-diallyl dithiocarbamate (0.98 g, 0.005 mol) in ethanol (10 ml), and the resulting suspension was stirred for 45 min at room temperature. This solution was then filtered, and rinsed several times with distilled water (Onwudiwe et al., 2015 ▸) and ethanol. Yield: 1.28 g, 56%. Analysis found: C, 36.38; H, 4.40; N, 6.50; S, 28.42%. Calculated for C14H20N2S4Cd: C, 36.79; H, 4.41; N, 6.13; S, 28.06. Crystals suitable for single-crystal X-ray analysis were obtained by recrystallization from chloroform/ethanol. Other analytical data for this material (melting point, IR and NMR data) has been published previously (Onwudiwe et al., 2015 ▸).
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 4 ▸. All H atoms were positioned geometrically and refined isotropically using the riding-model approximation with C—H = 0.99 Å and U iso(H) = 1.2 U eq(C) for methylene groups and C—H = 0.95 Å and U iso(H) = 1.2 U eq(C) for all vinyl groups.
Table 4. Experimental details.
| Crystal data | |
| Chemical formula | [Cd2(C7H10NS2)4] |
| M r | 913.92 |
| Crystal system, space group | Triclinic, P
|
| Temperature (K) | 200 |
| a, b, c (Å) | 8.0872 (2), 9.4146 (2), 13.0721 (3) |
| α, β, γ (°) | 75.858 (1), 78.460 (1), 77.488 (1) |
| V (Å3) | 930.75 (4) |
| Z | 1 |
| Radiation type | Mo Kα |
| μ (mm−1) | 1.62 |
| Crystal size (mm) | 0.60 × 0.44 × 0.17 |
| Data collection | |
| Diffractometer | Bruker APEXII CCD |
| Absorption correction | Numerical (SADABS; Bruker, 2011 ▸) |
| T min, T max | 0.824, 1.000 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 16101, 4644, 4391 |
| R int | 0.015 |
| (sin θ/λ)max (Å−1) | 0.669 |
| Refinement | |
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.015, 0.037, 1.15 |
| No. of reflections | 4644 |
| No. of parameters | 191 |
| H-atom treatment | H-atom parameters constrained |
| Δρmax, Δρmin (e Å−3) | 0.28, −0.31 |
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989017011616/zl2710sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017011616/zl2710Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989017011616/zl2710Isup3.mol
CCDC reference: 899314
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
The authors wish to acknowledge their respective institutions for their facilities to carry out the synthesis and characterization of the title compound.
supplementary crystallographic information
Crystal data
| [Cd2(C7H10NS2)4] | Z = 1 |
| Mr = 913.92 | F(000) = 460 |
| Triclinic, P1 | Dx = 1.631 Mg m−3 |
| a = 8.0872 (2) Å | Mo Kα radiation, λ = 0.71073 Å |
| b = 9.4146 (2) Å | Cell parameters from 9892 reflections |
| c = 13.0721 (3) Å | θ = 3.1–28.4° |
| α = 75.858 (1)° | µ = 1.62 mm−1 |
| β = 78.460 (1)° | T = 200 K |
| γ = 77.488 (1)° | Platelet, colourless |
| V = 930.75 (4) Å3 | 0.60 × 0.44 × 0.17 mm |
Data collection
| Bruker APEXII CCD diffractometer | 4644 independent reflections |
| Radiation source: sealed tube | 4391 reflections with I > 2σ(I) |
| Graphite monochromator | Rint = 0.015 |
| Detector resolution: 8.3333 pixels mm-1 | θmax = 28.4°, θmin = 2.5° |
