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Abstract

Many complex systems reveal a small-world topology, which allows simultaneously local and 

global efficiency in the interaction between system constituents. Here, we report the results of a 

comprehensive study that investigates the relation between the clustering properties in such small-

world systems and the strength of interactions between its constituents, quantified by the link 

weight. For brain, gene, social and language networks, we find a local integrative weight 

organization in which strong links preferentially occur between nodes with overlapping 

neighbourhoods; we relate this to global robustness of the clustering to removal of the weakest 

links. Furthermore, we identify local learning rules that establish integrative networks and improve 

network traffic in response to past traffic failures. Our findings identify a general organization for 

complex systems that strikes a balance between efficient local and global communication in their 

strong interactions, while allowing for robust, exploratory development of weak interactions.

Networks as diverse as those linking scientific collaborations and those connecting the US 

electrical power grid exhibit a small-world topology characterized by short node-to-node 

distances and highly clustered neighbourhoods, as quantified by a high clustering 

coefficient, C (refs 1–4). This enables complex systems to simultaneously achieve both 

global and local efficiency in the interactions of their components5–7. In the brain, this 

topology captures the organization of neural connectivity at different spatial scales and in 

various species8–13 as well as the propagation of activity in the form of neuronal 

avalanches14–16.

In most real-world networks, a gradation of interactions exists, commonly quantified by the 

link weight, w (refs 2,17), which reflects important functional properties such as capacity in 

transportation routes and communication networks, strength of friendships in social 

networks, or memories reinforced in brain networks. Recently, many features of weighted 
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networks have been studied, for example the relationship between the node degree and node 

strength18,19, pair-wise node correlations20, dynamical properties21,22 and stability23, but 

some of the earliest findings regarding the relationship between weights and network 

topology were observed in social networks four decades ago24,25. In the seminal work by 

Granovetter24, it is stated that “the degree of overlap of two individuals’ friendship networks 

varies directly with the strength of their tie to one another”. Thus, strong links are found 

between nodes with highly overlapping neighbourhoods, a principle that was recently 

confirmed in mobile phone communications26. Here we extend this finding to other complex 

networks, in particular brain, gene, and human interaction networks. On the other hand, 

some real networks and network models exhibit the opposite behaviour, where strong links 

tend to connect non-overlapping neighbourhoods.

We analyse the relationship between clustering and the weights, both locally and globally, in 

small-world networks. We assign to each link a local measure of clustering, the link 

clustering coefficient, CL, defined using the relative neighbourhood overlap,

where nC is the number of common neighbours and nT is the total number of neighbouring 

nodes, excluding the end nodes (Fig. 1a). For directed networks, we use outgoing links for 

neighbourhood definition if not stated otherwise (see Supplementary Information). For 

undirected networks, CL is equivalent to the edge clustering coefficient27,28, but normalized 

differently.

We quantify the relationship between CL and link weight, w, using the correlation 

coefficient, RCL . As RCL reveals only the linear trend, we also visualize the dependence of 

the average excess link clustering, ΔCL, on weight rank (rank 1 being the smallest weight). 

In Fig. 1c, results are shown for three functional networks derived from neuronal avalanche 

activity in two different types of organotypic neuronal culture and in the pre-motor cortex in 

awake macaque monkeys14–16. In these networks, weights represent the spontaneous 

propagation of neuronal activity between different nodes, that is, sites in the neural tissue16. 

The steep positive trend we observe and the positive value of RCL demonstrate that activity 

propagates preferentially between nodes with highly overlapping neighbourhoods.

Similar results are obtained for networks of the structural and functional organization of the 

human cerebral cortex9 (Fig. 1d), both describing the connectivity between ~1,000 cortical 

regions of interest (nodes) distributed over 66 functional cortical areas. The weights in these 

two networks represent axonal fibre density, identified using diffusion spectrum imaging 

(DSI), and the correlation strength, derived from the ‘resting state’ cortical activity using 

functional magnetic resonance imaging9 (fMRI), respectively. In Fig. 1e, we show similar 

results for gene regulation networks derived from human and mouse gene expression data29. 

