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Abstract

Traumatic life experiences are associated with alcohol use problems, an association that is likely to 

be moderated by genetic predisposition. To understand these interactions, we conducted a gene-

Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

Corresponding Author: Murray B. Stein, MD, MPH, Department of Psychiatry, University of California, San Diego, 9500 Gilman Dr, 
La Jolla, CA 92093. mstein@ucsd.edu. 

Conflict of Interest
Dr. Stein has in the last three years been a consultant for Actelion Pharmaceuticals, Healthcare Management Technologies, Janssen, 
Pfizer, Resilience Therapeutics, Tonix Pharmaceuticals, and Oxeia Biopharmaceuticals. Dr. Kaufman has provided consultation to 
Pfizer and Merck Pharmaceutical Company to train investigators to assess bipolar disorder in youth. Dr. Kranzler has been an advisory 
board member, consultant, or CME speaker for Indivior, Lundbeck, and Otsuka. He is also a member of the American Society of 
Clinical Psychopharmacology’s Alcohol Clinical Trials Initiative, which is supported by AbbVie, Alkermes, Ethypharm, Indivior, 
Lilly, Lundbeck, Pfizer, and XenoPort. The other authors reported no biomedical financial interests or potential conflicts of interest.

HHS Public Access
Author manuscript
Mol Psychiatry. Author manuscript; available in PMC 2018 January 04.

Published in final edited form as:
Mol Psychiatry. 2018 January ; 23(1): 154–160. doi:10.1038/mp.2017.24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



by-environment genome-wide interaction study (GEWIS) of alcohol use problems in two 

independent samples, the Army STARRS (ASTARRS, N=16,361) and the Yale-Penn (N=8,084) 

cohorts. Because the two cohorts were assessed using different instruments, we derived separate 

dimensional alcohol misuse scales and applied a proxy-phenotype study design. In African-

American subjects, we identified an interaction of PRKG1 rs1729578 with trauma exposure in the 

ASTARRS cohort and replicated its interaction with trauma exposure in the Yale-Penn cohort 

(discovery-replication meta-analysis: z=5.64, p=1.69*10−8). PRKG1 encodes cGMP-dependent 

protein kinase 1, which is involved in learning, memory, and circadian rhythm regulation. 

Considering the loci identified in stage-1 that showed same effect directions in stage-2, the gene 

ontology (GO) enrichment analysis showed several significant results, including calcium-activated 

potassium channels (GO:0016286; p=2.30*10−5), cognition (GO:0050890; p=1.90*10−6), 

locomotion (GO:0040011; p=6.70*10−5), and Stat3 protein regulation (GO:0042517; p=6.4*10−5). 

To our knowledge, this is the largest GEWIS performed in psychiatric genetics, and the first 

GEWIS examining risk for alcohol misuse. Our results add to a growing body of literature 

highlighting the dynamic impact of experience on individual genetic risk.

Introduction

Exposure to traumatic life events is associated with a variety of health risk behaviors, 

including alcohol use disorders (AUD).1, 2 The heritability of AUD is approximately 50%.3 

Genome-wide association studies (GWAS) of AUD have identified several risk alleles.4 

Individuals with AUD likely present some complex trait risk mechanisms that are different 

from those of the general population.5, 6 A recent phenome-wide analysis demonstrated that 

AUD risk alleles are associated with a wide range of physical and mental health 

consequences.7 The environment also contributes to the predisposition to AUD, moderating 

the effects of risk alleles8.

Traumatic events affect genome regulation via different mechanisms;9, 10 and it should be 

possible to identify specific genes that interact with traumatic experiences to moderate AUD 

risk. Previous studies focused on candidate stress-response genes, such as 5-HTTLPR, 
PER1, and FKBP5,11–13 and investigated how the exposure to life trauma interacts with risk 

alleles in relation to AUD. However, the candidate-gene approach has limited ability to 

identify the genetic basis of complex traits.14 Conversely, GWAS of complex traits 

conducted in large cohorts have identified numerous risk alleles and some of the pathogenic 

mechanisms underlying genetically complex diseases. Similarly, genome-wide gene-by-

environment interaction studies (GEWIS) can be useful in understanding how environmental 

factors interact with an individual’s genetic background to regulate the predisposition to 

complex traits. However, to date, there have been few published GEWIS. One reason is that 

large cohorts that could be meta-analyzed are rarely ascertained using compatible criteria, 

and relevant differences can be present in the assessment of phenotypic outcome and 

environmental factors. Thus, it is difficult to investigate large cohorts evaluated with 

homogeneous assessments. Differences in phenotypic assessment can reduce the statistical 

power of meta-analysis and replication studies, especially for GEWIS, since they are 

performed using two kinds of phenotypic data with respect to both the outcome and an 

environmental factor.
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Using data from a GWAS of AUD, we observed that risk alleles in ADH1B, one of the best-

validated loci for alcohol drinking behaviors, show different associations with DSM-IV vs. 

