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Abstract

Background—The TMPRSS2-ERG gene fusion is detected in approximately half of primary 

prostate cancers (PCa) yet the prognostic significance remains unclear. We hypothesized that ERG 

promotes the expression of common genes in primary PCa and metastatic castration-resistant PCa 

(CRPC), with the objective of identifying ERG-associated pathways, which may promote the 

transition from primary PCa to CRPC.

Methods—We constructed tissue microarrays (TMA) from 127 radical prostatectomy specimens, 

20 LuCaP patient-derived xenografts (PDX), and 152 CRPC metastases obtained immediately at 

time of death. Nuclear ERG was assessed by immunohistochemistry (IHC). To characterize the 

molecular features of ERG-expressing PCa, a subset of IHC confirmed ERG+ or ERG-specimens 

including 11 radical prostatectomies, 20 LuCaP PDXs, and 45 CRPC metastases underwent gene 

expression analysis. Genes were ranked based on expression in primary PCa and CRPC. Common 

genes of interest were targeted for IHC analysis and expression compared with biochemical 

recurrence (BCR) status.
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Results—IHC revealed that 43% of primary PCa, 35% of the LuCaP PDXs, and 18% of the 

CRPC metastases were ERG+ (12 of 48 patients [25%] had at least 1 ERG+ metastasis). Based on 

gene expression data and previous literature, two proteins involved in calcium signaling (NCALD, 

CACNA1D), a protein involved in inflammation (HLA-DMB), CD3 positive immune cells, and a 

novel ERG-associated protein, DCLK1 were evaluated in primary PCa and CRPC metastases. In 

ERG+ primary PCa, a weak association was seen with NCALD and CACNA1D protein 

expression. HLA-DMB expression and the presence of CD3 positive immune cells were decreased 

in CRPC metastases compared to primary PCa. DCLK1 was upregulated at the protein level in 

unpaired ERG+ primary PCa and CRPC metastases (p=0.0013 and p<0.0001, respectively). In 

primary PCa, ERG status or expression of targeted proteins was not associated with BCR-free 

survival. However for primary PCa, ERG+DCLK1+ patients exhibited shorter time to BCR 

(p=0.06) compared with ERG+DCLK1- patients.

Conclusions—This study examined ERG expression in primary PCa and CRPC. We have 

identified altered levels of inflammatory mediators associated with ERG expression. We 

determined expression of DCLK1 correlates with ERG expression and may play a role in primary 

PCa progression to metastatic CPRC.
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Introduction

TMPRSS2 is a prostate-specific, androgen-responsive serine protease, frequently rearranged 

at the genomic level with members of the E26 transformation-specific (ETS) gene family 

[1]. The most frequent fusion involves the ‘ETS-related gene’ or ‘ERG’ occurring in 

approximately 40-50% of primary prostate cancer (PCa) [2-11] with slightly less prevalence 

in PCa metastases (∼25-40%) [6, 8, 9, 12, 13]. Interestingly, there are a number of clinical 

studies suggesting worsened clinical prognosis with presence of this TMPRSS2-ERG gene 

fusion [4, 7, 14-17] as well as studies reporting the opposite [5, 18-22]. Therefore, no overall 

consensus as to the clinical implication of the TMPRSS2-ERG fusion in primary PCa 

progression has been reached. These findings prompted us to define the role ERG in 

castration resistant PCa (CRPC) and examine whether ERG expression in primary PCa 

promotes survival, proliferation and progression to CRPC.

In this study, we analyzed ERG expression in CRPC specimens in order to define common 

biological pathways and downstream effectors of ERG. We have evaluated previously 

reported ERG-associated markers including two involved in calcium signaling NCALD [23] 

and CACNA1D [24, 25], two involved in inflammation HLA-DMB [25, 26] and CD3+ [27], 

and a novel ERG-associated protein, doublecortin-like kinase 1 (DCLK1). We found a weak 

association of NCALD and CACNA1D with ERG expression in primary PCa. We also 

found an interesting trend of decreased inflammatory mediators (HLA-DMB and CD3+ 

cells) in CRPC compared to primary PCa, suggesting an evolving inflammatory process 

with ERG+ PCa progression to CRPC. Furthermore, DCLK1 expression was associated with 

ERG expression in primary PCa and CRPC specimens. This is an important finding as 

DCLK1 is a cancer-stem cell marker thought to play a role in oncologic pluripotency and 

Roudier et al. Page 2

Prostate. Author manuscript; available in PMC 2017 September 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



epithelial to mesenchymal transition (EMT) in several malignancies [28-33]. Influences of 

these genes on biochemical recurrent (BCR)-free survival in primary PCa relative to ERG 

status are also reported.

