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Abstract

Objective—Healthcare communities have identified a significant need for disease-specific 

information. Disease-specific ontologies are useful in assisting the retrieval of disease-relevant 

information from various sources. However, building these ontologies is labor intensive. Our goal 

is to develop a system for an automated generation of disease-pertinent concepts from a popular 

knowledge resource for the building of disease-specific ontologies.

Methods—A pipeline system was developed with an initial focus of generating disease-specific 

treatment vocabularies. It was comprised of the components of disease-specific citation retrieval, 

predication extraction, treatment predication extraction, treatment concept extraction, and 

relevance ranking. A semantic schema was developed to support the extraction of treatment 

predications and concepts. Four ranking approaches (i.e., occurrence, interest, degree centrality, 

and weighted degree centrality) were proposed to measure the relevance of treatment concepts to 

the disease of interest. We measured the performance of four ranks in terms of the mean precision 

at the top 100 concepts with five diseases, as well as the precision-recall curves against two 

reference vocabularies. The performance of the system was also compared to two baseline 

approaches.

Results—The pipeline system achieved a mean precision of 0.80 for the top 100 concepts with 

the ranking by interest. There were no significant different among the four ranks (p = 0.53). 

However, the pipeline-based system had significantly better performance than the two baselines.

Conclusions—The pipeline system can be useful for an automated generation of disease-

relevant treatment concepts from the biomedical literature.
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1. Introduction

Disease-specific ontologies are knowledge bases intended to structure and represent disease-

relevant information including disease etiology, diagnostic characteristics, treatments and 

prognosis [1]. By providing rich domain knowledge, they can be very useful in assisting the 

retrieval of disease-relevant information from sources like clinical data repositories, 

biomedical literature, and online health resources, which therefore can better meet the 

information needs of various healthcare communities.

Building and maintaining such ontologies is labor-intensive. One major challenge is to 

identify disease-specific vocabularies that form the core of disease-specific ontologies. For 

example, in a previous study [1] we asked medical experts to manually develop reference 

vocabularies for three diseases from selected biomedical literature sources. The annotation 

of selected documents took around 100 man-hours, not counting the document preparation, 

guideline development, experts training, adjudication, and concept mapping. From the same 

study, we also found that existing literature sources were sufficient to provide disease-

specific vocabulary. Therefore, there is an opportunity for the development of algorithms 

that can automatically extract vocabulary components from these sources.

In the present study, we address the challenge described above by developing a set of 

knowledge extraction techniques that automatically generate disease-pertinent vocabulary 

from existing sources. We chose the MEDLINE database as our knowledge source because 

it contains a large collection of published journal citations and covers a variety of diseases. 

We have focused on treatment concepts associated with the disease of interest, including 

direct treatment and prevention of the problem or complications caused by the problem; 

however, the method can also be adapted to other disease domains (e.g., signs, symptoms, 

diagnostic tests).

2. Background

2.1. Disease-specific information needs and barriers

Disease-specific information is frequently sought by people in the healthcare communities, 

including clinicians, healthcare consumers, clinical researchers and medical knowledge 

engineers. The types of information that have been sought include medical knowledge 

(information that is understood to be generalizable to the care of all patients), patient data 

(information about a specific person), and population statistics (aggregated data about 

groups or populations of patients) [2]. For example, a variety of published studies 

investigated physicians’ information needs by analyzing their clinical questions raised in the 

course of patient care [2–4]. A large proportion of the questions were related to disease-

specific medical knowledge, such as “what is the drug of choice for condition x?”, “what test 

is indicated in situation x?”, and “how should I treat condition x?” [5]. Clinicians also 

frequently seek disease-specific patient information (e.g., medical history, physical exam) 

from clinical data repositories. With the wide adoption of electronic medical records, 

available patient data has been shown a marked increase. Thus, it is important to be able to 

distil and filter medical records to show the patient information that is relevant to a specific 

problem of interest.
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Healthcare consumers also frequently seek health information online to better understand 

and manage their own health [6]. Research shows that the top two major health topics 

searched online are related to the personal medical problems and the treatment for these 

problems [7]. Clinical researchers and medical knowledge engineers also demand disease-

specific information in order to understand, model, and analyze clinical data. For example, 

when conducting a retrospective clinical study, clinical researchers need to understand the 

details of the clinical problem (e.g., disease-specific signs and symptoms, diagnostic tests, 

comorbidities) in order to properly identify “research subjects” from an EHR.

2.2. Disease-specific ontologies

Ontologies are explicit and formal representations of domain knowledge, which enable the 

management, sharing, and reuse of domain knowledge [8,9]. Disease-specific ontologies 

intend to integrate vocabularies of different aspects of the disease, such as signs and 

symptoms, medications, therapeutic procedures, diagnostic procedures, and laboratory tests 

and imaging. To minimize information overload, it is crucial to develop effective 

information retrieval systems capable of retrieving relevant information to meet different 

information needs. For healthcare consumers, who are likely to have low health literacy [10], 

it is important to assist them forming optimal queries to retrieve relevant information from 

online health sources [11]. We anticipate that these ontologies will facilitate the retrieval of 

specific information from a variety of sources, such as websites [12], biomedical literature 

[13], and clinical data repositories [14–16]. Disease-specific ontologies can support 

information retrieval systems by providing domain-specific concepts and relations necessary 

to direct the formulation or expansion of initially simple queries tied to clinical concepts. In 

addition, the medical knowledge contained in disease-specific ontologies could be used by 

clinical researchers and medical knowledge engineers to understand the diseases, and the 

vocabularies in the ontologies may further assist their research or engineering work (e.g., 
cohort selection, text annotations).

