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Summary

T follicular helper (Tfh) cells are a distinct type of CD4+ T cell specialized

in providing help to B cells during the germinal centre (GC) reaction. As

such, they are critical determinants of the quality of an antibody response

following antigen challenge. Excessive production of Tfh cells can result

in autoimmunity whereas too few can result in inadequate protection

from infection. Hence, their differentiation and maintenance must be

tightly regulated to ensure appropriate but limited help to B cells. Unlike

the majority of other CD4+ T-cell subsets, Tfh cell differentiation occurs

in three phases defined by their anatomical location. During each phase

of differentiation the emerging Tfh cells express distinct patterns of co-

receptors, which work together with the T-cell receptor (TCR) to drive

Tfh differentiation. These signals provided by both TCR and co-receptors

during Tfh differentiation alter proliferation, survival, metabolism, cyto-

kine production and transcription factor expression. This review will dis-

cuss how engagement of TCR and co-receptors work together to shape

the formation and function of Tfh cells.

Keywords: activation; co-stimulation; inhibitory/activating receptors;

signal transduction; T follicular helper cell.

Introduction

The induction of long-lasting antibody-mediated immu-

nity depends upon the formation of a productive germi-

nal centre (GC) where B cells can differentiate into

memory B cells and antibody-secreting cells.1,2 During

the GC reaction the B cells undergo affinity maturation

and antibody class switching. GC formation is dependent

upon the ability of T follicular helper (Tfh) cells to inter-

act with B cells and provide them with ‘help’ in the form

of cytokine secretion and co-receptor expression

(reviewed in refs 3 and 4). Tfh cells differentiate from

naive CD4+ precursors, a process that must be tightly

controlled to ensure optimal B-cell help. Too many Tfh

cells can lead to autoimmunity whereas too few result in

inadequate protection from infection. Hence, Tfh cells are

an attractive target for therapeutic intervention. This

requires an in-depth understanding of the mechanisms

regulating their differentiation and function. A plethora

of cytokines, signalling molecules and transcription fac-

tors are reported as critical for Tfh cell identity and func-

tion. Yet the dominating intracellular signalling pathways

that drive Tfh cell differentiation are less well understood.

The role of cytokines in driving Tfh cell differentiation

has been recently reviewed,5 so here we will discuss how

antigenic and co-receptor signals shape Tfh cell differenti-

ation.

Phases of Tfh cell differentiation

Tfh cell differentiation is a multistage process, occurring

over a period of days.3,4 It can be divided into three

phases, broadly defined by the anatomical location of the

T cell as illustrated in Fig. 1. In the first phase, naive

CD4+ T cells are antigenically stimulated by dendritic

cells (DC) in the T-cell zone of secondary lymphoid

organs. If the delivery of antigen occurs in combination

with delivery of specific cytokine and co-receptor signals,

Abbreviations: Bcl6, B-cell lymphoma 6; CTLA-4, cytotoxic T-lymphocyte antigen 4; DC, dendritic cell; GC, germinal centre;
IL-21, interleukin-21; ICOS, inducible T-cell co-stimulator; NFAT, nuclear factor of activated T cells; NF-jB, nuclear factor-jB;
PD-1, programmed cell death 1; SAP, SLAM-associated protein; SFR, SLAM family receptor; SLAM, signalling lymphocytic
activation molecule; TCR, T-cell receptor; Th, T helper; Tfh, T follicular helper
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primed T cells can enter into the Tfh differentiation pro-

gramme and become pre-Tfh cells that express high levels

of programmed cell death protein 1 (PD-1) and inducible

T-cell co-stimulator (ICOS). This is accompanied by

increased expression of the transcription factors TCF-1,

cMAF and B-cell lymphoma 6 (Bcl6), with concurrent

repression of Blimp-1. In addition, T cells lose expression

of CCR7 and EBI2, and gain expression of CXCR5,

CXCR4 and S1PR2 allowing them to respond to chemo-

tactic signals and migrate to the areas of the secondary

lymphoid organs where T and B cells meet, such as the

interfollicular area and the T–B-cell border.6 Here the

second phase of their differentiation occurs. In this phase

the T–B-cell interaction is symbiotic, providing both cell

types with signals required to support the differentiation

that enables both cell types to participate in the GC
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Figure 1. Expression of co-receptors during the three phases of T follicular helper (Tfh) cell differentiation. Schematic depicting the multistage