Materials and Methods

Tissue specimens

All samples were obtained from patients who signed written informed consent under the 

aegis of the Prostate Cancer Donor Program at the University of Washington, and approved 

by the Institutional Review Board. Primary PCa: 127 radical prostatectomy specimens were 

obtained from the University of Washington Medical Center. Longitudinal clinical follow up 

of these patients yielded 65 patients with and 62 patients without evidence of BCR. LuCaP 
patient-derived xenografts: 20 LuCaP patient-derived xenograft (PDX) lines derived from 

radical prostatectomy and CRPC specimens were used for analysis. These PDX lines are 

maintained by serial passage in severe combined immune deficient (SCID) male mice as 

previously described [34]. CRPC metastases: Bone and visceral metastases were obtained 

from 48 CRPC patients (152 sites total; 79 bone and 73 visceral) taken immediately at time 

of death as part of the University of Washington PCa tissue acquisition necropsy program 

described previously [35].

Tissue microarray construction

All specimens for immunohistochemistry (IHC) were formalin fixed (decalcified in formic 

acid for bone specimens), paraffin embedded and examined histologically for presence of 

nonnecrotic tumor. Tissue microarrays (TMA) were constructed with 1 mm-diameter 

duplicate cores from primary PCa (consisting of 127 radical prostatectomy specimens), 

LuCaP PDX (consisting of 20 LuCaP xenografts), and CRPC (consisting of 152 metastases; 

79 bone and 73 visceral from 48 patients, up to 4 metastatic sites from each patient) 

specimens. Clinical characteristics of the 48 CRPC patients are shown in Supplemental 

Table 1.

RNA isolation

Total RNA was isolated from a subset of IHC confirmed ERG+ and ERG- specimens 

including 11 primary PCa (5 ERG-, 6 ERG+), 20 LuCaP PDX (13 ERG-, 7 ERG+), and 45 

CRPC metastases (30 ERG-, 15 ERG+). Eight-micron thick sections from primary PCa 

(n=11) and visceral metastases (n=38) were cut using a Leica CM3050S cryostat, collected 

on PEN Membrane Frame Slides (Life Technologies) and immediately fixed in 95% ethanol. 

Sections were briefly stained with hematoxylin then dehydrated in 100% ethanol. 

5,000-10,000 tumor cells per sample were laser capture microdissected with an Arcturus 

Veritas instrument and collected on CapSure® Macro LCM Caps (Life Technologies). 

Digital photographs were taken of tissue sections before, during, and after LCM and 

assessed by a pathologist to confirm the tumor content. RNA was isolated using the Arcturus 

PicoPure RNA Isolation Kit and the samples were DNAse treated using the Qiagen RNase-

Free DNase Set. RNA was amplified for two rounds using the Ambion MessageAmp aRNA 

Kit. The bone metastases (n=7) frozen in OCT blocks were sampled using 1 mm diameter 

tissue punch in a −20°C cryostat. The sample was obtained from the region of the block 
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where there was tumor based upon a section of an adjacent decalcified FFPE block. RNA 

was isolated from the tissue cores using RNeasy Plus Micro Kit (Qiagen Inc.). Tissue cores 

were placed in the kit's Buffer RLT Plus, to which β-mercaptoethanol had been added, and 

homogenized with a disposable hard tissue homogenizer tip (Omni International). Flash 

frozen LuCaP PDX tissue was histologically evaluated for regions of viable tumor and RNA 

was isolated from 15, 10-micron sections with ≥80% tumor content. For PDX tissue with 

<80% tumor, stroma and necrotic tissue were removed using an 18-guage needle prior to 

sectioning. LNCaP and VCaP human PCa cell lines were obtained from American Type 

Culture Collection (ATCC, Manassas, VA) and cultured in RPMI 1640 media supplemented 

with 10% fetal bovine serum (FBS) (Invitrogen, Carlsbad, CA). RNA was extracted using 

the Qiagen RNeasy Kit, (Qiagen Inc.), according to the manufacturer's protocol. On-column 

DNase digestion was performed. RNA was quantified using a Nanodrop 1000 (Thermo 

Scientific) and quality was assessed via Agilent Bioanalyzer 2100 (Agilent Technologies).