2.3. Relation extraction in biomedical domain

Domain experts can develop disease-specific ontologies, but individuals with the required 

expertise are scarce and expensive. A long-term goal of our research is to create a platform 

to facilitate large-scale development of these ontologies. One of the critical tasks in building 

disease-specific ontologies is to acquire medical knowledge like concepts and relationships 

related to the disease of interest [8,17]. This kind of medical knowledge has been 

substantially documented in sources like the biomedical literature, web documents, and 

clinical data repositories, although most of it is represented in unstructured and narrative 

format. We therefore hope to take advantage of these sources and investigate automatic 

techniques to extract disease-specific medical knowledge from them.

Automatic extraction of relational medical knowledge from the biomedical literature is an 

active subject of research interest [18–22]. Researchers have attempted to extract disease-

specific medical knowledge from the biomedical literature ever since the 1990s [23,24]. In 

the earliest stage, the methods merely relied on co-occurrence-based statistics. For examples, 

Zeng and Cimino used MeSH co-occurrence information from the UMLS to obtain disease-
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chemical associations [24]. Chen et al. used co-occurrence statistics to extract disease-drugs 

relations from MEDLINE abstracts [18].

Along with the advanced development of NLP techniques, a variety of rule-based and 

machine-learning-based methods have been used for relation extraction. A typical example 

of rule-based system is SemRep [25,26] which is built upon UMLS and MetaMap. It 

interprets the biomedical knowledge presented in a given sentence from the scientific 

literature in the form of predications {subject PREDICATE object}, where the subject and 

object are biomedical concepts from the UMLS Metathesaurus and the PREDICATE is a 

semantic relation from the UMLS Semantic Network [25–27]. For example, from the 

sentence “this paper will review the earlier and present studies in the development of 

rasagiline for treatment of PD and discuss its pharmacology and applicable mechanism of 

action”, SemRep extracts the predication {Rasagiline TREATS Parkinson’s disease}. Based 

on a preliminary evaluation, the precision and recall of SemRep are 78% and 49% 

respectively [26]. More recently, Xu and Wang applied a pattern-based approach to extract 

disease-drug and disease-disease risk relationships from MEDLINE citations [21,22].

Machine learning techniques have also been successfully applied to relation extraction. 

From one standpoint, relation extraction is a classification problem which is to predict 

semantic relations held between two identified entities in a given sentence [28]. Researchers 

have employed different classification models using diverse lexical, syntactic and semantic 

features derived from the text to make predication on the relations. For example, Rosario and 

Hearst compared graphical models and neural network using lexical, syntactic, and semantic 

features to distinguish among seven relation types that can occur between the entities 

“treatment” and “disease” in bioscience texts [29]. Zeng et al. exploited a convolutional deep 

neural network to extract lexical and sentence level features which were fed into a softmax 

classifier to predict the relationships between two marked nouns [30]. From another 

standpoint, relation extraction is a sequence labeling problem, for which researchers have 

applied kernel-based approaches to label the relationships between two entities. For 

example, Bundschus et al. used conditional random field technologies to extract disease-

treatment associations from PubMed abstracts [31]. Giuliano et al. investigated a kernel-

based approach based on shallow linguistic processing for extracting relations between 

entities from biomedical literature [32].

In the present work, we intend to develop an automated approach to extract treatment 

vocabularies from the biomedical literature for a given disease of interest. Unlike previous 

studies which worked on semantic interpretation of the relationships from the biomedical 

literature, we focused on filtering and ranking disease-specific concepts for a given disease 

of interest. In addition, our work builds on previous tools and methods, in particular 

SemRep.

2.4. SemMedDB

SemRep is routinely used to process the entire set of MEDLINE citations (i.e., the titles and 

abstracts) to extract structured predications, which are then stored in a repository called 

SemMedDB [33]. There are currently over 83 million semantic predications in this database 

version June 30, 2015, approximately 93% of which are associative (or, non- “IS-A” 
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predication). Although SemMedDB provides structured predications that could facilitate the 

acquisition of medical knowledge from the biomedical literature, further inference is needed 

to filter noisy data and to retrieve information that is most useful for a disease-specific 

ontology. For example, a query in SemMedDB for a collection of predications that include 

congestive heart failure retrieves thousands of predications. Within these predications, 

concepts may range widely from pharmaceutical substances to signs and symptoms and 

related genes. Therefore, many retrieved concepts and predications could be outside scope 

for a disease-specific ontology. In addition, concepts that are irrelevant to the main search 

topic may be retrieved due to errors in the underlying SemRep NLP process and inaccurate 

or outdated information presented in MEDLINE abstracts. We addressed these issues in the 

development of our automatic knowledge extraction system from SemMedDB.

3. Materials and methods

The study method is comprised of two parts: (1) the development of a pipeline-based 

process to extract disease-specific, treatment-related information from biomedical literature; 

and (2) an experiment to compare the pipeline-based process to extract disease-specific 

treatment vocabulary with two baseline approaches in terms of precision-recall curves and 

mean average precision.

3.1. Pipeline-based process

The pipeline-based process developed in the present study consists of the following steps 

(see Fig. 1): (1) retrieval of therapeutic citations from MEDLINE for the disease of interest 

using a search strategy that aims to retrieve scientifically sound studies; (2) retrieval of all 

predications and their corresponding sentences from SemMedDB for the citations retrieved 

in Step 1; (3) development of a semantic schema from the UMLS and existing disease-

specific ontologies to identify treatment-related predications from this list; (4) retrieval of 

treatment-related predications from the predications in Step 2 using the semantic schema 

from Step 3; (5) extraction of treatment concepts from the treatment predications extracted 

in Step 4 from the list generated in Step 3; (6) ranking of the treatment concepts extracted in 

Step 5 using four ranking algorithms.