The weights in these networks measure the degree of regulation between two genes. To have 

computationally manageable link analysis, links lower than a threshold of 0.08 were 

discarded. We point out that similar results are obtained for gene sub-networks containing a 
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smaller and randomly chosen subset of the original nodes (Supplementary Fig. S1). A 

comparable weight organization is also found for two co-appearance ‘social’ networks (Fig. 

1f), a film actor collaboration network (N =54,000) and the network of characters in the 

chapters of the novel Les Misérables (N = 77). In two language networks, consisting of the 

Reuters News 9/11 network (N =13,300) and the directed words free-association network (N 
=10,600), in which weights represent the co-occurrences of words in news articles and the 

number of subjects that associate a source word to a target word, respectively, RCL is 

positive, but with small ΔCL (Fig. 1g).

These results demonstrate that the local weighting rule relating the neighbourhood overlap 

and the strength of the links, first observed in social networks24,25, has a more general 

validity, and is found to hold strongly in the above-mentioned biological and social 

networks. A number of other networks, however, show a less positive, or even negative, 

trend between neighbourhood overlap and link strength. The anatomically well-

characterized neural network of the worm Caenorhabditis elegans (C. elegans, Fig. 1h) 

shows a negligible trend, with RCL ≈0. Regarding transportation networks (Fig. 1i), we find 

positive RCL for traffic between 500 US airports, and negative RCL for the US Airways (US 

Air) transportation network2,18, that is, strong links preferentially occur between non-

overlapping neighbourhoods, indicating that strong routes connect airports that preferentially 

serve different destinations. Similarly, physics author collaboration networks (Fig. 1j), in 

which weights reflect the number of papers co-authored normalized by the number of 

authors for each paper, exhibit negative RCL. (For detailed properties of all networks see 

Supplementary Information and Table SI therein.)

For convenience, we define a weight organization with significantly positive RCL as 

integrative, because of the tendency of strong links to connect nodes with overlapping 

neighbourhoods (Fig. 1b, left). Conversely, networks with negative RCL, in which strong 

links connect non-overlapping neighbourhoods, are defined as dispersive (Fig. 1b, right). 

Zero RCL defines neutral weight organization.

Robustness of clustering in integrative networks

The importance of network robustness to a loss of nodes or links has been emphasized in 

various studies30,31. Here, we explore the relationship between the integrative weight 

organization, a local network property, and the robustness of the average node clustering 

coefficient, C, to the loss of weak links, a global network property. More specifically, we use 

pruning analysis to characterize the change in the network on successive removal of the 

weakest (bottom-pruning), or strongest (top-pruning) links. For the neuronal avalanche 

networks described above, we find that, even when a large fraction f of the weakest links is 

removed, the excess clustering remains high and fairly constant, that is, invariant (Fig. 2a; 

solid lines). In contrast, removing even a small fraction of the strongest links readily 

destroys clustering in avalanche networks (Fig. 2a; dashed lines). Similar results are found 

for other integrative networks, such as the brain, gene, social and language networks (Fig. 

2b–f). In contrast, the opposite trend for ΔC is found for dispersive networks such as the US 

Air transportation network (Fig. 2g), which is robust to top-pruning but not bottom-pruning. 

We quantify the difference in constancy of ΔC between bottom- pruning and top-pruning by 
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the measure M, which ranges between −1 and 1 (see Methods). It is positive for networks in 

which ΔC is more invariant to bottom-pruning than top-pruning and negative when the 

opposite is true. M is zero or small for networks, such as collaboration networks (Fig. 2h), 

that show no robustness or pruning asymmetry.

Basic models of weight–clustering relationships

To fully appreciate the particular weight–clustering organization shown in Figs 1 and 2, we 

first compare it with the case where weights are independent of any topological features. 

Therefore, the correlation RCL is zero and ΔCL shows no trend with respect to link rank. We 

show analytically in Methods that for independent weights ΔC decreases linearly for either 

pruning direction from the initial value,ΔC0, to zero, namely ΔC(f )=ΔC0(1–f ), and 

consequently M = 0. Indeed, in simulations for the directed Ozik–Hunt–Ott growing 

network (OHO (ref. 32); see Supplementary Information) and Watts–Newman (WN; ref. 33) 

network with randomly assigned weights, ΔCL is flat and ΔC decays linearly to zero for both 

top-pruning and bottom-pruning (Fig. 3a).