and location-specific nature of Tfh cell differentiation. The expression of co-receptors is shown at each stage with stimulatory receptors coloured

green and inhibitory receptors coloured red. During the first phase of differentiation (days 0–3) naive CD4+ T cells are activated by dendritic cells

in the T-cell zone where they proliferate and alter expression of co-receptors. This allows the resulting pre-Tfh cell to migrate towards the T–B-

cell border where it engages with antigen-specific B cells. Co-receptors expressed by Tfh cells also modulate the signals transduced through the T-

cell receptor, allowing their differentiation. In the second phase (days 4–5) antigen is presented by B cells and the co-receptors expressed by pre-

Tfh cells are used symbiotically to both induce Tfh cell differentiation and provide co-stimulation to B cells. In the third phase (days 6–10), Tfh

cells engage with germinal centre (GC) B cells within the GC. Tfh cells provide a limiting source of help to ensure that appropriate B cells differ-

entiate into antibody-secreting cells and memory B cells. During the resolution phase the Tfh cell can leave the GC and in the absence of further

antigenic stimulation resides as a long-lived memory Tfh cell in the periphery.
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reaction. The activated B cells provide further antigenic

stimulation and co-stimulatory and co-inhibitory signals

(including; CD80, CD86, ICOSL, OX40L, PD-L1, PD-L2),

enabling the pre-Tfh cells to complete differentiation and

move into the GC. In turn, the pre-Tfh cell provides help

to B cells by secreting cytokines [interleukin-21 (IL-21)

and IL-4] and expressing CD40L, that can prompt B-cell

follicular entry. The third phase occurs in the GC where

Tfh cells engage with GC B cells providing them with

help to ensure their proliferation, and subsequent differ-

entiation into plasma and memory B cells.3,4,7 The anti-

genic and co-stimulatory signals that direct each of the

three phases of Tfh cell differentiation will be outlined in

this review.

The role of antigen presentation in Tfh cell
differentiation

Strength and duration of T-cell receptor signal

Although high-affinity CD4+ T-cell clones and T-cell

receptors (TCR) with the strongest peptide–MHCII bind-

ing show skewed differentiation into Tfh cells, this is

most likely due to increased clonal expansion in response

to high-affinity antigens.8,9 It has been suggested that

although antigen affinity does not correlate with parti-

tioning to Tfh cell fate, different peptide epitopes may

dictate T helper type 1 (Th1) versus Tfh cell differentia-

tion.10 Intriguingly, single cell transfer demonstrated that

individual polyclonal T cells specific for a single peptide

tend to produce progeny with a specific balance of Th1

and Tfh cells.11 This divergence was due to enhanced Tfh

differentiation with increased aggregate dwell time (the

half-life for which a TCR productively binds to its cog-

nate pMHCII ligand).11 Work using a synthetic system

where TCR and peptide–MHC were replaced with

hybridizing DNA strands showed that signalling is initi-

ated when single bound TCR are converted into clusters

of bound TCRs.12 Longer dwell times and higher ligand

densities synergize to promote TCR clustering. This

increases the probability of TCR phosphorylation and

ZAP-70 recruitment, resulting in appropriate downstream

TCR signalling.

Unlike other T helper subsets, Tfh cells require contin-

uous antigenic stimulation for their maintenance. Experi-

mental strategies to prolong antigen presentation by DC

leads to increased numbers of Tfh cells in mice.13,14 In

humans, use of high antigen dose vaccines also results in

increased antibody levels and circulating Tfh-like cells.15–

17 In autoimmune settings, chronic antigen exposure cor-

relates with increased numbers of Tfh cells.18–21 Likewise,

increased proximal TCR signalling (e.g. in PTPN22-defi-

cient mice) results in increased proliferation and accumu-

lation of Tfh cells.22 In our own studies we find that

continuous antigenic stimulation is necessary for human

Tfh differentiation in vitro (Webb and Linterman unpub-

lished observation), demonstrating the dependence of Tfh

cells on continuous antigen stimulation.