3.1.1. Step 1: Retrieval of disease-pertinent MEDLINE citations—The first step 

retrieves biomedical citations from MEDLINE database regarding the therapy of a given 

disease. We built a search strategy based on the PubMed Clinical Queries, which is a set of 

filters that are tuned to retrieve scientifically sound clinical studies in topics such as 

treatment, diagnosis, and prognosis [34–36]. The Clinical Query filters provide two modes: 

broad and narrow. The broad treatment filter has shown a sensitivity of 99% and a 

specificity of 70%, while the narrow treatment has shown a sensitivity of 93% and 

specificity of 97%. In the present study, we focused on sensitivity and used the broad filter.

Although Clinical Query filters perform well in retrieving clinical trial studies, the query 

does not cover other types of study design, such as systematic reviews, which would also be 

useful for retrieving disease-specific medical knowledge. Hence, we extended the Clinical 

Query treatment filter to retrieve systematic review articles (see Fig. 2). In addition, we 

added the following restrictions: English language, abstract available, human subjects, and 
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core clinical journals. We obtained the list of clinical journals by combining the PubMed 

core clinical journals (http://www.nlm.nih.gov/bsd/aim.html) with a list of journals 

categorized under “clinical medicine” in Web of Science (http://ip-

science.thomsonreuters.com/mjl/). For each disease of interest, we added a MeSH term for 

the disease as a major topic. The modified Clinical Query filter can also be extended to 

retrieve articles for other disease-associated concepts, such as etiology, diagnosis, and 

prognosis.

3.1.2. Step 2: Predication extraction with SemRep—In this step, the input is all the 

PMIDs that were assigned to those MEDLINE citations retrieved from step 1. The output is 

the predications generated by the SemRep from those MEDLINE citations as well as the 

sentences where the predications came from. More specifically, we took all the PMIDs to 

form SQL scripts to query the SemMedDB [33] to retrieve all the predications and 

sentences. The version of SemMedDB we used was updated with citations published 

through June 30, 2015. Citations published after this date were not yet available in 

SemMedDB, therefore we excluded those citations from the study.

3.1.3. Step 3: Development of semantic schema—The semantic schema consisted of 

a set of metapredications whose arguments are defined based on high-level domains based 

on UMLS semantic groups [37]; for example, {Procedures TREATS Disorders}. The 

development of a semantic schema is a one-time process that supports knowledge extraction 

of treatment concepts for any disease of interest. The development of the semantic schema 

was performed in two steps: (1) selection of relevant semantic groups to filter treatment 

concepts (Step 4), and (2) definition of relevant metapredications to filter treatment 

predications (Step 5).

To select relevant semantic groups, we analyzed the semantic groups and types that were 

present in the heart failure reference vocabulary (http://bioportal.bioontology.org/ontologies/

HFO) that had been manually created in a previous study [1]. The rationale for this approach 

is the assumption that the majority of semantic groups and types covered in disease 

treatment vocabularies would also be covered in the heart failure reference vocabulary.

A total of 413 treatment concepts were retrieved, from 38 semantic types and 9 semantic 

groups (i.e., Chemicals & Drugs, Procedures, Physiology, Devices, Activities & Behaviors, 

Concepts & Ideas, Objects, Disorders, and Organizations). The majority of the heart failure 

treatment concepts belonged to two semantic groups: Chemicals & Drugs and Procedures. 

We manually reviewed the other seven semantic groups and, based on domain knowledge, 

decided to include only four semantic groups: Chemicals & Drugs, Procedures, Devices, and 

Activities & Behaviors (Table 1). We also excluded a subset of the semantic types from the 

Procedures and Devices semantic groups. For example, from Procedures, we excluded 

Diagnostic Procedure, Laboratory Procedure, Molecular Biology Research Technique, and 

Research Activity.

We followed a similar process for metapredications, also using the heart failure vocabulary.
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We retrieved a total of 54,991 predications from SemMedDB from 15,994 citations. Forty 

percent (N = 22,019) of the predications contained treatment concepts from the heart failure 

vocabulary. We then generated 205 unique metapredications based on the retrieved 

predications, such as {Chemicals & Drugs, ADMINISTERED_TO, Living Beings}. Next, 

we removed the metapredications that did not contain any of the four semantic groups 

selected in the previous step. In addition, we excluded metapredications whose predicate 

was not treatment-related predicates, such as DIAGNOSES, CAUSES, STIMULATES, 

PRODUCES, PREDISPOSES, as well as negation predications. The remaining 

metapredications were grouped into four categories (Table 2). For each category, we 

identified the predication arguments that were most relevant for extracting treatment 

concepts. However, we noted some exceptions. For example, in category 3, for 

metapredications where the arguments are Chemical & Drugs and Devices, their 

corresponded predications are usually about the comparison or co-occurrence of a treatment 

(Chemical & Drugs) with a “placebo” (Devices), therefore, only the concepts from the 

position of Chemical & Drugs will be retrieved.