Next, we compare our results with so-called Class II networks19, in which weights are 

positively correlated with node degrees. An example is the global airline network18, for 

which the link weights are related to the end node

(1)

with θ = 0.5 ± 0.1. Implementing equation (1) in OHO and WN topologies results in 

networks which are robust to the loss of their strongest but not weakest links, and in which 

traffic occurs preferentially between non-overlapping neighbourhoods (Fig. 3b). Thus, ΔCL 

decreases with higher w, RCL is negative, and ΔC remains high for top-pruning but not for 

bottom-pruning, yielding negative M.

To study further the local interaction of clustering and weights in integrative networks, we 

create a weighting model in which the link weights are proportional to the product of the 

clustering coefficients Ci and Cj of its end nodes

(2)

Its implementation on OHO and WN topologies leads to integrative networks, with positive 

RCL and ΔC, that are robust for bottom-pruning but not top-pruning, as observed in brain, 

gene and human networks (Fig. 3c; see Supplementary Figs S4 and S5 for additional 

details).

Figure 4 summarizes the findings for RCL and M for natural networks as well as the three 

weight models. In general, we find that if RCL >0 then M >0, and vice versa, thus values 

concentrate in the upper right quadrant for integrative networks and the lower left quadrant 
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for dispersive networks; neutral networks occupy the area near the origin. This reflects the 

intuitive understanding that networks in which strong links are clustered should be more 

robust in their general clustering properties against the loss of their weak links, and vice 

versa. In principle, such robustness can take many forms, but our analysis shows that many 

of the strongly integrative real networks are actually invariant in their clustering against a 

large (> 90%) loss of their weakest links, that is, they have high M. This property should 

provide these networks with considerable freedom in reorganizing their weak links without 

loss in functionality (see below). We also note that the scatter within each quadrant is 

substantial, as quantified by the relatively low correlation for integrative (R = 0.54) and 

dispersive (R=0.35) weight organization. This concentration on two quadrants and high 

variability within quadrants is also found when using incoming links or all links to define 

the node neighbourhood (Supplementary Fig. S6a).

Strength of the weak links is their randomness

Granovetter’s work on the ‘strength of weak ties’24 and recent work on mobile phone 

communication26 demonstrate that weak links serve a cohesive function in complex 

networks more than strong links23. This could reflect a specific, targeted organization for 

weak links that is missed by our definition of integrative, neutral and dispersive networks. To 

quantify the cohesiveness of the network and its dependence on link weight, we study the 

reduction in the relative giant component, rGC, during bottom-pruning and top-pruning for 

our real networks in Fig. 1. To test whether the observed cohesiveness arises from targeted 

weight organization, we compare the change in rGC for both pruning directions with that 

obtained when pruning links randomly. In Fig. 5a, we show for the fMRI brain and human 

gene 1 networks that removal of weak links (bottom-pruning) reduces rGC faster than 

random controls, in line with the targeted, non-random organization of strong links outlined 

in the previous sections. In contrast, the change in rGC when pruning from the top does not 

differ much from random removal of links. We quantify the area between the random control 

and each pruning direction and show that these findings are true for most integrative 

networks (Fig. 5b) and were also observed recently for financial networks31. We conclude 

that the cohesive character of weak links in most real-world networks simply reflects their 

random nature, rather than targeted placement, further supporting our emphasis on weight 

organization based on strong links.

Local learning rules create integrative networks

Highly clustered neighbourhoods with strong links, as found in integrative networks, are 

known to trap the flow of information26, hence the ‘strength of weak’ ties in increasing 

global efficiency in communication23,24. Integrative networks can potentially alleviate such 

neighbourhood trapping without relying on the random organization for weak links, because 

having strong links in such clustered neighbourhoods can only increase a chance of escape. 