| φ and ω scans | h = −10→10 |
| Absorption correction: numerical (SADABS; Bruker, 2011) | k = −12→12 |
| Tmin = 0.824, Tmax = 1.000 | l = −16→17 |
| 16101 measured reflections |
Refinement
| Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
| Least-squares matrix: full | H-atom parameters constrained |
| R[F2 > 2σ(F2)] = 0.015 | w = 1/[σ2(Fo2) + (0.0111P)2 + 0.3546P] where P = (Fo2 + 2Fc2)/3 |
| wR(F2) = 0.037 | (Δ/σ)max = 0.002 |
| S = 1.15 | Δρmax = 0.28 e Å−3 |
| 4644 reflections | Δρmin = −0.31 e Å−3 |
| 191 parameters | Extinction correction: SHELXL2017 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
| 0 restraints | Extinction coefficient: 0.0173 (7) |
| Primary atom site location: dual |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
| Refinement. Carbon-bound H atoms were placed in calculated positions and were included in the refinement in the riding model approximation, with U(H) set to 1.2 Ueq(C).Two reflections with large differences between their observed and calculated intensity were omitted. This is probably due to obstruction by the beam stop. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Cd1 | 0.89235 (2) | −0.00613 (2) | 0.63560 (2) | 0.02744 (4) | |
| S11 | 0.78076 (5) | −0.22154 (4) | 0.60114 (3) | 0.03471 (8) | |
| S12 | 0.78142 (4) | 0.06086 (3) | 0.43671 (3) | 0.02551 (7) | |
| S21 | 0.84065 (5) | −0.02186 (4) | 0.84095 (3) | 0.03026 (7) | |
| S22 | 0.80123 (4) | 0.25713 (4) | 0.67413 (2) | 0.02688 (7) | |
| N1 | 0.66681 (14) | −0.17652 (12) | 0.41751 (9) | 0.0263 (2) | |
| N2 | 0.76538 (14) | 0.25083 (12) | 0.88135 (8) | 0.0252 (2) | |
| C11 | 0.73731 (15) | −0.12060 (14) | 0.47817 (10) | 0.0234 (2) | |
| C12 | 0.61897 (18) | −0.32572 (16) | 0.45381 (11) | 0.0323 (3) | |
| H12A | 0.522086 | −0.328088 | 0.418787 | 0.039* | |
| H12B | 0.579076 | −0.343192 | 0.531802 | 0.039* | |
| C13 | 0.7621 (2) | −0.44839 (16) | 0.43028 (13) | 0.0402 (3) | |
| H13 | 0.865773 | −0.457570 | 0.456951 | 0.048* | |
| C14 | 0.7529 (3) | −0.54414 (18) | 0.37491 (16) | 0.0535 (5) | |
| H14A | 0.650843 | −0.537598 | 0.347257 | 0.064* | |
| H14B | 0.848334 | −0.620204 | 0.362346 | 0.064* | |
| C15 | 0.6278 (2) | −0.09675 (16) | 0.31078 (11) | 0.0342 (3) | |
| H15A | 0.641253 | 0.008254 | 0.299629 | 0.041* | |
| H15B | 0.506864 | −0.097581 | 0.307348 | 0.041* | |
| C16 | 0.74035 (18) | −0.16349 (18) | 0.22396 (11) | 0.0367 (3) | |
| H16 | 0.860609 | −0.180714 | 0.223617 | 0.044* | |
| C17 | 0.6869 (2) | −0.2001 (2) | 0.14846 (13) | 0.0468 (4) | |
| H17A | 0.567516 | −0.184585 | 0.146136 | 0.056* | |
| H17B | 0.767061 | −0.242477 | 0.095478 | 0.056* | |
| C21 | 0.79907 (15) | 0.16963 (13) | 0.80674 (10) | 0.0221 (2) | |
| C22 | 0.78373 (18) | 0.18663 (15) | 0.99407 (10) | 0.0302 (3) | |
| H22A | 0.861484 | 0.238077 | 1.015705 | 0.036* | |
| H22B | 0.836930 | 0.080256 | 1.001404 | 0.036* | |
| C23 | 0.6172 (2) | 0.19957 (18) | 1.06666 (12) | 0.0420 (4) | |
| H23 | 0.528018 | 0.158623 | 1.053323 | 0.050* | |
| C24 | 0.5865 (3) | 0.2647 (2) | 1.14844 (14) | 0.0635 (6) | |