3.1.4. Step 4: Extraction of relevant treatment predications—Many predications 

retrieved in Step 2 could be not related to the treatment (e.g., a predication {congestive heart 

failure CAUSES cardiomyopathy, dilated}), or were generic and of little interest (e.g., 
{pharmaceutical preparations TREATS pneumonia}). To filter out generic predications, we 

adopted the novelty approach proposed by Fiszman et al. [38]. A predication is considered 

as generic when it has a generic concepts which is determined by whether the hierarchical 

depth in the Metathesaurus is less than an empirical distance. Each concept of the 

predications has the attribute of novelty in the SemMedDB. We exclude predications that 

contain non-novel concepts.

We then used the semantic schema to separate the treatment predications from irrelevant 

predications. To do so, we excluded predications that did not match one of the 

metapredications. For example, the predication {Adrenergic beta-Antagonists PREVENTS 

heart failure} matches the metapredication {Chemicals & Drugs PREVENTS Disorders}, 

while predication {congestive heart failure CAUSES cardiomyopathy, dilated} does not 

match any metapredications in the semantic schema.

3.1.5. Step 5: Extraction of disease-specific treatment concepts—After obtaining 

treatment predications, we extracted the concepts in the subject or object according to the 

semantic schema in Table 2. However, these extracted concepts could still be too general for 

the disease of interest. To exclude general concepts, we used an approach based on the 

assumption that concepts associated with a large number of diseases (i.e., common concepts) 

are likely to be general.

In order to identify common concepts, we took all MeSH terms (from UMLS Version 

2014AB) with the semantic type of disorders (N = 5109), and repeated Steps 1, 2, and 4 

above to generate disease-treatment pairs. A subset of 2683 MeSH terms were associated 

with disease-treatment pairs. Then, we analyzed the retrieved treatment concepts and the 

number of associated disorders for each treatment concept. If a treatment concept was 

associated with more than an arbitrary threshold of 20% of disease MeSH terms (N = 536), 
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the concept was considered to be a common concept. Applying this criterion, we generated a 

set of 69 common concepts. Table 3 shows examples of common concepts.

3.1.6. Step 6: Concept ranking—Ranking concepts has three purposes. First, the 

ranking might convey the information of the strength of the association. As we know, some 

treatment concepts might have stronger association with the disease of interest. For example, 

both “carvedilol” and “fish oil” are retrieved as treatment of heart failure, however, 

“carvedilol” is mentioned much more frequently in the literature than fish oil as a treatment 

of heart failure. Second, ranking concepts could make the true relevant concepts appear 

earlier in the result list than the noise. Although the semantic schema are able to filter some 

treatment-irrelevant information, noisy information can still be introduced because the 

semantic schema was focused on sensitivity. For example, given a disease of interest (i.e., 
heart failure), we extracted a treatment predication {Trastuzumab TREATS Breast cancer 

metastatic}, where the concept “Trastuzumab” was discussed as a cause of heart failure 

rather a treatment. Last but not least, a ranked list could speed up the review of automatically 

extracted concepts. The knowledge authors could prioritize their work with the ranked 

output.

We explored four approaches to rank the concepts: occurrence, interest, degree centrality, 

and weighted degree centrality.

1. Occurrence: the frequency of the occurrence of a treatment concept in the 

retrieved treatment predications for a given disease of interest (Formula (1)). The 

assumption is that the more often a concept is mentioned in the context of 

disease-specific treatment predications, the stronger the confidence that it is as a 

treatment for the disease of interest.

(1)

where ai is the frequency of the occurrence of a concept ti in the treatment 

predications.

2. Interest: A treatment concept may have a high occurrence score among the other 

extracted treatment concepts simply because it frequently occurs in the entire 

database. However, the relation between the concept and the disease of interest 

can still be weak. Interest is a measure that attempts to correct this weakness of 

occurrence, the idea of which is very similar to the TF-IDF (term frequency 

inverse document frequency) – a statistic that is intended to reflect how 

important a word is to a document in a collection of corpus [39]. We define the 

interest is the ratio of the occurrence of a treatment concept to the sum of the 

occurrence of all treatment concepts retrieved for a given disease of interest 

divided by logarithm of the ratio of the occurrence of a treatment of interest to all 

treatment concepts in the database (see Formula (2)). The denominator is a 

simple way of measuring the commonality of a concept.
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(2)

where ai is the frequency of the occurrence of a concept ti in the treatment 

predications, Ai is the total frequency of the occurrence of the concept ti in the 

entire database, while M is the total number of retrieved treatment concepts.

3. Degree centrality: Occurrence-based statistics ignore the linkage between 

concepts. Since the treatment predications extracted in step 4 can form a graph, 

we analyzed the formed network and use the centrality to identify important 

vertices (i.e., treatment concepts) within the graph. Degree centrality is the 

simplest of many centrality approaches, which measures the significance of the 

concepts in the graph by counting their connectivity to other concepts. We do not 

look at whether a concept is directly connected to the disease of interest or not; 

rather, we assess whether concepts are in the center of the graph. The following 

formula was used to calculate the degree centrality of a given concept in the 

graph:

(3)

where i is the focal node, j represents all other nodes, N is the total number of 

nodes, and x is the adjacency matrix, in which the cell xij is defined as 1 if node i 
is connected to node j, and 0 otherwise. Zhang et al. have used degree centrality 

for semantic abstraction summarization of therapeutic studies, in which degree 

centrality was used to select important nodes from a graph [37]. Özgür et al. also 

used degree centrality for mining gene-disease association from biomedical 

literature [40].

4. Weighted degree centrality: Weighted degree centrality is a harmonization 

between the frequency of occurrence and degree centrality [41].