We demonstrate this using a dynamical model in which local learning rules adaptively 

change weights in response to past traffic. Using an OHO topology with random weight 

assignments, traffic is initiated at a randomly selected node and directed probabilistically to 

future nodes with link weights linearly scaled into probabilities of node activation. This 

establishes a critical branching process dynamics in which one active node leads on average 
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to one active node in the near future. These dynamics serve as a good model for the 

propagation of avalanche activity in brain networks or other stochastic traffic which neither 

grows exponentially nor terminates prematurely. Thus, sequences of activated nodes can 

span many cascading steps16, but nodes can only be active once within a cascade and remain 

refractory until the cascade ends. This behaviour is observed experimentally for neuronal 

avalanches in brain networks and, in general, restricts our exploration to non-cyclical 

network traffic. After each cascade, the weights of the links between nodes participating in 

successive time intervals, that is, cascading steps, are incremented according to different 

rules (see Methods).

In Fig. 6a we show that integrative networks robustly form when the weight increments are 

limited to the last step in a cascade. In Fig. 6c,d we plot the time progression of the 

parameters RCL and M during learning and show that this behaviour is observed independent 

of cascade length (solid coloured lines). In contrast, limiting learning to any particular pre-

defined step beyond the very first link establishes dispersive networks, because longer 

cascades in networks with randomized weights will reflect the existing degree distribution 

(equation (1); Fig. 6b–d). Learning only at the first step, which follows the random initiation 

of cascades, maintains the initial, neutral weight organization (Fig. 6b–d).

We study the learning of integrative and dispersive weight organization further by tracking 

the properties of the cascade termination nodes. As expected, initially, cascades tend to end 

in neighbourhoods of highly clustered nodes quantified by the high correlation between the 

clustering coefficient of a node and frequency of its participation in cascade termination, 

RC–TN (Fig. 6e). Importantly, the last-step learning, instead of exploring alternative routes in 

the network, directs more future traffic to failure sites by specifically increasing weights for 

links pointing to terminating nodes in highly clustered neighbourhoods. This eventually 

makes those nodes passable for traffic (Fig. 6e, arrowheads) while retaining the integrative 

weight organization (Fig. 6c–e). This improvement in flow is absent in dispersive networks, 

where clustered neighbourhoods remain cascade termination points throughout learning 

(Fig. 6f). This finding is extended to supercritical branching process dynamics, where one 

node on average activates more than one future node, whereas cascades in subcritical 

dynamics fail to reach clustered neighbourhoods sufficiently often (Fig. 4). Similar results 

are obtained using the WN network topology (data not shown).

Comparison with other weighted network models

We examined several network growth models (GM) with evolving weights. The first two 

models were originally introduced for networks with preferential attachment17,34,35 

producing scale-free networks with no excess clustering. Thus, we apply the same weight 

assignment schemes to OHO growing network topologies to obtain a large ΔC. Neither 

network model shows integrative properties (Fig. 4; GM1 OHO, weights based on35, was 

dispersive; GM2 OHO, weights based on17,34, was neutral; see also Supplementary Fig. S7). 

A social network model36 with local weighting and growing rules motivated by social 

network dynamics and the results of Granovetter resulted in integrative weight organization, 

that is, positive RCL and M, for a wide range of model parameters (Fig. 4; SN; see 

Supplementary Information).
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Discussion

Here we identify two important properties of weighted complex networks that are based on 

the interactions between the clustering and the weights. Earlier findings by Granovetter and 

others24,25 have related neighbourhood overlap to link weights between nodes in social 

networks, suggesting that the interaction between two people positively correlates with the 

number of the friends they share26. We extend its validity to other complex networks, in 

particular, biological and human interaction networks, using the relationship between 

weights and the link clustering, CL, but also find opposite behaviour in other networks (US 

Air transportation network, physics collaboration networks). Hence, on the basis of the local 

correlations between the clustering and weights, two types of networks can be distinguished, 

integrative and dispersive (Fig. 1b), which capture the targeted organization of strong links 

that emerges from a random network of weak links. Other local measures of clustering lead 

to a similar distinction, as demonstrated using the correlations of actual weights with the 

weighting model based on the clustering coefficient of nodes (see equation (2), 

Supplementary Fig. S9a). The division into integrative and dispersive networks requires that 

a common interpretation of weights is used for all networks, as any inverse transformation of 

weights would switch the classification. Here we presume that link weights quantify traffic, 

flow, intensity, or any other measure of increased communication or interaction between a 

pair of nodes.