Presentation of antigen by DC

Antigen is presented to naive CD4+ T cells by DC. This

initial T–DC interaction results in the induction of Bcl6,

the transcriptional repressor required for Tfh forma-

tion.23–25 DCs are essential for Tfh induction, with B cells

becoming the major antigen-presenting cell type for Tfh

cells in the second and third phases of their differentia-

tion.26,27 In comparison to signals that regulate the B–Tfh
cell interaction relatively little is known about the signals

required to generate Tfh cells during the first DC–T-cell
interaction. However, in conditions of high antigen dose

such as viral infection, DC are dispensable for the genera-

tion of Tfh cells, suggesting that they are only essential

when the amounts of antigen are limiting.27,28 The mode

of antigen presentation, the co-receptors and the cytoki-

nes expressed by DC are key determinants of Tfh cell dif-

ferentiation. Further rounds of antigenic stimulation in

the second phase of Tfh cell differentiation, usually medi-

ated by B cells, are required to stabilize Bcl6 expression

and complete Tfh cell differentiation.29

Presentation of antigen by B cells

B cells play an essential role in supporting Tfh differentia-

tion. Depletion of B cells or disruption of their ability to

present antigen results in a substantial reduction in Tfh

cell numbers.23,29–31 This is not due to a unique B-cell

signal because the defect can be overcome by boosting

with antigen and/or prolonged antigen presentation by

DC.32 Recent work has shown that B cells produce Ephrin

B1 to repulse Tfh cells from the GC, thereby restricting

their access to B cells and ensuring clonal competition.33

In the absence of Ephrin B1, the Tfh cell production of

IL-21 is reduced and fewer plasma cells are generated.

The TCR signalling triggered in pre-Tfh cells by B cells

results in prolonged calcium signalling, inducing the

cytokines IL-4 and IL-21.34 Qualitatively, this is a differ-

ent response to that elicited during antigen presentation

by DC, probably due to the increased size and duration

of the synapses formed between pre-Tfh and B cells. Cal-

cium signalling downstream of the TCR is essential for

Tfh cell development; T cells that have a reduced ability

to release Ca2+ (due to deficiency in both Stim1 and

Stim2) do not form Tfh cells.35 Nuclear factor of acti-

vated T cells (NFAT) transcription factors are activated

by TCR-induced Ca2+ signalling and pre-Tfh cells have

enhanced NFAT nuclear localization.36 Genetic ablation

of both NFAT1 and NFAT2 results in a T-cell intrinsic

defect in Tfh cell generation.37 This is not due to a gen-

eral defect in T-cell activation as Th1 cell generation was
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elevated in the absence of NFAT1 and NFAT2. In

humans, nearly half of genes differentially expressed in

Tfh cells possess NFAT binding sites near their transcrip-

tional start sites (including ICOS, CXCR5 and SLAMF1),

suggesting that NFAT is a global regulator of Tfh cell dif-

ferentiation, induced by antigen presentation during T–B-
cell interactions.37

The importance of co-receptor signals in Tfh cell
differentiation

Antigen presentation provides the antigen-presenting cells

with an opportunity to further regulate Tfh cell differenti-

ation through co-receptor interactions. Many co-receptors

act as rheostats, tuning the magnitude of antigenic

responses. Tfh cells express high levels of many co-recep-

tors, a reflection of the sustained multi-signal pathways

necessary for their generation and function.3,4 In particu-

lar, CD28, cytotoxic T-lymphocyte antigen 4 (CTLA-4)

and ICOS are essential for Tfh cell biology. They work

sequentially along with OX40, PD-1 and signalling lym-

phocytic activation molecule (SLAM) family receptors

(SFR) to regulate TCR signalling events, and initiate

specific signalling pathways essential for Tfh differentia-

tion.