RNA amplification and microarray hybridization

Agilent 44K whole human genome expression oligonucleotide microarrays (Agilent 

Technologies, Inc.) were used to profile the PCa, LuCaP PDX, and CRPC metastases. Total 

RNA from PDX tissue was amplified one round; patient samples were amplified two rounds 

as described previously [36]. Probe labeling and hybridization against a common reference 

pool of prostate tumor cell lines (LNCaP, DU145, PC3, and CWR22) followed Agilent 

protocols. Fluorescent array images were digitized using the Agilent DNA microarray 

scanner G2565BA. Data were loess normalized within arrays (normexp background 

correction with offset 50) and quantile normalized between arrays in R using the Limma 

Bioconductor package. Control probes were removed, duplicate probes averaged, and spots 

flagged by Agilent Feature Extraction software as being foreground feature non-uniformity 

or population outliers were assigned a value of “NA”. Data were normalized separately for 

PCa, LuCaP PDXs, and CRPC metastases. CRPC metastases were subject to an additional 

normalization step to remove systematic batch effects by application of the ComBat function 

within the sva Bioconductor package to the log2 Cy3 signal intensities. Microarray data are 

deposited in the Gene Expression Omnibus database under the accession number 

GSE74367. The AR activity score was determined by the expression of a 20-gene signature 

and calculated as described previously [37]. Briefly, the activity score is defined as the sum 

of the expression Z-scores calculated across 149 CRPC metastases converted to a percent. 

Pearson's correlation coefficient was used to study the relationships between variables 

shown in scatterplots using the cor.test function in R.

Ingenuity pathway analysis (IPA)

To identify biological pathways involved in ERG regulation of CRPC metastases, Ingenuity 

pathway Analysis (IPA, Ingenuity Systems; https://www.ingenuity.com) was conducted on 

the 376 differentially expressed genes between ERG+ and ERG- groups based on SAM 

score ≥3 or ≤-3. Molecular and cellular functions and upstream regulator analysis was also 

conducted for these genes.
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Immunohistochemistry

Five-micron thick sections of the TMAs were deparaffinized and rehydrated in sequential 

xylene and graded ethanol. Antigen retrieval was performed in 10 mM citrate buffer (pH 

6.0) in a pressure cooker. Endogenous peroxidase and avidin/biotin were blocked 

respectively (Vector Laboratories Inc.). Sections were then incubated with 5% normal goat-

horse-chicken serum, incubated with primary antibody (Supplemental Table 2), incubated 

with biotinylated secondary antibody (Vector Laboratories Inc.), followed by ABC reagent 

(Vector Laboratories Inc.), and stable DAB (Invitrogen Corp.). All sections were lightly 

counterstained with hematoxylin and mounted with Cytoseal XYL (Richard Allan 

Scientific). Mouse or rabbit IgG were used as negative controls as appropriate.

Immunohistochemical assessment

ERG immunostaining was assessed using a quasi-continuous scoring system, created by 

multiplying each optical density level (“0” for no brown color, “1” for faint and fine brown 

chromogen deposition, and “2” for clear and coarse granular chromogen clumps) multiplied 

by the percentage of cells at each staining level, resulting in a total score range of 0 to 200. 

The final score for each sample was the average of 2 duplicated tissue cores. Only nuclear 

positivity was evaluated in ERG IHC staining. The final scores were categorized as “none” 

(score range: 0), “weak” (score range: 1 to 100), and “strong” (score range: 101 to 200). 

HLA-DMB, DCLK1, NCALD and CACNA1D immunostaining were assessed using a four 

point categorical compositional scale: “0” no staining, “1” faint/equivocal or focal staining, 

“2” intermediate staining, and “3” strong staining, multiplied by the percentage of cells at 

each staining level, resulting in a total score range of 0 to 300. For CD3 we identified the 

number of cells staining positive in the tumor and ranked tumors as having no positive cells 

(score range: 0) or positive for cells with 3 different score ranges (score range: 1 to 10; 11 to 

20; or above 20 cells).