DSM-5 AUD criteria.15 To reduce error related to different phenotypic assessments, we 

performed a genome-wide gene-by-trauma interaction study considering the proxy-

phenotype approach proposed by Rietveld and colleagues in 2014.16 Specifically, we used 

the cohorts from the Army STARRS (ASTARRS) Initiative (N = 16,361) for stage-1 and the 

Yale-Penn sample (N = 8,084) for stage-2, which yielded a total sample of 24,445 

individuals. To our knowledge this is the largest GEWIS performed in psychiatric genetics 

and the first examining risk for alcohol misuse.

Subjects and Methods

Army STARRS cohorts

Subjects investigated were selected from among the participants in the ASTARRS Initiative. 

All subjects gave written informed consent to participate. These procedures were approved 

by the Human Subjects Committees of all collaborating institutions.

Sample—Two study populations were included in the ASTARRS Initiative (Table 1). The 

New Soldier Study (NSS) includes soldiers at the start of their basic training at one of three 

Army installations. The Pre-Post Deployment Study (PPDS) is a multiple-wave panel survey 

that collected baseline data (time 0) from US Army soldiers in three brigade combat teams 

prior to their deployment to Afghanistan. Detailed information about the design and conduct 

of Army STARRS is available in a previous report.17

Procedures—Phenotypes for ASTARRS were obtained using a self-administered 

questionnaire, which included a computerized version of the Composite International 

Diagnostic Interview Screening Scales (CIDI-SC).18 From the CIDI-SC assessment, we 

extracted information regarding lifetime trauma exposure and alcohol misuse.

Lifetime Trauma Assessment—Lifetime trauma exposure (i.e., exposed vs. unexposed) 

included reporting of any of the following experiences: serious physical assault; sexual 

assault or rape; witnessing someone being seriously injured or killed; discovering or 

handling a dead body; a life-threatening illness or injury; a disaster; any other experience 

that put the subject at risk of death or serious injury; murder of a close friend or relative; 

suicide of a close friend or relative; combat death of a close friend or relative; or accidental 

death of a close friend or relative. Further details on the trauma assessments were reported in 

our previous study.19

Alcohol Use Assessment—For the ASTARRS cohort, a dimensional measure of alcohol 

misuse was derived by summing responses to 13 items that assessed frequency and 

consequences of alcohol use including the array of alcohol misuse symptoms: 1) Frequency 

of Drinking; 2) Frequency of Binge Drinking; 3) Drinking Interfered with Responsibility; 4) 

Drinking Caused an Argument; 5) Drinking Resulted in Someone Getting Hurt; 6) Out of 

Control Drinking; 7) Arrested Due to Drinking; 8) Worried to Not Be Able to Drink; 9) 

Worried About Drinking; 10) Feel a Need to Cut Down; 11) Feel Annoyed by People Who 

Mention Drinking; 12) Feel Guilty About Drinking; 13) Drink First Thing in the Morning. 
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Respondents rated each symptom on a 5-point frequency scale that ranged from “never” 

through “every or nearly every day”. Supplemental Table 1 summarizes the items related to 

lifetime trauma exposure and alcohol-related symptoms. We included only subjects who 

reported having ever consumed an alcoholic drink (i.e., alcohol exposed). For PPDS 

subjects, we considered trauma and alcohol information reported at time 0 (within 

approximately six weeks prior to deployment).

Genetics—The NSS and PPDS samples (ASTARRS1, N=14,000) underwent genotyping 

using the Illumina OmniExpress and Exome array with additional custom content. An 

additional 2,361 NSS samples (ASTARRS2) were genotyped on the Illumina PsychChip 

array. Methods for genotyping, imputation, ancestry assignment, and principal component 

(PC) analysis were described previously.19, 20

Yale-Penn Cohort

Sample—The subjects in the Yale-Penn cohort were recruited at five sites in the Eastern 

United States and were previously investigated in genetic studies of substance use disorders 

and other traits (Table 1).4, 21–24 The institutional review board at each participating site 

approved the study and we obtained written informed consent from each participant.