(4)

where ki is the degree centrality score of node i, or CD(i) as described in Formula 

(3). Si is the sum of weighted adjacency matrix in which wij is the value that 

represents the weight of the edge (i.e., the occurrence of a predication) between 

node i and node j. α is a positive tuning parameter that can be set according to 
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the research setting and data. We used α = 0.5 in this study to harmonize the 

occurrence and the degree centrality in one ranking.

3.2. Experiment

We conducted an experiment to test the following null hypotheses: there is no difference in 

precision at top 100 extracted concepts among the rankings produced by the four ranking 

approaches in the pipeline-based algorithms (H1); and there is no difference in precision at 

top 100 extracted concepts among the rankings produced by the pipeline, predication, and 

MeSH-based extraction methods (H2). In addition, we also evaluated the performance of the 

system against the manually extracted treatment vocabulary with precision-recall curves.

3.2.1. Baseline approaches—We compared our approach with two baselines in terms of 

extracting disease-specific treatment concepts from MEDLINE citations.

Baseline 1: The Medical Subject Headings (MeSH) vocabulary is used to index and catalog 

articles in MEDLINE. MeSH qualifier terms, in conjunction with the MeSH main headings, 

offer a convenience to group citations together when they are related to a particular aspect of 

a subject. For example, Platelet Aggregation Inhibitors/therapeutic use indicates that the 

citation is about the use of the drug class platelet aggregation inhibitors in the treatment of a 

disease. After reviewing the qualifiers defined in the MeSH Topical Qualifiers [42] and 

examples in the MEDLINE database of how those qualifiers were used with the MeSH 

headings, we selected the following qualifiers: “methods”, “instrumentation”, “therapeutic 

use”, “pharmacology”, and/or “administration & dosage”. For example, the qualifier 

“administration & dosage” is defined as “used with drugs for dosage forms, routes of 

administration, frequency and duration of administration, quantity of medication, and the 

effects of these factors.”, a drug MeSH term could be possibly assigned with the qualifier 

“administration & dosage”. Based in their definition, the qualifiers “methods” and 

“instrumentation” were used with procedures and techniques, including diagnostic 

procedures and therapeutic procedures. The qualifiers “therapeutic use”, “pharmacology”, 

and/or “administration & dosage” were used with drugs or chemical substances.

From the articles retrieved by Step 1, we were able to extract a collection of MeSH terms 

associated with the therapeutic qualifiers of interest. We then obtained the UMLS concepts 

for these MeSH terms using the mappings established in the UMLS Metathesaurus. Next, 

the resulting UMLS concepts were restricted using the same semantic types and groups 

described in Table 1 in order to avoid the inclusion of concepts not related to treatment. The 

remaining concepts were ranked based on their frequency of occurrence.

Baseline 2: This baseline approach simply used the predications to obtain disease-specific 

treatment concepts. We first extracted the predications with the pattern of {Subject 

TREATS/PREVENTS Object}, where the object is the disease of interest. We then extracted 

all the concepts in the subject position. Thereafter, we ranked the concepts based on their 

frequency of the occurrence in the retrieved predications.

3.2.2. Validation of extracted concepts—We selected five diseases cases for 

hypothesis testing. Two diseases, pulmonary embolism (PE) and rheumatoid arthritis (RA), 
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were chosen from a previous study, for which we have developed reference treatment 

vocabularies with 80 and 232 concepts respectively. The reference vocabularies are available 

in BioPortal as rheumatoid arthritis ontology (https://bioportal.bioontology.org/ontologies/

RAO) and pulmonary embolism ontology (https://bioportal.bioontology.org/ontologies/PE). 

The other three diseases (diabetes mellitus, asthma, and schizophrenia) were chosen from a 

previous publication on knowledge extraction from existing knowledge resources [18].

In order to measure the performance of different knowledge extraction approaches, we 

validated the extracted concepts for the selected diseases. This was done by comparing to 

reference standards (for the two diseases with reference standards) and manual review.

For automated comparison to reference standards, we used exact matching and one-way 

hierarchical matching where any extracted concepts that were children of reference concepts 

were considered as positive. The hierarchical relationships were obtained from the UMLS 

Metathesaurus MRREL and MRHIER tables.

For manual review, the goal was to verify if false-positive concepts according to the 

reference standard were indeed true-positives or just gaps in the reference standard. For 

example, “tumor necrosis factor-alpha inhibitor” (a drug class used to treat rheumatoid 

arthritis) was extracted by our system as a treatment for rheumatoid arthritis. However, this 

drug class was not present in the reference standard. Upon review one of the source 

sentences: “Tumour necrosis factor-alpha (TNFalpha) inhibitors are effective agents in 

treating RA; however, their cost effectiveness as first-line agents has not been investigated”, 

we confirmed that “tumor necrosis factor-alpha inhibitor” is indeed a treatment for 

rheumatoid arthritis. This review was done by one of the authors (LW) with additional 

clinician review if such judgement could not be made directly based on the source sentences.

3.2.3. Outcome measures—The primary outcome for the two hypotheses was precision 

at K and secondary outcomes were the overall precision and recall. Precision at K was the 

ratio of the number of “true positive” concepts among the top K ranked concepts divided by 

K. We calculated the precision at K for five testing diseases for different rankings and 

algorithms. We choose the parameter K = 100, believing that as knowledge engineers, it is a 

fair amount of concepts that they would go through. When calculating the precision at K, for 

diseases having reference standards, we not only validated the extracted concepts with the 

reference standards, but also manually verified false positive concepts in case they were in 

fact correct concepts, but missing in the reference standard. For three diseases without 

reference standards, the top 100 concepts of each disease were manually validated.