Statistical analysis

Statistical Analysis of Microarray (SAM) program (http://www-stat.stanford.edu/∼tibs/

SAM/) was used to analyze expression differences between the groups. Unpaired, t-tests 

were calculated for all probes passing filters and controlled for multiple testing by 

estimation of q-values using the false discovery rate (FDR) method [38]. Spearman 

correlations for protein validation in the respective tissues (ERG, NCALD, CACNA1D, 

HLA-DMB, CD3, DCLK1) were used with significance differences calculated via student's 

t-test (significance set at p<0.05). Kaplan-Meier curves of BCR-free survival in primary PCa 

patients stratified by positive or negative IHC staining of specific proteins were examined 

using GraphPad PRISM 6. In primary PCa specimens, Spearman correlation of BCR-free 

survival with proliferation (Ki-67 positivity) relative to each targeted protein was performed 

with student t-tests (significance set at p< 0.05). A summary of experimental materials and 

methods used can be found in Supplemental Figure 1.
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Results

Gene expression analysis reveals heterogeneity among metastatic ERG+ CRPC

Figure 1 describes ERG gene expression in PCa lines. Non-ERG expressing LNCaP and 

ERG expressing VCaP cell lines are included for reference. Using ERG microarray 

expression, Cy3 values of primary PCa specimens were divided into those with low (<2750), 

medium (>2750 <20,000) and high (>20,000) levels of ERG expression. Based on these Cy3 

values (arbitrary units), a smaller percentage of CRPC metastases express medium to high 

levels of ERG transcript relative to primary PCa (31% versus 64%). Following, there 

appears to be a larger subpopulation of low expressors in this CRPC cohort relative to 

primary PCa. The finding of a decreased number of ERG positive metastases, a larger 

medium ERG expressing population, and a smaller high ERG expressing population in 

CRPC (relative to primary PCa) suggests ERG expression is not maintained uniformly or to 

the same levels as in primary PCa. To determine if the change in ERG expression was due to 

lower overall AR expression in the CRPC cohort we used a known 20-gene expression 

signature of AR to compute an AR activity score [37]. ERG expression levels were 

compared to the AR activity score as well as AR, KLK3, HOXB13, and STEAP1. No 

significant correlation was made except a weak correlation with STEAP1 (p=0.005) 

(Supplemental Figure 2). One explanation for this result could be that adenocarcinomas with 

no TMPRSS2-ERG fusion typically still have high AR activity so the overall correlation is 

not significant. However in the medium ERG expressors a range of AR activity was 

observed.

Nuclear ERG immunoreactivity is decreased in CRPC metastases when compared to 
primary PCa

The TMA comprising radical prostatectomy specimens revealed that 43% were ERG+ 

(Figure 2). Additionally, 42% of the non-recurrent and 43% of recurrent PCa patients were 

ERG+ showing no clear differences between these two populations. In CRPC metastases, 27 

of 148 sites present on the array were positive for nuclear ERG (18%), representing 12 of 48 

patients with at least 1 ERG+ metastasis (25%). These results suggest that nuclear ERG is 

less frequent in CRPC compared to primary PCa (Figure 2). Interestingly, we found that 

some patients had both ERG+ and ERG- metastases as evidenced by the presence or 

complete absence of ERG expression in the tumor cells by IHC analysis. The TMA 

comprising 20 LuCaP PDX indicated nuclear ERG positivity in 7/20 lines (35%). As a 

quality control measure, ERG IHC positivity was confirmed with a second antibody 

(Supplemental Table 2) for CRPC metastases both between patients and between metastatic 

sites, showing excellent correlation (r=0.85 and r=0.83 respectively, both p<0.0001).

Selection of target genes in ERG+ primary PCa, CRPC and LuCaP PDX using differential 
gene expression analysis

A subset of PCa, LuCaP PDX, and CRPC metastases annotated by their ERG IHC status 

underwent gene expression analysis (Figure 3). The three gene datasets were then compared 

for common overlapping genes based on Cy3 score (Figure 4). There were four upregulated 

genes and one downregulated gene common to the three groups with a complete list of the 

overlapping upregulated genes shown in Supplemental Table 3A. The upregulated genes 
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were ERG, FAM19A5 (family with sequence similarity 19 [chemokine (C-C motif)-like], 

member A5), RORB (RAR-related orphan receptor B), and NCALD (neurocalcin delta). 