CD28, CTLA-4 and ICOS receptor family

CD28, CTLA-4 and ICOS arose through a tandem dupli-

cation of an ancestral gene.38 Despite their common evo-

lutionary origin, they perform distinct roles in T-cell

biology; CD28 and ICOS are positive regulators of T-cell

activation, whereas CTLA-4 negatively regulates T-cell

expansion.39 CD28 and ICOS share 39% of their amino

acid identity, and have overlapping capacity to activate

the phosphoinositide 3 kinase (PI3K) signalling pathway;

however, they play distinct roles in Tfh cell differentia-

tion.40 CD28 is highly expressed on naive and resting

cells, whereas expression of ICOS and CTLA-4 depends

upon T-cell activation.39 The distinct patterns of their

expression partly define their individual roles, but there

are also differences in the signalling motifs in their cyto-

plasmic tails.41 CD28 is the main inducer of IL-2, critical

for the early growth phase of recently activated T cells,

and is also an inhibitor of late Tfh cell differentiation.42,43

In contrast, ICOS is a poor inducer of IL-2.44,45 Neither

CD28 nor ICOS co-stimulation alone are sufficient but

rather but work sequentially to drive Tfh cell develop-

ment.46,47

The strength of CD28 signalling in vivo translates

directly into the level of ICOS expression on the T cells.46

CD28 co-stimulation also induces expression of PD-1,

OX40 and CXCR5.46 Expression of CXCR5 allows pre-

Tfh cells to respond to CXCL13 and migrate into B-cell

follicles.48 When CD28 signalling is blocked at the time

of T-cell priming, T-cell activation is suppressed and this

prevents Tfh cell differentiation in vivo.49 CD28 co-stimu-

lation depends upon the RLTPR, a scaffold protein that

links CD28 to the CARD11/CARMA1 cytosolic adapter

and to the nuclear factor-jB (NF-jB) pathway.50,51 Mice

and humans deficient in RLTPR have very few Tfh cells

and this is associated with defects in activation-induced

expression of CD40L, ICOS and RelA phosphorylation

(indicative of impaired NF-jB signalling).50,51 Once T

cells have acquired CXCR5 expression and migrated to B-

cell follicles the role of CD28 is less clear. Tfh cell differ-

entiation can occur when CD28 co-stimulation is inhib-

ited after priming in vivo by administration of CTLA-4–
immunoglobulin, a treatment that would also prevent