We also find that integrative networks exhibit a high invariance of their clustering properties 

to the removal of weak links. A network with high M might have functional advantages 

during growth and development, as it allows the rewiring and dynamical exploration of new, 

weak connections37 without undermining the network’s functionality, which is embedded in 

the clustering of its strong links. For example, during cortex development, weak neuronal 

connections are constantly formed, removed or strengthened, depending on the activity that 

occurs between neurons. Integrative weight organization potentially enables neural systems 

to acquire new memories without detrimentally affecting the old ones stored in strong 

connections. We note that the integrative and robust weight organization depends primarily 

on the weighting model and cannot be explained by purely topological measures. We 

tabulated many of the topological properties of the observed networks, but none of them 

correlated significantly with high RCL or M. For example, there was no correlation between 

the assortativity and RCL or M (R=0.13 and R= −0.05, respectively) across all real-world 

networks.

The general question arises as to which degree a local integrative rule, measured by RCL, 

generates the desired global network characteristics, such as invariance to loss of weak links, 

measured by M, or the weighted measure of modularity Q (ref. 38). For the networks and 

simulations in this study, a positive correlation between RCL and Q was found (R=0.35, 

Supplementary Fig. S9b). Similarly, a recent social network model36 (Fig. 4; SN) yielded 

integrative weight organization with a positive correlation between RCL and Q. In the social 

network model, as well as in our study, moderate correlations were also found between RCL 
and M, further supporting the idea that local rules shape global network properties to some 

extent. On the other hand, the negative or weak correlation between RCL and M after the 

initial phase of last-step learning (Supplementary Fig. S8a) and social network growth 
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(Supplementary Fig. S8b), and the demonstration of integrative weighting models that 

produce negative M (Supplementary Fig. S8c), further exemplifies the non-trivial 

relationship between RCL and M. It seems from the networks analysed in the present study 

that the local integrative property is a necessary, but not sufficient, condition for obtaining 

highly robust networks.

Our learning model demonstrates another benefit of integrative weight organization in that 

clustered neighbourhoods do not necessarily stall traffic or trap information flow, which 

supports efficient communication across the network. Integrative networks are established 

on the basis of activation history if adjustments are limited to the recent history, for example 

the last step of the propagation, which tags and removes information trapping. This ‘learning 

at the last step’ paradigm is similar to temporal difference reinforcement learning, a widely 

used learning algorithm in artificial intelligence which links sensory input to a desired action 

outcome39. In neuroscience, it bears great similarity to reward-mediated learning, in which 

the last step in a sequence of actions taken, that is, the nodes activated, is rewarded given the 

desired outcome40. Importantly, this learning rule does not require specific global 

information about the network despite dynamically reconfiguring the network as a function 

of recent activity.

The predominance of integrative weight organization in natural, complex networks seems to 

reflect a general local weighting principle that results in networks which maintain robust 

functionality and efficient communication while adapting their weights to changing 

environments.

Methods

Link clustering analysis

As the correlation RCL between w and CL is a linear measure, we also studied the trend of 

link clustering with respect to weight rank. Links ordered by their weight rank were block-

averaged to obtain  for the ith block, i=1,...,10. We similarly obtain 〈 〉 from 

degree sequence preserving randomized (DSPR; ref. 41) controls, which show no trend, and 

subtract this constant offset to obtain the average excess link clustering for each block, 

. Here,  is the link clustering coefficient of the DSPR 

controls that corrects for the overlap contributed by the node degree distribution alone.

Pruning analysis

We studied network topology as a function of the fraction f of the weakest (bottom-pruning) 

or strongest (top-pruning) links removed. Thus, weights in our pruning analysis mainly serve 

as labels for link ordering, allowing for easier comparisons between different weighted 

networks, as any monotonic transformation of the weights does not affect our pruning 

results. The order of removal for links with identical weights was randomized.