| H24A | 0.673453 | 0.306597 | 1.163574 | 0.076* | |
| H24B | 0.477492 | 0.269906 | 1.192382 | 0.076* | |
| C25 | 0.72097 (18) | 0.41463 (14) | 0.85522 (11) | 0.0307 (3) | |
| H25A | 0.640375 | 0.449151 | 0.915541 | 0.037* | |
| H25B | 0.662323 | 0.445861 | 0.791634 | 0.037* | |
| C26 | 0.8754 (2) | 0.48598 (16) | 0.83349 (13) | 0.0407 (3) | |
| H26 | 0.964495 | 0.461004 | 0.777955 | 0.049* | |
| C27 | 0.8956 (3) | 0.5809 (2) | 0.88618 (19) | 0.0629 (5) | |
| H27A | 0.808789 | 0.608066 | 0.942160 | 0.075* | |
| H27B | 0.997242 | 0.622596 | 0.868496 | 0.075* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Cd1 | 0.02830 (6) | 0.03364 (6) | 0.02419 (6) | −0.00931 (4) | −0.00001 (4) | −0.01311 (4) |
| S11 | 0.0509 (2) | 0.03708 (18) | 0.02178 (15) | −0.02237 (16) | −0.00800 (14) | −0.00194 (13) |
| S12 | 0.02576 (15) | 0.02429 (14) | 0.02685 (15) | −0.00332 (11) | −0.00321 (12) | −0.00771 (11) |
| S21 | 0.04427 (19) | 0.02305 (14) | 0.02257 (15) | −0.00670 (13) | −0.00156 (13) | −0.00538 (11) |
| S22 | 0.03366 (16) | 0.02749 (15) | 0.02034 (14) | −0.00547 (12) | −0.00683 (12) | −0.00441 (11) |
| N1 | 0.0255 (5) | 0.0302 (5) | 0.0262 (5) | −0.0061 (4) | −0.0051 (4) | −0.0093 (4) |
| N2 | 0.0296 (5) | 0.0239 (5) | 0.0214 (5) | 0.0007 (4) | −0.0052 (4) | −0.0070 (4) |
| C11 | 0.0198 (5) | 0.0288 (6) | 0.0225 (5) | −0.0051 (4) | 0.0005 (4) | −0.0093 (5) |
| C12 | 0.0311 (7) | 0.0389 (7) | 0.0328 (7) | −0.0180 (6) | −0.0036 (5) | −0.0096 (6) |
| C13 | 0.0388 (8) | 0.0292 (7) | 0.0493 (9) | −0.0108 (6) | −0.0098 (7) | 0.0045 (6) |
| C14 | 0.0623 (11) | 0.0312 (8) | 0.0604 (11) | −0.0166 (7) | 0.0138 (9) | −0.0086 (7) |
| C15 | 0.0404 (8) | 0.0328 (7) | 0.0330 (7) | 0.0007 (6) | −0.0179 (6) | −0.0098 (6) |
| C16 | 0.0267 (6) | 0.0527 (9) | 0.0279 (7) | −0.0097 (6) | −0.0037 (5) | −0.0010 (6) |
| C17 | 0.0537 (10) | 0.0539 (10) | 0.0336 (8) | −0.0058 (8) | −0.0040 (7) | −0.0163 (7) |
| C21 | 0.0188 (5) | 0.0252 (6) | 0.0227 (5) | −0.0039 (4) | −0.0028 (4) | −0.0064 (4) |
| C22 | 0.0365 (7) | 0.0318 (6) | 0.0212 (6) | 0.0017 (5) | −0.0062 (5) | −0.0089 (5) |
| C23 | 0.0427 (8) | 0.0414 (8) | 0.0309 (7) | −0.0007 (7) | 0.0002 (6) | 0.0023 (6) |
| C24 | 0.0823 (14) | 0.0469 (10) | 0.0345 (9) | 0.0170 (10) | 0.0156 (9) | −0.0033 (7) |
| C25 | 0.0376 (7) | 0.0243 (6) | 0.0286 (6) | 0.0035 (5) | −0.0072 (5) | −0.0091 (5) |
| C26 | 0.0487 (9) | 0.0285 (7) | 0.0445 (9) | −0.0070 (6) | −0.0074 (7) | −0.0067 (6) |
| C27 | 0.0769 (14) | 0.0452 (10) | 0.0796 (14) | −0.0149 (9) | −0.0308 (12) | −0.0187 (10) |
Geometric parameters (Å, º)
| Cd1—S11 | 2.5558 (3) | C15—C16 | 1.483 (2) |
| Cd1—S22 | 2.5709 (3) | C15—H15A | 0.9900 |
| Cd1—S12i | 2.6021 (3) | C15—H15B | 0.9900 |
| Cd1—S21 | 2.6050 (3) | C16—C17 | 1.297 (2) |
| Cd1—S12 | 2.8016 (3) | C16—H16 | 0.9500 |
| S11—C11 | 1.7162 (13) | C17—H17A | 0.9500 |
| S12—C11 | 1.7532 (13) | C17—H17B | 0.9500 |
| S21—C21 | 1.7224 (12) | C22—C23 | 1.484 (2) |
| S22—C21 | 1.7263 (12) | C22—H22A | 0.9900 |
| N1—C11 | 1.3213 (16) | C22—H22B | 0.9900 |