The one down-regulated gene common to all three datasets was WDR6 (WD repeat-

containing protein 6). Since the objective of this study was to examine pathways common 

ERG-associated to both primary PCa and CRPC metastases, we ranked the top 100 primary 

PCa genes and compared these to their matched ranks in LuCaP PDX and CRPC specimens 

(Supplemental Table 3B). ERG ranked 2nd overall in primary PCa, 1st in CRPC and 6th in 

LuCaP PDXs. We selected other genes of interest based on a high rank in CRPC in relation 

to primary PCa, including NCALD, CACNA1D, and HLA-DMB. NCALD (a neuronal 

calcium sensor) and CACNA1D (a voltage-dependent, calcium channel) are both involved in 

calcium signaling. HLA-DMB (major histocompatibility complex, class II, DM beta) is 

involved in MHC assembly and antigen presentation. These three genes were all found 

within the top 25 ranked genes and their associations with ERG status have been reported 

previously [23-26]. Additionally, the 4th ranked gene in primary PCa and 51st in CRPC was 

DCLK1 (doublecortin kinase like 1, or CaM Kinase like 1 [DCAMKL1]). This gene has not 

previously been associated with ERG expression in PCa. Previous studies suggest DCLK1 is 

a cancer stem cell marker thought to play a role in oncologic stemness and epithelial to 

mesenchymal (EMT) transition in several malignancies [28-33].

Ingenuity Pathway Analysis (IPA) reveals alterations in NF-κB and cellular movement 
associated networks relative to ERG gene expression

To identify ERG associated biological pathways in metastatic CRPC, a total of 376 

differentially expressed genes (SAM score ≥ 3 or ≤ -3 between ERG+ and ERG- samples) 

were input into the IPA platform. The top two networks involved were the ERG-regulated 

network (p=1×10−40) and the NF-κB-associated network (p=1×10−37) with HLA-DMB seen 

as a direct effector of NF-κB (Supplemental Figure 3A and 3B, respectively). Furthermore, 

genes that regulate cellular movement were found to be the principal molecular and cellular 

function altered in this gene set (Supplemental Table 4) relative to ERG expression.

Verification of nuclear ERG associated protein expression in primary PCa, CRPC, and 
LuCaP PDX

We further evaluated four genes identified in the differential gene expression analysis 

(NCALD, CACNA1D, HLA-DMB, and DCLK1). An additional T-cell receptor marker 

(CD3) was included because of its involvement in inflammation and correlation with ERG 

status in PCa [27]. We performed IHC to evaluate the abundance and cellular localization of 

these proteins relative to ERG status with the results presented in Table 1. NCALD 

expression was weakly associated with ERG positivity in primary PCa (p=0.0282), a trend 

towards association was seen in CRPC (p=0.052) (Supplemental Figure 4). Similarly, 

CACNA1D was weakly associated with ERG positivity in primary PCa (p=0.0068), but not 

in CRPC (p=0.8746) (Supplemental Figure 5). HLA-DMB was associated with ERG 

positivity in primary PCa (p<0.0001) while only a trend was seen in CRPC (p= 0.0823) 

(Figure 5). The CD3+ cell number trend was increased in ERG+ primary PCa (p=0.0888) 

but decreased in CRPC (p=0.0771) (Figure 6). The novel gene, DCLK1 was associated with 

ERG positivity in both primary PCa (p=0.0013) and CRPC (p<0.0001) (Figure 7). No 

significant findings were seen in LuCaP PDXs.

Roudier et al. Page 7

Prostate. Author manuscript; available in PMC 2017 September 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ERG and DCLK1 influence on BCR-free survival in primary PCa

In our series, we found no difference in BCR-free survival relative to ERG expression alone 

(Supplemental Figure 6, p=0.41). As ERG is hypothesized to increase proliferation and 

confer an invasive phenotype in PCa cells [39], we also correlated proliferation (via Ki-67) 

with each protein relative to ERG status. No significant findings relative to ERG expression 

and proliferation were seen overall (p=0.6885, Supplemental Figure 6). When looking at the 

targeted proteins, BCR-free analysis revealed no significant differences in HLA-DMB+ vs. 