We define the excess clustering as ΔC = C–CDSPR, where C and CDSPR are the average node 

clustering coefficients of the network and its randomized control, respectively. It corrects for 

the trivial appearance of clustering in finite-size networks and converges to C for very large, 
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sparse networks. Many networks maintained high and approximately constant ΔC for a 

particular pruning direction, which we defined as robust excess clustering (REC) and 

quantified using the inverse of the coefficient of variation of the ΔC(f ) measured across ten 

values of f =[0,0.1,...,0.9]. To reduce large variations in the measure when the standard 

deviation (s.d.) is extremely small, we used a transformation which confines this measure to 

the range −1 to 1:

We calculated MREC for bottom-pruning ( ) and top-pruning ( ) profiles, 

ΔC(f ), and use their difference M to quantify the asymmetry in invariance

M is positive for networks that are more robust to bottom-pruning and negative for networks 

that are more robust to top-pruning.

To quantify the difference in the change of rGC, networks and controls were pruned until all 

links were removed. The area between the random removal curve and the top-pruning and 

bottom-pruning curves, respectively, was integrated. Positive and negative values indicate 

cohesiveness less than and greater than random, respectively.

Analytical results for independent weights

The pruning of a network in which link weights are independent of topology is equivalent to 

removing links randomly. On removal of the tth link, only the clustering coefficients of the 

nc common neighbours of its end nodes (Fig. 1a) are reduced, hence, the average clustering 

coefficient, Ct, changes according to

(3)

where zt is the average degree. In the continuous limit equation (3) becomes

(4)

Using the relationship nc (t )=(z(t )–1)C(t) in equation (4), we get
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One can similarly obtain a differential equation for z(t ), of which the solution is

(5)

Using equation (5) in equation (4), we obtain

where t0 is the total number of links in the original network. The solution of this equation is

where f =t/t0 is the fraction of removed links. The excess clustering is a difference of two 

clustering coefficients, both decaying with the same rate 1–f, hence

Local learning rules

We study the weight organization resulting from dynamical learning which occurs during 

branching process dynamics16. We simulate a critical branching process on OHO and WN 

topologies initiated with uniform or random, but narrowly distributed weights (neutral). The 

weights, wij, are appropriately scaled to be interpreted as the critical branching process 

probabilities of the source node i activating the target node j (ref. 16). Before the next 

initiation, the scaling factor, which converts link weights into branching process 

probabilities, is adjusted such that the network dynamics remains critical. After

where pp (ranging from 0.01 to 1%) is a small percentage increase factor and wmax is the 

maximum weight allowed (5–500). Importantly, we restrict learning to particular 

successions (steps) in the following four ways: (1) learning only at a particular step (for 

example, first, second, . . . ); (2) learning at the last step of every cascade; (3) learning at a 

particular step, but only if it is also the last step and (4) learning at all steps without 

restriction. Only with learning restricted to the last steps (cases 2 and 3) does integrative 
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behaviour occur and over a wide range of parameters until all weights eventually saturate to 

the maximal value wmax. Results are shown before significant weight saturation occurs. We 

quantify the termination of cascades by the frequency of the appearance of a particular node 

in the last time interval of a cascade, that is, it was a terminal node. We calculate the 

fraction, fTN, of all cascades in which a node was a terminal node and the correlation RC–TN 

between fTN and the clustering coefficient C across all nodes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Link clustering in real-world networks reveals preferential placement of strong links 
with respect to the neighbourhood overlap of the corresponding end nodes
a, The link clustering coefficient CL is defined as the relative overlap between the 

neighbourhoods of a link’s end nodes i and j, that is, the number of common nodes (red). b, 

In integrative networks, strong links (thick lines) correlate with high overlap (left), whereas 

the opposite is found in dispersive networks (right). c, Functional connectivity derived from 

neuronal avalanches in the cortex of awake macaque monkeys and organotypic cultures. The 

average link clustering ΔCL plotted versus weight rank shows a strong positive trend 

between link weight and relative neighbourhood overlap. The first rank is the smallest 

weight. d–f, Functional and structural architecture of human cerebral cortex networks (d), 

gene expression networks (e) and social co-appearance networks (f) show similar results to 

c. g, Functional connectivity for language networks showing a weak positive trend for ΔCL. 

h, Summary for three networks of C. elegans reveals no trend in link clustering. i, Dispersive 