CTLA-4 signalling.46,52 However, deletion of CD28

expression after T-cell priming results in fewer Tfh cells

and increased Tfh cell death following influenza virus

infection suggesting that CD28 is required up until the

third phase of Tfh cell differentiation.53 Importantly,

ICOS expression in Cd28�/� T cells does not rescue the

decrease in Tfh cell numbers, suggesting that CD28 stim-

ulation provides unique signals essential for Tfh cells.53

CTLA-4 is expressed at high levels on Tfh cells where it

imparts a negative signal to restrain their numbers.46,52

CTLA-4-deficient mice show a skewing towards Tfh dif-

ferentiation, with induction of IL-21 production and

spontaneous GC formation.46,54 CTLA-4 exerts its sup-

pressive effects through cell extrinsic and cell intrinsic

mechanisms. It reduces the expression of CD80 and

CD86 (co-stimulatory ligands for CD28) on antigen-pre-

senting cells through transendocytosis and its ligation

inhibits T-cell proliferation and IL-2 transcription.55 The

cytoplasmic tail of CTLA-4 interacts with the Src homol-

ogy domain-containing tyrosine phosphatases SHP1,

SHP2 and PPS2, which dephosphorylate key TCR sig-

nalling kinases (Fyn, Lck and ZAP-70) and members of

the Ras pathway.56 By preventing CD28 co-stimulation,

limiting ICOS expression and directly suppressing TCR

signalling, CTLA-4 acts as a brake for Tfh cell differentia-

tion.52,56,57

ICOS is critical for the GC response and is highly

expressed on Tfh cells.58 In the absence of ICOS, reduced

Tfh cell numbers are seen in both mice and humans.59–63

ICOS signalling is required for the maintenance of many

characteristics of Tfh cell identity, including Bcl6 expres-

sion and IL-21 production. Impaired negative regulation

of ICOS by the E3 ubiquitin ligase Roquin leads to abber-

ant accumulation of Tfh cells.64–66 A limited GC response

can be mounted in Icos�/� mice; however, once GC are

established the ICOS–ICOSL interaction becomes critical

and Icos�/� mice have no GC following secondary chal-

lenge.60–62,67 ICOS-deficient T cells are unable to enter B-

cell follicles and this cannot be overcome by transgenic

expression of CXCR5, suggesting that ICOS signalling

imparts some CXCR5-independent motility to Tfh cells.68
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Within the GC, ICOS–ICOSL interactions promote exten-

sive cell surface engagement of Tfh cells with B cells,

resulting in Tfh cell calcium spikes and B-cell acquisition

of CD40 signals, a feed-forward loop that promotes fur-

ther ICOS expression and provision of help to B cells.69

PI3K signalling is crucial for ICOS function in Tfh

cells.70 A summary of the role of PI3K signalling follow-

ing ICOS co-stimulation is depicted in Fig. 2. Mutations

in the cytoplasmic tail of ICOS that abrogate recruitment

of PI3K impair the generation of Tfh cells.71 There is also

a direct correlation between the magnitude of PI3K sig-

nalling and Tfh cell numbers.72 PI3K signalling can be

mediated through a number of different catalytic

subunits. The p110d catalytic subunit of PI3K transmits

some of the signalling downstream of ICOS, principally

by recruitment of PI3K to tyrosine within its cytoplasmic

YFMF motif.71,72 Like ICOS-deficient T cells, p110d-
deficient T cells show normal priming but are unable to

enter primary follicles, and so numbers of Tfh cells are

substantially reduced in GC.72 Those that do form have

defects in ICOS-mediated IL-21, IL-4 and cMaf mRNA

expression.72 The guanine nucleotide exchange factor

Vav1 contributes to PI3K activation in T cells. Vav1�/� T

cells are unable to provide B-cell help during the GC

response and show defects in IL-4 and c-Maf mRNA

expression.73,74 However, ICOS-dependent up-regulation
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Figure 2. The roles of phosphatidlyinositol 3-kinase (PI3K) subunits in inducible T-cell co-stimulator (ICOS) -mediated T follicular helper (Tfh)

cell differentiation. The regulatory p85a subunit forms a complex with osteopontin (OPN). This complex migrates to the nucleus to protect

B-cell lymphoma 6 (Bcl6) from degradation. Signals through the catalytic p110d subunit are responsible for nuclear factor of activated T cell

(NFAT) activation allowing transcription of interleukin-21 (IL-21), IL-4 and c-MAF. The transcription factor c-MAF drives the expression of Tfh

cell genes. PI3K also induces phosphorylation of FOXO1, promoting its nuclear egress and so preventing it from activating the transcription

factor KLF2, which inhibits Tfh cell differentiation.
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of Bcl6 expression and development of CXCR5+ Tfh-like

cells is unaffected in p110d-deficient mice.71,72 Instead

these events are dependent upon the p85a component of

PI3K, which forms a complex with osteopontin and

moves to the nucleus to protect Bcl6 from ubiquitina-

tion-dependent proteosomal degradation.75 ICOS is supe-

rior to CD28 for regulating expression of the

transcription factor Klf2.76,77 This is probably because

ICOS preferentially recruits the p110/p50a isoform of

PI3K that is known to have an elevated lipid kinase activ-

ity and so a higher potential to promote phosphorylation

of the transcription factor FOXO1.78 This induces the

nuclear exclusion of FOXO1, rendering it functionally

inactive. This is critical because FOXO1 suppresses Tfh

cell differentiation through negative regulation of Bcl6

and positive regulation of Klf2 expression.76,77 ICOS also

induces Akt (which also mediates phosphorylation of

FOXO1) and the E3 ubiquitinase, ITCH, which degrades

FOXO1.79 This demonstrates that there is redundancy in

the pathways downstream of ICOS that suppress FOXO1,

to promote Tfh cell differentiation.