Trauma and Alcohol Use Assessment—The Yale-Penn participants were evaluated 

using the Semi-Structured Assessment for Drug Dependence and Alcoholism 

(SSADDA),25, 26 which yields DSM-IV and DSM-5 diagnoses of lifetime alcohol and drug 

dependence and other major psychiatric traits. Lifetime trauma exposure was defined as 

previous experience or witnessing of traumatic events including military combat; an assault, 

rape, or kidnapping; seeing someone seriously injured or killed; a flood, earthquake, large 

fire, or other disaster; an airplane crash or serious car accident; a shooting or bombing; or 

any situation where you feared there was a serious threat to your life or the life of another 

person. DSM-5 AUD criterion count was used as a dimensional measure based on the 11 

DSM diagnostic criteria for AUD. Further details are reported in our previous study.15 In the 

analysis, we included only subjects who reported having ever consumed alcohol (i.e., were 

alcohol exposed).

Genetics—The Illumina HumanOmni1-Quad v1.0 microarray was used to genotype 5,546 

subjects (Yale-Penn1) at the Center for Inherited Disease Research or the Yale Center for 

Genome Analysis; and the Illumina HumanCoreExome array was used to genotype 2,538 

additional subjects at the Gelernter Lab at Yale (Yale-Penn2). Genotyping, Imputation, 

ancestry assignment, and PC analysis are described in our previous articles.4, 21–24

Data Analysis

A proxy-phenotype analysis was conducted considering the ASTARRS cohorts (ASTARRS1 

and ASTARRS2) as the discovery sample (Stage-1) and the Yale-Penn cohorts (Yale-Penn1 

and Yale-Penn2) as the replication sample (Stage-2). Proxy-phenotype analysis is a two-

stage research strategy proposed by Rietveld and colleagues.15 In the first stage, a proxy 

phenotype (i.e., alcohol misuse) was used to identify a relatively small set of SNPs 

considering a suggestive statistical significance threshold (i.e., p < 5*10−5). In the second 
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stage, this set of candidate SNPs was tested in an independent sample with respect to the 

phenotype of interest (i.e., AUD) at a significance threshold corrected for the number of 

proxy-associated SNPs. Consistent with the National Institute of Mental Health’s Research 

Domain Criteria (RDoC) initiative,27–29 we considered two-dimensional measures derived 

from symptom scales based on self-report information: an alcohol misuse score in the 

ASTARRS cohorts, and a DSM-5 AUD criterion count in the Yale-Penn cohorts. 

Dichotomous trauma exposure was considered as interactive factor, because it was available 

in both cohorts. A genome-wide gene-by-trauma interaction analysis was conducted in the 

ASTARRS cohorts (stage-1). Considering linkage disequilibrium (LD)-independent variants 

with p < 5*10−5 in the ASTARRS analysis, a replication analysis was performed in the Yale-

Penn cohorts (stage-2). Independent variants were defined as more than 500 kb distant and 

with r2 < 0.2. SNPs that survived a Bonferroni correction that accounted for the number of 

independent loci were considered a replication. The statistical power of our GEWIS was 

calculated using QUANTO software (available at http://biostats.usc.edu/Quanto.html). In the 

ASTARRS sample, we have 92.7% statistical power to detect a moderate GxE effect 

(βGxE=0.7) at significance level p < 5*10−5 for alleles with frequency ≥ 5%. In the Yale-

Penn sample, we have 88% statistical power to detect a moderate GxE effect (βGxE=0.7) at 

significance level p < 5*10−4 for alleles with frequency ≥ 5%.

Plink 1.930 was used to conduct the analysis in the ASTARRS cohort, and the interaction 

test was based on comparing the difference between regression coefficients in the trauma-

exposed subjects vs. the trauma-unexposed subjects. Because the Yale-Penn cohorts include 

related individuals, we performed the interaction analysis using the R package GWAF31 to 

fit a generalized estimating equations (GEE) model to adjust for correlations among related 

individuals. To verify that no important differences between the two methods were present, 

we tested the GWAF package and Plink 1.9 in a cohort of unrelated subjects and observed 

negligible differences due to number approximations. In both analyses, we included SNPs 

with minor allele frequency ≥ 5% and high imputation quality (Info ≥ 0.8). Before being 

entered into the analysis, alcohol misuse dimensional scales (i.e., alcohol misuse count and 