US Air flight network showing a weak, negative trend of ΔCL and the airport passenger 

network showing a low to slightly positive ΔCL. j, Author collaboration networks showing a 
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negative trend in ΔCL. Condensed matter (Cond. Mat.), high-energy physics (HEP), 

astrophysics (Astro.), network science (Net.). Error bars indicate the standard error (s.e.).
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Figure 2. The robustness of clustering to the loss of their weakest or strongest links in small-
world networks and its correlation to link clustering
a–d, Neuronal avalanche networks from awake macaque monkeys and organotypic cortex 

cultures (a), the human brain (b), gene interaction (c) and some social networks (d). In these 

cases ΔC remains invariant for bottom-pruning (solid lines) but not for top-pruning (broken 

lines); f is the fraction of weakest and strongest links pruned respectively. e, Language 

networks. f, C. elegans network. g, Transportation networks such as the US Air flights and 

airport passenger networks are robust to top pruning, but not bottom-pruning, that is, 

clustering largely depends on weak links. Note that high capacity routes for US Air flights 

are formed between airports with a clustering coefficient below chance. h, Author 

collaboration networks show no asymmetry between top-pruning and bottom-pruning and M 
is close to 0. Abbreviations are defined in Fig. 1. The error bars represent the s.e. among n 
replicates (when n>1).
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Figure 3. Link clustering and pruning analysis for neutral, dispersive, and integrative weight 
organizations
Simulations are shown for OHO and WN topologies (n=10 networks, each with N=100; 〈k〉
=12,10 for OHO, WN respectively; see Supplementary Table S1). a, Example of neutral 

weight organization with randomly assigned link weights w (independent of the topology). 

Left: ΔCL shows no trend versus weight rank. Right: ΔC decreases linearly with f for 

bottom-pruning (solid line) and top-pruning (broken line). b, In networks with dispersive 

weight organization, here implemented according to equation (1), ΔCL is highest for weak 

links and ΔC is robust only for top-pruning. c, In networks with integrative weight 

organization, here implemented using equation (2), ΔCL is highest for strong links and ΔC is 

robust only for bottom-pruning. The error bars represent the s.e. among n replicates.

Pajevic and Plenz Page 16

Nat Phys. Author manuscript; available in PMC 2017 September 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Summary plot of M versus RCL for all the networks analysed in the present study
Brain, gene, social and language networks are integrative, with brain and gene networks 

exhibiting among the highest positive values of M and RCL. We note that only models OHO 

II and GM1 achieve high dispersive characteristics, whereas natural networks such as airline 

and collaboration networks range from weakly dispersive to neutral. For further description 

of the simulated networks see the main text.
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Figure 5. The cohesive nature of weak links is grounded in their random organization
a, The relative giant component, rGC, in fMRI brain and human gene 1 networks decays 

faster for top-pruning than for randomized weight controls. In contrast, rGC changes 

similarly to randomized weight controls for top-pruning. b, Summary plots of the difference 

in the area under the curve of rGC for bottom-pruning and top-pruning compared against 

randomized weight controls for all real-world networks. The small difference for integrative 

networks with top-pruning indicates random organization of weak links. Conversely, the 

large difference for bottom-pruning indicates targeted, non-random organization of strong 

links. The error bars represent the s.e. among n=10 replicates.
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Figure 6. Adaptive implementation of integrative and dispersive weight organization
a, An initial random (that is, neutral) weight assignment (before) changes into integrative 

(after) during last step learning (106 cascades; OHO topology; N=60; n=5 realizations; see 

also Supplementary Table S1). b, Learning only at the first step (second step) results in 

neutral (dispersive) weight organization. c,d, Temporal progression of M and RCL during 

last-step learning (solid black), at any particular step conditional on it being also the last step 

(coloured solid), all-step learning (dashed black) and at any particular step (coloured 

dashed). Learning at every first through to fifth cascade step, if this step is also the last in the 

cascade, results in integrative networks. Learning at every first step (A1; red dashed) 

maintains neutral networks, whereas dispersive networks emerge for later steps (A2–A5). e, 

Last step learning enables cascades to break through the traffic traps that exist in clustered 

neighbourhoods during early stages of learning. Temporal progression of RC–TN for 

corresponding last, L1, . . . , L5 step learning in c–d. f, In dispersive networks clustered 

neighbourhoods continue to stall traffic throughout learning. The same key applies to all 

plots from c–f. Error bars indicate the s.e.
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