The expression of ICOS is tightly controlled. This is

partly achieved through post-transcriptional mechanisms

that regulate the stability of ICOS mRNA. RNA-binding

proteins Roquin 1 and Roquin 2 bind to the 30 untrans-
lated region of ICOS mRNA, facilitating its degrada-

tion.66,80 Mice with a single mutation in the Rc3h1 locus

(Sanroque, which codes for a mutant form of Roquin 1

which is able to bind target mRNA but unable to direct

mRNA degradation) and mice deficient in both Roquin 1

and Roquin 2 have increased levels of ICOS expression in

all T cells, including naive T cells.64,81 This results in

increased numbers of Tfh cells and the generation of spon-

taneous GC. In addition, ICOS expression is regulated by

the micro-RNA, MiR-146a.82 Micro-RNAs target mRNAs

for degradation and/or suppress their translation.83 MiR-

146a is highly expressed in Tfh cells and in its absence there

is an accumulation of Tfh cells.84 MiR-146a represses mul-

tiple canonical Tfh cell transcripts including Icos, Slamf1,

Cd84, Stat1, Cxcr4 and Notch1. Roquin 1 enhances dicer-

mediated processing of MiR-146a, resulting in increased

numbers of Tfh and GC B cells and increased expression of

key Tfh mRNAs including ICOS. MiR-17-92 also regulates

Tfh cell differentiation by restraining expression of genes

important for the differentiation of other T-cell lineages.85

It also promotes ICOS signalling by reducing the levels of

the PI3K repressors PTEN and PHLPP2, thereby facilitat-

ing PI3K signalling.85

OX40

OX40 is expressed on activated T cells and disruption of

OX40–OX40L interactions during the peak of the

immune response perturbs Tfh cell differentiation.86–88

Transgenic mice that overexpress OX40L on DC show

increased numbers of Tfh cells, whereas OX40-deficient

mice show impaired CD4 T-cell responses.89–92 CD40-

dependent maturation of DC results in the up-regulation

of OX40L on T cells, although OX40–OX40L interactions

are most instructive in the T–B-cell conjugates at later

times of the immune response.93,94 The role of OX40 in

Tfh cell differentiation appears to be dependent upon the

context of the immunization. Augmenting OX40 sig-

nalling during early stages of lymphocytic choriomeningi-

tis virus infection can direct the CD4 T-cell response

away from a Tfh cell fate.95 OX40 signalling can also

induce terminal differentiation of CD4 cells and enhance

CD8 cell lytic capability in a tumour environment.96,97

OX40 co-stimulation increases T-cell proliferation and

CXCR5 expression during the later stages of activation,

contributing to the aberrant Tfh cell response in systemic

lupus erythematosus.89,98–100 In vitro OX40 co-stimulation

induces expression of Tfh cell-associated molecules and

confers B-cell helper function.100 However, this can be

mimicked by simply increasing the level of TCR sig-

nalling, implying that OX40 merely amplifies the TCR

signal. In agreement with this, OX40-deficient humans

have normal Tfh differentiation and antibody

responses.101

Like ICOS, OX40 is a strong activator of the PI3K,

AKT and NF-jB signalling pathways.71,94,102,103 It also

enhances NFAT accumulation in CD4 T cells during anti-

genic stimulation.104,105 OX40 is also a target of Roquin-1

and Roquin-2 through direct binding of their mRNA and

30 untranslated region-dependent post-transcriptional

repression.106 Combined ablation of Roquin1 and

Roquin2 induced the expression of OX40 and the activa-

tion of the alternative NF-jB pathway, resulting in ele-

vated expression of Relb and IRF4.106

PD-1

T-cell activation results in PD-1 expression.107,108 It is

highly expressed by Tfh cells, memory T cells and

exhausted CD8 T cells and its function may be cell-type-

dependent.30,109,110 Although the role of PD-1 in termi-