HLA-DMB- samples (p=0.85) or ERG+HLA-DMB+ vs. ERG+HLA-DMB- samples 

(p=0.10) (Supplemental Figure 7). HLA-DMB also did not show any significant correlation 

with proliferation alone or in ERG+ cases (r=0.051, p=0.5843; r=0.028, p=0.8451, 

respectively, Supplemental Figure 7). BCR-free survival for CD3 did not show any 

significant differences overall (CD3+ vs. CD3-, p=0.42; ERG+CD3+ vs. ERG+CD3-, p=0.5, 

Supplemental Figure 8). Proliferation was significantly increased in CD3+ vs. CD3- 

specimens (r=0.2608, p=0.0045) while this relationship only approached significance in 

ERG+CD3+ vs. ERG+CD3- specimens (r=0.2647, p=0.0605, Supplemental Figure 8). BCR-

free survival for NCALD did not show any significant differences overall (NCALD+ vs. 

NCALD-, p=0.84; ERG+NCALD+ vs. ERG+NCALD-, p=0.14, Supplemental Figure 9). 

Proliferation was not significantly increased in NCALD+ vs. NCALD- specimens 

(r=0.1794, p=0.054) or ERG+NCALD+ vs. ERG+NCALD- specimens (r=0.06085, 

p=0.6066, Supplemental Figure 9). Similarly no significant differences were observed for 

BCR-free survival for CACNA1D+ vs. CACNA1D-, p=0.09. ERG+CACNA1D+ vs. ERG

+CACNA1D-approached significance, but there were a limited number of patient samples in 

the ERG- group (p=0.05) (Supplemental Figure 10). Proliferation was weakly associated 

with CACNA1D+ vs. CACNA1D- specimens (r=0.1883, p=0.0468), but no association was 

identified in ERG+CACNA1D+ vs. ERG+CACNA1D- specimens (r=0.03380, p=0.7765, 

Supplemental Figure 10). For DCLK1, there was no difference in BCR in DCLK1+ vs. 

DCLK1- patients (p=0.11). Interestingly, when ERG status was considered, ERG+DCLK1+ 

patients showed a more pronounced trend towards worsened BCR-free survival (Figure 8, 

p=0.06) when compared to ERG+DCLK1-patients. DCLK1+ status alone was significantly 

correlated with proliferation (r= 0.194, p=0.0350) while in ERG+DCLK1+ vs. ERG

+DCLK1- patients, this relationship was absent (r=0.110, p=0.4419).

Discussion

We observed ERG protein expression is decreased in CRPC patients relative to primary PCa. 

This finding is consistent with previous reports that the TMPRSS2-ERG fusion is frequently 

reported in primary PCa (40-50%) [2, 2, 4-11] but is slightly less common in PCa metastases 

(25-40%) [6, 8, 9, 12, 13]. This difference may indicate ERG is important in primary PCa, 

yet ERG expression may no longer be required in subgroups of CRPC metastases which 

may have acquired additional mutations/rearrangements, promoting proliferation and 

survival irrespective of ERG expression.

We hypothesized that ERG overexpression regulates particular genes common to primary 

PCa and CRPC metastases, and these genes persisting in late stage metastatic disease can 

identify a signature suggesting early aggressiveness. This signature could then provide clues 
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for the translational application of anti-ERG therapy in early PCa. In our study, ERG 

overexpression resulted in significant associations with two mechanisms: calcium signaling 

and inflammatory mediators. Epidemiologic evidence suggests that modulation of calcium 

signaling may decrease the risk of PCa in select populations [40, 41]. CACNA1D is highly 

overexpressed in primary PCa, CRPC, and ERG+ tumors with calcium channel blocker 

experiments showing decreased androgen-mediated calcium-influx, transactivation, and 

cellular growth in PCa cells [24]. NCALD is a predominantly cytosolic neuronal calcium 

sensor binding protein, however with elevated intracellular calcium levels, can undergo a 

conformational change resulting in localization to the peri-nuclear trans-Golgi network [42] 

and protein levels have been shown to correlate significantly with ERG positivity in PCa 

[23]. Based on our data, the role of calcium modulation of ERG+ progression in this cohort 

is unclear, with significant changes seen at the gene level, a weak association observed at the 

protein level in primary PCa, and no significant association seen in CRPC metastases.