To evaluate ranked results, interpolated precision-recall curves were plotted to visualize the 

trade-off between precision and recall, where the precision and recall were calculated based 

on the reference standards. The precision-recall curves also provided a visual comparison 

among the ranks in the pipeline-based approach and between the pipeline-based approach 

and the baselines. We plotted the interpolated precision-recall curves only for the two 

diseases with reference vocabularies. An error analysis were also conducted based on 

manual inspection of false-positive and false-negative concepts.
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3.2.4. Statistical analysis—To test the difference among the different rankings in the 

pipeline-based system (H1), we first measured the top 100 precision obtained by four 

different rankings for five diseases. We then calculated the mean precision for each ranking. 

We used analysis of variance (ANOVA) to test the significance of the difference. For 

pairwise comparisons, we used the Tukey honest significant difference (HSD) post-hoc test.

To test the difference between the pipeline-based system vs. predication-based system and 

the pipeline-based system vs. the MeSH-based approach (H2), we calculated the mean top 

100 precision for the two baselines across the same five diseases. We used ANOVA to test 

the significance of the differences between pipeline-based system and predication-based 

approach, followed by the Dunnett post-hoc test for comparisons between the four ranks in 

the pipeline-based system with the control (or the baseline). In the same way, we tested the 

significance of difference between the pipeline-based system and the MeSH-based approach. 

All statistical analyses were based on a significance level of 0.05 and were performed with R 

version 3.2.5.

4. Results

4.1. System outputs on five diseases

Table 4 shows the number of citations, predications, treatment predications, and treatment 

concepts retrieved from each step for the five test diseases. The number of retrieved citations 

varied by disease. On average, each citation was able to generate 4–5 predications, and less 

than half of those predications were treatment predications. The number of candidate 

treatment concepts also varied based on the disease of interest.

Table 5 shows sample output from the pipeline-based system for rheumatoid arthritis. The 

output consists of the following attributes: UMLS CUI, concept name, semantic type, four 

ranking scores (occurrence, interest, degree centrality, and weighted degree centrality), and 

sentences extracted from the abstract and titles of the published articles.

4.2. Performance of pipeline-based algorithms versus baselines

Table 6 shows the precision of the top 100 treatment concepts extracted by the pipeline 

system and baselines on five diseases: rheumatoid arthritis, pulmonary embolism, diabetes 

mellitus, Alzheimer’s disease, and asthma.

In the pipeline-based approaches, the difference among occurrence, interest, degree 
centrality, and weighted degree centrality was not significant (mean top 100 precision = 0.78 

vs. 0.80 vs. 0.73 vs. 0.76; p = 0.53).

According to the ANOVA test, there was a significant difference in mean precision at top 

100 among the pipeline-based and predication-based approaches (occurrence 0.78 vs. 

interest 0.80 vs. degree centrality 0.73 vs. weighted degree centrality 0.76 vs. predication-

based 0.59; p = 0.022). With the HSD post-hoc test, three ranks (i.e., interest, occurrence, 

and weighted degree centrality) in the pipeline-based system significantly outperformed the 

predication-based baseline (see Fig. 3), while no significant difference was found between 

the degree centrality and the predication-based baseline. According to the ANOVA test, 
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there was a significant difference in mean precision at top 100 among the pipeline-based and 

the MeSH-based baseline (occurrence 0.78 vs. interest 0.80 vs. degree centrality 0.73 vs. 

weighted degree centrality 0.76vs. MeSH-based 0.44; p < 0.0001). With the HSD post-hoc 

test, the pipeline-based approach with all four ranks significantly outperformed the MeSH-

based approach (see Fig. 4).

Figs. 5 and 6 provide a visualization of the treatment vocabularies generated by the pipeline-

based system for asthma and diabetes.

4.3. Precision-recall curves

The precision-recall curves compared the performance of the different approaches against 

the manually developed reference vocabularies. Fig. 7 shows the interpolated precision-

recall curves on rheumatoid arthritis and pulmonary embolism. By including all extracted 

concepts, the recall of rheumatoid arthritis was 0.59, and the recall of pulmonary embolism 

was 0.66. Recall for the pipeline based approach was less than 1 for both diseases, indicating 

that the automated system captured only a subset of the concepts in the gold standard. The 

predication-based baseline approach reached a recall of 0.58 for rheumatoid arthritis and 

0.56 for pulmonary embolism while, the MeSH-based baseline reached a recall of 0.34 for 

both pulmonary embolism and rheumatoid arthritis.

4.4. Error analysis

We identified 143 false negative concepts for rheumatoid arthritis, and 43 false negative 

concepts for pulmonary embolism. All these false negative concepts were included in the 

error analysis. We identified over two thousand false positive concepts for these two diseases 

and analyzed the false positive concepts among the top 100 ranked concepts of each disease 

retrieved by any of the ranks, which resulted in 47 false positive concepts for rheumatoid 

arthritis and 76 for pulmonary embolism.