| N1—C15 | 1.4735 (17) | C23—C24 | 1.315 (3) |
| N1—C12 | 1.4779 (17) | C23—H23 | 0.9500 |
| N2—C21 | 1.3333 (15) | C24—H24A | 0.9500 |
| N2—C22 | 1.4738 (16) | C24—H24B | 0.9500 |
| N2—C25 | 1.4749 (16) | C25—C26 | 1.490 (2) |
| C12—C13 | 1.490 (2) | C25—H25A | 0.9900 |
| C12—H12A | 0.9900 | C25—H25B | 0.9900 |
| C12—H12B | 0.9900 | C26—C27 | 1.307 (2) |
| C13—C14 | 1.308 (2) | C26—H26 | 0.9500 |
| C13—H13 | 0.9500 | C27—H27A | 0.9500 |
| C14—H14A | 0.9500 | C27—H27B | 0.9500 |
| C14—H14B | 0.9500 | ||
| S11—Cd1—S22 | 143.705 (13) | N1—C15—H15A | 109.1 |
| S11—Cd1—S12i | 103.129 (12) | C16—C15—H15A | 109.1 |
| S22—Cd1—S12i | 111.289 (11) | N1—C15—H15B | 109.1 |
| S11—Cd1—S21 | 108.203 (11) | C16—C15—H15B | 109.1 |
| S22—Cd1—S21 | 70.264 (10) | H15A—C15—H15B | 107.8 |
| S12i—Cd1—S21 | 110.826 (11) | C17—C16—C15 | 124.89 (14) |
| S11—Cd1—S12 | 67.486 (10) | C17—C16—H16 | 117.6 |
| S22—Cd1—S12 | 96.950 (10) | C15—C16—H16 | 117.6 |
| S12i—Cd1—S12 | 96.257 (9) | C16—C17—H17A | 120.0 |
| S21—Cd1—S12 | 152.651 (11) | C16—C17—H17B | 120.0 |
| C11—S11—Cd1 | 91.26 (4) | H17A—C17—H17B | 120.0 |
| C11—S12—Cd1i | 100.48 (4) | N2—C21—S21 | 120.81 (9) |
| C11—S12—Cd1 | 82.68 (4) | N2—C21—S22 | 119.72 (9) |
| Cd1i—S12—Cd1 | 83.743 (9) | S21—C21—S22 | 119.47 (7) |
| C21—S21—Cd1 | 84.58 (4) | N2—C22—C23 | 112.57 (11) |
| C21—S22—Cd1 | 85.57 (4) | N2—C22—H22A | 109.1 |
| C11—N1—C15 | 123.59 (11) | C23—C22—H22A | 109.1 |
| C11—N1—C12 | 121.48 (11) | N2—C22—H22B | 109.1 |
| C15—N1—C12 | 114.93 (11) | C23—C22—H22B | 109.1 |
| C21—N2—C22 | 123.16 (10) | H22A—C22—H22B | 107.8 |
| C21—N2—C25 | 122.11 (11) | C24—C23—C22 | 123.46 (19) |
| C22—N2—C25 | 114.53 (10) | C24—C23—H23 | 118.3 |
| N1—C11—S11 | 120.74 (10) | C22—C23—H23 | 118.3 |
| N1—C11—S12 | 120.64 (10) | C23—C24—H24A | 120.0 |
| S11—C11—S12 | 118.58 (7) | C23—C24—H24B | 120.0 |
| N1—C12—C13 | 113.50 (11) | H24A—C24—H24B | 120.0 |
| N1—C12—H12A | 108.9 | N2—C25—C26 | 111.95 (11) |
| C13—C12—H12A | 108.9 | N2—C25—H25A | 109.2 |
| N1—C12—H12B | 108.9 | C26—C25—H25A | 109.2 |
| C13—C12—H12B | 108.9 | N2—C25—H25B | 109.2 |
| H12A—C12—H12B | 107.7 | C26—C25—H25B | 109.2 |
| C14—C13—C12 | 123.61 (16) | H25A—C25—H25B | 107.9 |
| C14—C13—H13 | 118.2 | C27—C26—C25 | 123.99 (18) |
| C12—C13—H13 | 118.2 | C27—C26—H26 | 118.0 |
| C13—C14—H14A | 120.0 | C25—C26—H26 | 118.0 |
| C13—C14—H14B | 120.0 | C26—C27—H27A | 120.0 |
| H14A—C14—H14B | 120.0 | C26—C27—H27B | 120.0 |
| N1—C15—C16 | 112.59 (12) | H27A—C27—H27B | 120.0 |
| C15—N1—C11—S11 | −179.31 (10) | N1—C15—C16—C17 | 128.82 (17) |
| C12—N1—C11—S11 | 1.48 (17) | C22—N2—C21—S21 | 8.51 (17) |
| C15—N1—C11—S12 | 2.97 (17) | C25—N2—C21—S21 | −176.94 (10) |
| C12—N1—C11—S12 | −176.24 (9) | C22—N2—C21—S22 | −171.47 (10) |
| Cd1—S11—C11—N1 | −178.09 (10) | C25—N2—C21—S22 | 3.08 (17) |
| Cd1—S11—C11—S12 | −0.33 (7) | Cd1—S21—C21—N2 | −176.69 (10) |
| Cd1i—S12—C11—N1 | −99.72 (10) | Cd1—S21—C21—S22 | 3.29 (6) |
| Cd1—S12—C11—N1 | 178.07 (10) | Cd1—S22—C21—N2 | 176.65 (10) |
| Cd1i—S12—C11—S11 | 82.51 (7) | Cd1—S22—C21—S21 | −3.33 (7) |