NF-κB a mediator of multiple inflammatory pathways has been shown to be constitutively 

active in several cancers and has a variety of pro-tumorigenic functions [43] including 

regulating epithelial to mesenchymal transition and metastases [44]. In contrast, 

pharmacologically immune suppressed individuals such as those with organ transplants, can 

also be at increased risk of malignancy [43]. Therefore, cancer surveillance by the immune 

system is a delicate balance in which perturbations can affect progression. ERG expression 

has been shown to be associated with increased NF-κB activity in PCa cells [43] and may 

work through toll-like receptor pathways to activate NF-κB [45]. Alternatively, it has also 

been shown to modulate NF-κB activity in endothelial cells by blocking IL-8 and ICAM 

[46]. We looked specifically at HLADMB and CD3+ IHC expression as they have been 

described to associate with ERG+ PCa [25-27]. HLA-DMB is a class II MHC molecule 

involved in antigen presentation of tumor cells. Increased mRNA and protein levels of HLA-

DMB can promote cytotoxic lymphocytes in tumor tissue and has been shown to be an 

independent prognostic factor for survival in epithelial malignancies [47]. Through co-

stimulation of the TCR (CD3) with MHC and other ligand binding (e.g. CD40L) [48], the 

CD3+ cell can then activate and exert its cytotoxic effects on tumor cells. Our data indicates 

a change in protein expression of these markers as tumors progress from primary PCa to 

CRPC metastases. Specifically, HLA-DMB correlates with ERG positivity significantly in 

primary PCa, but this association was decreased in CRPC. We found the CD3+ cell 

correlation changed from positive in primary PCa to negative in CRPC. Together, these 

findings suggest some loss of immune capability with CRPC progression. This has not been 

reported relative to ERG+ status in HLA-DMB, but is consistent with CD3+ findings in a 

study reporting low CD3+ cell numbers are associated with a worsened BCR-free survival 

[27]. Further, on IPA analysis we found the NF-κB pathway to be enriched with HLA-DMB 

as a downstream effector and movement of myeloid cells and phagocytes were predicted to 

be activated, suggesting immune activity involvement in ERG+ CRPC metastases. Overall, 

our data suggest that an imbalance of inflammatory mediators may play a role in ERG+ PCa 

progression.

In our study DCLK1 expression was highly correlated with nuclear ERG immunoreactivity 

in PCa and CRPC, a novel finding. DCLK1 was first described in the neuroscience literature 

as a microtubule associated kinase capable of autophosphorylation involved in neuronal 
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migration [49] and in the developing cerebral cortex [50]. Initial work in cancer came in the 

gastrointestinal literature with Barrett's esophagus and esophageal carcinoma transition [51, 

52]. More recent results in pancreatic and colorectal cancer (CRC) identified DCLK1 as a 

putative stem cell marker found in serum, circulating tumor cells, and tumor stroma [28, 30] 

which is associated with increased pluripotency and EMT [29, 31] with adverse prognostic 

implications [30, 32]. DCLK1 was recently found to be highly prevalent in renal cell 

carcinoma (RCC) and correlated with increasing stage of disease [33]. Further experiments 

with siRNA knockdown of DCLK1 resulted in decreased stemness, EMT, invasion, 

migration, and adhesion in RCC [33]. We found DCLK1 to be significantly upregulated in 

ERG+ primary PCa and CRPC metastases by gene expression analysis with IHC validation. 

We also saw clear separation of BCR-free Kaplan-Meier survival curves in both DCLK1+ 

vs. DCLK1- PCa and in ERG+ DCLK+ vs. ERG+DCLK1- PCa. Importantly, statistical 

significance was not reached, which is likely due to small sample size, particularly in the 

ERG+DCLK1+ analysis (N=26 vs. 25, Figure 8). However, in samples that are both ERG

+DCLK1+, this relationship appears to be more pronounced, suggesting ERG+ may have a 

role as a partial driver of DCLK1 mediated PCa progression. This is consistent with our data 

showing that ERG status itself is not associated with BCR, but rather, may be driving 

progression by other means. As DCLK1 correlated with ERG+ status, it may represent a 

downstream effector of ERG in primary PCa and CRPC and serve as a future therapeutic 

target in patients with ERG+ primary and CRPC.

Conclusions

We found ERG positivity in 43% and 25% of primary PCa and CRPC patients, respectively. 