nating T-cell responses and T-cell exhaustion have been

studied extensively, its role in regulating Tfh cells is less

well explored. PD-1 signalling is triggered by interaction

with either PD-L1 (expressed on many cells, including

activated B cells and Tfh cells) and PD-L2 (expressed on

DC, macrophages and B-1 cells).111,112

Engagement of PD-1 results in the formation of micro-

clusters of PD-1 with the TCR.113,114 The tyrosine phos-

phatases, SHP1 and SHP2 are recruited to the

intracellular tail of PD-1 where they decrease the phos-

phorylation status of CD3f chain immunoreceptor tyro-

sine-based activation motifs, attenuating ZAP-70

activation and inhibiting T-cell activation.115–117 PD-1

engagement inhibits CD4+ T-cell proliferation and
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cytokine production.118–120 These effects of PD-1 can be

overcome by strong signalling through CD28 and/or IL-

2R.118,120–122 Recent work has highlighted the role that

PD-1 plays in suppressing CD28 signalling.123,124 CD28 is

preferred over the TCR as a target for dephosphorylation

by PD-1-recruited SHP2.123 Consistent with this, the

response to anti-PD-1 therapy requires CD28 sig-

nalling.123 Hence it is the balance of the signals received

from stimulatory and inhibitory receptors that determines

the final outcome of T-cell fate.

Metabolic studies of CD8 T cells receiving PD-1 signals

showed that they are unable to engage in glycolysis, glu-

taminolysis or metabolism of branched-chain amino acids

and display an increased rate of fatty acid oxidation.125

They also have substantial spare respiratory capacity,

allowing production of energy under conditions of

stress.125 PD-1 ligation can also alter the metabolic pro-

gramme of pre-activated CD4+ T cells, reprogramming

their metabolism from glycolysis to fatty acid oxidation

thereby preventing effector cell development. The bioen-

ergetic properties of PD-1 stimulated T cells display simi-

larities to those of memory T cells, which sustain their

survival due to catabolic metabolism of fatty acid oxida-

tion. Whereas the effect of PD-1 stimulation in Tfh cells

remains unknown, it is tempting to speculate that it pre-

vents excessive proliferation and provides them with

longevity. Indeed, comparison of Tfh and Th1 cells gener-

ated during acute viral infection showed that Tfh cells are

less proliferative than Th1 cells.36 This is accompanied by

a reduction in glycolysis and an inability to maximally

engage in aerobic glycolysis while maintaining IL-21

secretion. In addition, Bcl6 has been shown to repress the

expression of genes involved in glycolysis.126 Furthermore,

single-cell RNA-Seq of T cells during malaria infection

showed that at the bifurcation point where T cells differ-

entiate into either Th1 or Tfh cells, Th1 cells cycled faster

and expressed more genes associated with glycolysis than

their Tfh counterparts.127 The high levels of PD-1

expressed on Tfh cells may reduce glycolysis in these cells,

resulting in maintenance of their phenotype with sus-

tained cytokine production in the B-cell follicle. Mice

deficient in both PD-L1 and PD-L2, or PD-1 show

diminished numbers of long-lived plasma cells and higher

levels of GC B-cell death following immunization.128 This

result is linked to increased numbers of Tfh cells and

decreased IL-4 and IL-21 mRNA levels in these Tfh

cells.128 In addition, regulatory B cells express high levels

of PD-L1, which attenuates T-cell activation and regulates

Tfh cell differentiation 129.

SLAM

The role of SLAM in Tfh cell differentiation came to light

with the realization that mutations in SLAM-associated

protein (SAP) result in a lymphoproliferative disease.