| Cd1—S12—C11—S11 | 0.30 (6) | C21—N2—C22—C23 | −114.38 (14) |
| C11—N1—C12—C13 | −86.54 (16) | C25—N2—C22—C23 | 70.69 (16) |
| C15—N1—C12—C13 | 94.18 (15) | N2—C22—C23—C24 | −123.84 (16) |
| N1—C12—C13—C14 | −123.54 (16) | C21—N2—C25—C26 | −91.28 (15) |
| C11—N1—C15—C16 | 110.28 (15) | C22—N2—C25—C26 | 83.71 (15) |
| C12—N1—C15—C16 | −70.47 (16) | N2—C25—C26—C27 | −122.19 (18) |
Symmetry code: (i) −x+2, −y, −z+1.
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| C12—H12B···S11 | 0.99 | 2.59 | 2.9783 (14) | 103 |
| C15—H15A···S12 | 0.99 | 2.50 | 3.0438 (14) | 115 |
| C22—H22B···S21 | 0.99 | 2.50 | 3.0381 (13) | 114 |
| C25—H25B···S22 | 0.99 | 2.56 | 2.9845 (14) | 106 |
Funding Statement
This work was funded by North-West University, South Africa grant .
References
- Bruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2011). BIS, APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144. [DOI] [PubMed]
- Cox, M. J. & Tiekink, E. R. T. (1999). Z. Kristallogr. 214, 670–676.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
- Ferreira, I. P., de Lima, G. M., Paniago, E. B., Pinheiro, C. B., Wardell, J. L. & Wardell, S. M. S. V. (2016). Inorg. Chim. Acta, 441, 137–145.
- Glinskaya, L. A., Zemskova, S. M. & Klevtsova, R. F. (1999). Zh. Strukt. Khim. (Russ. J. Struct. Chem.), 40, 979–983.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- Ivanov, A. V., Konzelko, A. A., Gerasimenko, A. V., Ivanov, M. A., Antsutkin, O. N. & Forsling, W. (2005). Russ. J. Inorg. Chem. 50, 1827.
- Jian, F., Wang, Z., Bai, Z., You, X., Fun, H. & Chinnakali, K. (1999a). J. Chem. Crystallogr. 29, 227–231.
- Jian, F.-F., Wang, Z.-X., Fun, H.-K., Bai, Z.-P. & You, X.-Z. (1999b). Acta Cryst. C55, 174–176.
- Kumar, V., Singh, V., Gupta, A. N., Manar, K. K., Drew, M. G. B. & Singh, N. (2014). CrystEngComm, 16, 6765–6774.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Onwudiwe, D. C., Hrubaru, M. & Ebenso, E. E. (2015). J. Nanomaterials, 2015, 1–9.
- Rodina, T. A., Ivanov, A. V. & Gerasimenko, A. V. (2014). Russ. J. Coord. Chem. 40, 100–108.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
- Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
- Subha, P. V., Valarmathi, P., Srinivasan, N., Thirumaran, S. & Saminathan, K. (2010). Polyhedron, 29, 1078–1082.
- Tan, Y. S., Halim, S. N. A. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 113–126.
- Tan, Y. S., Sudlow, A. L., Molloy, K. C., Morishima, Y., Fujisawa, K., Jackson, W. J., Henderson, W., Halim, S. N. B. A., Ng, S. W. & Tiekink, E. R. T. (2013). Cryst. Growth Des. 13, 3046–3056.
- Thammakan, N. & Somsook, E. (2006). Mater. Lett. 60, 1161–1165.
- Tiekink, E. R. T. (2003). CrystEngComm, 5, 101–113.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989017011616/zl2710sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017011616/zl2710Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989017011616/zl2710Isup3.mol
CCDC reference: 899314
Additional supporting information: crystallographic information; 3D view; checkCIF report