Three main reasons could be attributed to false negative concepts or lowered recall: (1) 

about one third of the reference concepts were not present in the extracted sentences and 

predications (e.g., “fluindione” and “lanoteplase” for pulmonary embolism). A few false 

negative concepts were missed because their semantic types were not included in the 

semantic schema of the automated system, such as ‘systemic’ and ‘nutritional’. (2) One third 

of the reference concepts existed in the extracted citations and sentences, however were 

missed because they were not captured by SemRep. For example, in “Tai Chi and yoga are 

complementary therapies which have, during the last few decades, emerged as popular 

treatments for rheumatologic and musculoskeletal diseases” two predications were 

extracted: {Complementary therapies TREATS Rheumatologist} and {Complementary 

therapies TREATS Musculoskeletal Diseases}; however, none of the predications included 

the relevant concepts “Tai Chi” and “yoga”. (3) One third of reference concepts were missed 

because equivalent annotations were mapped to UMLS CUIs with different granularity in 

the reference vocabulary. For example, ‘resistance training’ was mapped to C0872279 

(Resistance Training) in the reference standard, but was mapped to C0814409 (Resistance 

education) in SemMedDB. The reference was more likely to include the entire annotation as 

a concept while SemRep mapped more granular fragments to UMLS concepts. For example, 
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from the sentence “in this systematic review, outcomes for total wrist fusion were 

comparable and possibly better than those for total wrist arthroplasty in rheumatoid 

patients”, SemRep extracted the predication {Arthroplasty TREATS Patients}, while in the 

reference the “total wrist arthroplasty” was mapped to C0408314 (total wrist arthroplasty).

Several reasons were attributed to false positive concepts or lowered precision. (1) Among 

the analyzed false positive concepts, 40% were correct disease-specific treatments that were 

missing in the reference vocabularies. Examples include “methotrexate treatment”, “tumor 

necrosis factor therapy”, and “Hip Replacement, Total” for rheumatoid arthritis; and 

“Prescription of prophylactic anticoagulant”, “Prescription of prophylactic anticoagulant”, 

“Compression Stockings”, and “Angioplasty, Balloon” for pulmonary embolism. (2) Many 

false positive concepts were biomarkers of tests and assessments for treatment monitoring, 

usually with the semantic type of “amino acid, peptide, or protein”. Examples include 

“neurohormonal factor”, “N-terminal pro-B-type natriuretic peptide”. (3) The false positive 

concepts could be studied as adverse events or risk factors for the disease of interest. 

Especially for pulmonary embolism, many false positive concepts were related to 

complications of certain procedures or medications that increase the risk of pulmonary 

embolism, such as “Arthroplasty”, “Repair of hip”, “Splenectomy”. (4) False positive 

concepts were also caused by errors introduced by NLP tools. For example, from the 

sentence “this indicates that the MHAQ and RA-HAQ generally fail to identify appropriately 

the extent of functional loss in RA”, the predication {Ametantrone TREATS Rheumatoid 

Arthritis} was extracted, where “HAQ” (Health Assessment Questionnaire) was incorrectly 

mapped to “ametantrone”.

5. Discussion

In this study, we developed a pipeline-based knowledge extraction system to automatically 

generate disease-specific treatment vocabularies from the biomedical literature. The system 

is designed to retrieve disease-specific treatment-related articles, predications, and a ranked 

list of concepts. Comparing to a MeSH-based and a predication-based concept extraction 

approaches, our system had significantly higher precision for extracting the top 100 

concepts. We also compared different algorithms ranking the extracted concepts; there was 

no significant difference among four ranks. Our system achieved an average precision of 0.8 

for the top 100 concepts. We conclude that this pipeline-based system could be useful in 

generating disease-specific treatment vocabulary from the biomedical literature for building 

disease-specific ontologies. Besides, manual review of the system output would be necessary 

in order to generate a high-quality treatment vocabulary from these automated generated 

concepts. As an individual without much clinical background, we estimated the time for 

judging the relevance of the treatment concepts to the disease of interest by reading the 

origin sentences and citations, which is about one minute per concept. Comparing to 

manually acquisition, this could be much more efficient.

We reported that the pipeline system has achieved an average precision of 0.80 ranked by 

interest based on five test diseases. However, as the results show, for well-studied diseases 

(e.g., rheumatoid arthritis) with many associated biomedical articles, the system would have 

higher precision, while for those with less articles (e.g., pulmonary embolism), their 

Wang et al. Page 14

J Biomed Inform. Author manuscript; available in PMC 2017 September 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



precision is relatively lower. Therefore, the reported performance would not reflect the 

system’s performance on diseases that have not been extensively investigated, such as new 

or rare diseases.

Our system has achieved a relatively low recall based on two test diseases (i.e., pulmonary 

embolism and rheumatoid arthritis). Based on the error analysis in Section 4.4, 

approximately two thirds of the false negative concepts were probably attributed to the 

relation extraction tool we have used. However, there exist many other approaches aimed at 

extracting semantic relations from the biomedical literature or web documents, and some of 

them were also used UMLS and/or MetaMap [43]. Therefore, our system may gain further 

recall by incorporating the output of other relation extraction approaches or tools as 

secondary knowledge sources in addition to the SemMedDB to our proposed pipeline 

process.

Although the automated generated vocabulary was not able to identify 100% of the concepts 

in our manually generated reference vocabularies, the automated approach was able to 

extract some relevant treatment concepts that were missing in these reference vocabulary. 

This included cases of concepts with finer granularity or new information that was not 

included in the guidelines, textbooks, or online documents used to build the reference 

vocabularies. What’s more, rather than starting from scratch, we build our system upon 

publically available resources, such as PubMed Clinical Queries, MEDLINE citations, and 

SemMedDB. In addition, we developed semantic schemas for treatment from an existing 

disease-specific treatment vocabulary to filter treatment predications rather simply relying 

on predicates such as “TREATS” or “PREVENTS”. In this way, more information could be 

captured, for example, the evidence about the comparison between two medications can also 

be identified.