Patients with mutations in SAP have no natural killer T

cells and impaired humoral immunity characterized by

reduced Tfh cell differentiation.130 SAP-deficient mice

have a T-cell-intrinsic defect in humoral responses, char-

acterized by poor GC formation, low antibody titres and

a scarcity of memory B cells and long-lived plasma

cells.131,132 SAP is an adapter protein that can be

recruited by SFRs. There are seven SFRs expressed on

haematopoietic cells: 2B4, Ly9, CRACC, CD48, SLAM,

CD84 and Ly108.133,134 However, SFRs are able to signal

through other SH2 domain-containing molecules (such as

Fyn), particularly in the context of SAP deficiency.135,136

Intravital imaging showed that SAP-deficient T cells are

effectively activated by antigen-bearing DC but are unable

to maintain stable conjugates with antigen-specific B cells,

resulting in a poor GC response.131 Tfh cells express high

amounts of the SFRs CD84 and Ly108.137,138 Cd84�/�

mice show a reduction in GC formation and impaired

humoral responses, most likely due to their inability to

form stable B–T-cell conjugates.138 Mice deficient in

SLAM are defective in IL-4 production, suggesting that

formation of T–B-cell conjugates enables Tfh cell cytokine

production.138 Yet the severe defect in GC formation seen

in SAP-deficient mice has not been recapitulated in any

single SLAM family receptor knockout mouse and dele-

tion of all seven SFRs has no effect on the GC

response.139 Interestingly, Chen et al. showed that in the

absence of SAP, SFR signalling is inhibitory in Tfh cells

and suppresses humoral immunity.139 Genetic deletion of

Ly108 reverses the phenotype of SAP-deficient mice.137

Ly108 can associate with both SAP and SHP-1 and both

molecules compete for the same immunoreceptor tyro-

sine-switch motif suggesting that Ly108 can act as a rheo-

stat for T–B-cell interactions. In Tfh cells, antibody-

mediated cross-linking of SFRs induces the phosphoryla-

tion of tyrosine residues on SHP1 and the biochemical

suppression of SHP1 can alleviate SFR-mediated inhibi-

tion in SAP-deficient T cells.139 Hence, it appears that

SAP works by preventing the coupling of SFRs to inhibi-

tory signalling pathways, but that this activity is not

required for T–B-cell conjugates that form in the GC.

Conclusions

Co-receptors provide critical and unique signals to drive

effective Tfh cell differentiation. They can act as rheostats

for TCR signalling, tempering or elevating the intracellu-

lar signals transmitted following antigen engagement.

They also provide signals to guide the migration of

emerging Tfh cells and regulate expression of transcrip-

tion factors, cytokines and co-receptors. The activation

status and location of T cells within the environment of

the secondary lymphoid organ determines which co-

receptors are engaged and how. In the first phase of Tfh

differentiation, DC provide the antigenic stimulus. This is
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accompanied by CD28 co-stimulation, which drives Tfh

differentiation through proliferation and expression of

other co-receptors. This allows the emerging Tfh cell to

respond to cytokines, migratory signals and further co-sti-

mulatory and inhibitory signals. During the second and

third phases of Tfh differentiation ICOS, OX40, CD40L

and SFRs provide stimulatory signals that not only

amplify antigenic signals but also provide unique signals

that are critical for driving Tfh differentiation. The activa-

tion-induced expression of the inhibitory receptors

CTLA-4 and PD-1 are critical during these stages of dif-

ferentiation, enabling tight control of Tfh cell prolifera-

tion, critical for optimal immune responses. The

evolution of B cells able to produce high-affinity antibod-

ies depends upon competition among B-cell clones. This

is partly achieved by limiting Tfh cell help. In conditions

where there are excessive numbers of Tfh cells there is a

lower selection pressure so low-affinity and self-reactive

B-cell clones are not purged from the GC. Furthermore,

in conditions where Tfh cell numbers are not restricted

(e.g. when the PD-1 signalling pathway is blocked)

mRNA expression of key cytokines is reduced and there

are fewer resultant antibody-secreting cells and memory B

cells. Restricting Tfh cell proliferation provides a limited

number of cells able to provide high-quality help to B

cells. Understanding the mechanisms used to govern this

will underpin immunization strategies, selecting more

stringently for the development of ‘fit’ Tfh cells and aid-

ing development of treatments for diseases with aberrant

Tfh cell function.
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