Gene expression analysis with IHC confirmation suggests altered inflammatory pathways 

may be involved in ERG+ progression to CRPC. Moreover, we identified DCLK1 as a novel 

ERG-associated protein. Future mechanistic studies aimed at ERG and DCLK1 are needed 

to define their combined role in PCa progression.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. ERG gene expression in primary PCa and CRPC metastases
Agilent gene expression array Log2 signal intensities of LNCaP (ERG-) and VCaP (ERG+) 

cells, primary PCa, and CRPC metastases. Based on ERG microarray expression Cy3 values 

primary PCa specimens were divided into those with low (<2750), medium (>2750 <20,000) 

and high (>20,000) levels of ERG expression. Of note, the CRPC metastases group contains 

a large cohort of medium ERG expressors.
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Figure 2. ERG IHC in primary PCa and CRPC metastases
ERG+ staining was observed in 43% of primary PCa patients (bar graph, left). 18% of 

CRPC metastases expressed ERG+ with the majority showing high intensity staining. IHC 
images: A: ERG+ primary PCa with tumor cell nuclei in brown; B: ERG- PCa specimen 

(note ERG+ endothelial cells); C: Diffusely ERG+ visceral metastasis; D: Diffusely ERG+ 

bony metastasis.
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Figure 3. Gene expression array of Primary PCa, LuCaP PDXs, and CRPC metastases
The top 25 genes found on expression analysis in 11 primary PCa (5 ERG-, 6 ERG+), 20 

LuCaP PDX (13 ERG-, 7 ERG+), and 45 CRPC metastases (30 ERG-, 15 ERG+) specimens 

relative to ERG positivity based on IHC are shown. Genes highlighted in yellow have been 

previously found to correlate with ERG activity in the literature.
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Figure 4. Venn diagram of overlapping up-regulated genes in ERG+ primary PCa, LuCaP PDXs, 
and CRPC (Score >3, Total N=16,096)
The 4 upregulated genes found on gene expression are ERG, FAM19A5 (family with 

sequence similarity 19 [chemokine (C-C motif)-like], member A5), RORB (RAR-related 

orphan receptor B), and NCALD (neurocalcin delta). A list of all upregulated, overlapping 

genes between any 2 groups is shown in Supplemental Table 3.
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Figure 5. HLA-DMB protein expression in ERG+ and ERG- primary PCa and CRPC
A There was a significant correlation between nuclear ERG and HLA-DMB in primary PCa 

(r=0.3675, p<0.0001). Representative IHC images of HLA-DMB+ in ERG+ (a) and ERG- 

(b) primary PCa samples are shown. B. HLA-DMB was not associated with nuclear ERG 

expression found in CRPC specimens (r=0.1438, p=0.082). Representative IHC images of 

HLA-DMB+ in ERG+ (a) and ERG- (b) CRPC samples are shown.
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Figure 6. CD3 expression in ERG+ and ERG- primary PCa and CRPC
A CD3+ cells were common in primary PCa revealing a positive, non-significant correlation 

to ERG+ (r=0.1567, p=0.0888). Representative IHC images of CD3+ cells in ERG+ (a) and 

ERG- (b) primary PCa samples are shown. B. CD3+ cells were less common in CRPC and 

revealed a negative, non-significant correlation to ERG+ (r= -0.1463, p=0.0771). 

Representative IHC images of CD3+ cells in ERG+ (a) and ERG- (b) CRPC specimens are 

shown.
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Figure 7. DCLK1 protein expression in ERG+ and ERG- primary PCa and CRPC
A DCLK1 expression was correlated with nuclear ERG expression in primary PCa 

(r=0.2896, p=0.0013). Representative IHC images of DCLK1+ in ERG+ (a) and ERG- (b) 

primary PCa are shown. B. DCLK1 expression was also correlated with nuclear ERG 

expression in CRPC specimens (r=0.391, p<0.0001). Representative IHC images of 

DCLK1+ cells in ERG+ (a) and ERG- (b) CRPC specimens are shown.
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Figure 8. Primary PCa BCR-free survival and proliferation relative to DCLK1 status
A Kaplan-Meier analysis of DCLK1+ vs. DCLK1- status did not correlate with BCR-free 

survival overall (p=0.11). There was a positive correlation with proliferation relative to 

DCLK1 status (r=0.1943, p=0.035). B. In ERG+ samples, DCLK1+ vs. DCLK1- status 

revealed a trend towards worsened BCR-free survival (p=0.06). DCLK1 did not correlate 

significantly with proliferation in this grouping (r=0.1101, p=0.4419).
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