The main contribution of our study lies in three areas; the tuned selection of articles, the 

filtering of predications from millions of predications in the SemMedDB, and the ranking of 

concepts specific to the disease of interest. As Fig. 7 shows, predication-based approach has 

lower precision comparing to the pipeline system, which indicates that purely using SemRep 

predications would require much more review effort. In addition, the MeSH-based approach 

have lower recall comparing to the pipeline system, which indicates that using MeSH 

heading in the MEDLINE citations would not result as good coverage of the treatment 

vocabulary as using the pipeline system.

Our approach is innovative in two ways. First, compared to previous studies [18,22], we not 

only retrieve disease-specific pharmaceutical substances, but also other types of treatment, 

such as procedures, devices, and activities. In terms of disease-drug pairs, it is interesting to 

compare the results with previous studies [18,22]. However, we found such comparisons to 

be difficult since there were substantial differences in study goals, evaluation methods, and 

reference standards. In a simple comparison to the work of Chen et al. [18], our study found 

a greater number of disease-relevant citations and disease-drug pairs. Comparing to Xu’s 

work [22], we have achieved a similar recall at a precision of 0.80, with the caveat that the 

reference standards used in both studies were different. Second, we were able to collect the 

source sentences and PubMed citations related to the disease-specific treatments. This could 
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be useful for anyone who are interested in expanding their knowledge on a specific 

treatment. The extracted concepts also provide an index for over thousands of disease-

specific treatment-related citations and sentences from MEDLINE. Researchers or clinicians 

can use this index to trace the evidence in the biomedical literature of a specific treatment 

for the disease of interest.

Our proposed approach was designed to be generalizable to other disease domains, such as 

diagnostic tests, signs, and symptoms. Yet, some adaptation is necessary including 

developing specific semantic schemas and defining common concepts for other disease 

domains. The same approach used to develop the semantic schema and define common 

concepts in the present study can be followed to adapt the algorithms to other disease 

domains.

The study has several limitations. First, the semantic schema for extracting treatment 

predications and concepts were developed based on a reference vocabulary of one disease 

(i.e., heart failure), and might not be generalize to some types of disease. Second, we defined 

a list of common concepts to be filtered from extracted treatment concepts in Section 3.1.4. 

The selection of common concepts is based on an arbitrary cut-off threshold. Third, as the 

algorithm evaluation demonstrated, our reference standards had gaps in coverage and 

therefore were not perfect. Last the approach to judging the correctness of extracted 

concepts for diseases without a reference vocabulary was not as rigorous as the approach 

used to develop the reference vocabularies.

6. Conclusions

We investigated a pipeline-based approach to extract disease-specific treatment concepts 

from the biomedical literature to assist the development of disease-specific vocabularies. 

The pipeline-based approach obtained a mean precision of 0.8 for the top 100 retrieved 

concepts, which was significantly higher than two baselines. The performance of four 

ranking strategies (e.g., occurrence, degree centrality, weighted degree centrality, and 

interest) was not statistically significant different. In the future, we intend to extend the 

system to extract concepts on other disease aspects, including signs, symptoms, and 

diagnostic tests.
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Fig. 1. 
Flowchart of automatically extracting disease-specific, treatment vocabulary from the 

biomedical literature and the ranking of treatment concepts.
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Fig. 2. 
Modified Clinical Query for retrieving treatment-related citations for the disease of interest 

from MEDLINE. In the query, “QUERY_TERM” is the MeSH term for the disease of 

interest. “JOURNALLIST” is a list of clinical journals, e.g., “CA-CANCER J CLIN”, 

“NEW ENGL J MED”.
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Fig. 3. 
95% family-wise confidence level for the difference of the precision of top 100 concepts 

between the pipeline-based system and the Predication-based system.
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Fig. 4. 
95% family-wise confidence level for the difference of the precision of top 100 concepts 

between the pipeline-based system and the MeSH-based system.
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Fig. 5. 
Weighted graph of exampled treatment concepts for asthma.
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Fig. 6. 
Weighted graph of exampled treatment concepts for diabetes mellitus.
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Fig. 7. 
(A) Interpolated precision-recall curves for rheumatoid arthritis; (B) Interpolated precision-

recall curves for pulmonary embolism.
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Table 1

The semantic types and groups of treatment concepts.

Semantic groups Included semantic types

Procedures Educational Activity, Health Care Activity, Therapeutic or Preventive Procedure

Chemicals & Drugs Alla

Activities & Behaviors Alla

Devices Medical Device

a
Refer to http://semanticnetwork.nlm.nih.gov/download/SemGroups.txt for detailed semantic types included by a specific semantic group.
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Wang et al. Page 28

Table 3

Sampled common concepts.

CUI UMLS concept # of co-occurred diseases

C0040808 Treatment Protocols 1445

C1273870 Management procedure 1418

C1273869 Intervention regimes 1361

C0011900 Diagnosis 1326

C1533685 Injection procedure 1265

C0543467 Operative Surgical Procedures 1248

C0184661 Procedures 1201

C0032042 Placebos 1193

C0001617 Adrenal Cortex Hormones 1172

C0728940 Excision 1091

C1522577 Follow-up 1083

C0185125 Application procedure 1064

C0023977 Long-term care 1041

C0220908 Screening procedure 989
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Wang et al. Page 29

Table 4

The numbers of retrieved citations, predications, treatment predication, and treatment concepts for five testing 

diseases.

Test cases Citations Predications Treatment predications Candidate treatment concepts

Rheumatoid arthritis 11,263 53,039 26,914 1984

Pulmonary embolism 3031 12,820 5101 706

Diabetes mellitus 32,552 166,140 72,730 3873

Asthma 17,286 94,001 39,189 2385

Schizophrenia 6910 25,086 14,701 1018
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