DSM-5 AUD criterion count) were adjusted for age, sex, and the top-10 ancestry PCs, and 

then normalized using appropriate Box-Cox power transformations. In every analysis, the 

samples were stratified by genotyping array and ancestry, and the results were combined by 

meta-analysis using the program METAL.32 Functional annotation of the identified loci was 

conducted using HaploReg v4.1.33

Finally, we evaluated whether the number of loci that showed the same effect directions in 

the ASTARRS and the Yale-Penn cohorts was significantly different from chance, by 

conducting a permutation analysis; and then performed a gene ontology (GO)-enrichment 

analysis on the basis of the direction-replicated loci using DAVID 6.8 beta version (released 

May 2016; available at https://david-d.ncifcrf.gov/home.jsp). Fisher’s exact tests and 

Bonferroni multiple testing corrections were applied in the GO-enrichment analysis. We also 

used WebGestalt34 (available at http://www.webgestalt.org/) to conduct an enrichment 

analysis for KEGG pathways using hypergeometric statistical method and Benjamini-

Hochberg multiple test adjustment with significance level set at 0.05.
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Results

Table 1 reports the characteristics of the cohorts included in our GEWIS. Both ASTARRS 

and Yale-Penn samples include subjects genotyped with different platforms. Accordingly, 

we stratified the samples according to their genotyping platform and used a meta-analytic 

approach to integrate the results for Stage-1 (ASTARRS1 and ASTARRS2) and Stage-2 

(Yale-Penn1 and Yale-Penn2) cohorts. Within each study population (ASTARRS and Yale-

Penn), the cohorts have similar characteristics (age, sex, ancestry, and trauma exposure), 

except for sex between the ASTARRS cohorts (ASTARRS1 women = 12%; ASTARRS2 

women = 22%). Considering the differences between the two study populations (ASTARRS 

vs. Yale-Penn), the ASTARRS cohorts are mainly constituted by young European-descent 

subjects, while the Yale-Penn cohorts mainly consist of older participants with both sexes 

and ancestries (European and African) almost equally represented. No Hispanic-American 

group is included in the Yale-Penn cohorts. Lifetime trauma exposure is slightly higher in 

the ASTARRS cohorts than that observed in the Yale-Penn cohorts (77% vs. 65%).

In the first stage, the genome-wide gene-by-trauma interaction analysis of alcohol misuse 

showed negligible inflation or deflation in the ancestry-stratified investigations of the 

ASTARRS cohorts (Supplemental Table 2). This confirmed that no systematic bias affected 

our GEWIS. GxE analysis can be biased by interactions among predictors and this can be 

hardly detected in a candidate gene study.35 In a GEWIS a systematic bias in the GxE model 

would have caused inflation in the distribution of the test statistics.

There was no genome-wide significant result in the ancestry-specific or the trans-population 

meta-analyses. Considering p < 5*10−5 as the significance threshold for follow-up in the 

second stage of the proxy-phenotype analysis, we identified 68, 49, and 45 independent loci 

in African-specific, European-specific, and trans-population meta-analyses, respectively 

(Supplemental Table 3). In African-American subjects, we identified an interaction of 

PRKG1 rs1729578 with trauma exposure in the ASTARRS cohort and replicated its 

interaction with trauma exposure in the Yale-Penn cohort (discovery-replication meta-

analysis: z=5.64, p=1.69*10−8; ASTARRS AA: z=4.46, p = 8.09*10−6; Yale-Penn AA: z= 

3.62, p = 2.98*10−4). Table 2 shows the details of the association of rs1729578 with alcohol 

misuse in trauma-exposed and unexposed subjects and its interaction with trauma exposure 

in relation to alcohol misuse. In the meta-analysis of the discovery (Stage-1) and replication 

(Stage-2) AA cohorts (N = 6,744), rs1729578 showed a genome-wide significant interaction 

with trauma-exposure in relation to alcohol misuse (z = 5.64, p = 1.69*10−8; Figure 1). 

Rs1729578*C allele was positively associated with alcohol misuse in trauma-exposed 

subjects (z=4.27, p=1.96*10−5); and was negatively associated in trauma-unexposed subjects 

(z=−5.29, p=1.21*10−7). No significant replication was observed in the EA or trans-

population meta-analysis. The Hispanic-specific meta-analysis could not be included in the 

second stage because no Hispanic group was available for replication in the Yale-Penn 

cohorts.

Rs1729578 is located in an intron of PRKG1 (cGMP-dependent protein kinase 1) and in 

AAs it is in high LD (r2 > 0.8) with other two PRKG1 intronic variants (rs1194520 and 

rs871995). According to the data provided by the Roadmap Epigenomics Consortium and 
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the ENCODE Project Consortium,36, 37 rs1729578 is associated with a MIZF motif change; 

rs1194520 is located in enhancer histone marks (6 tissues), DNAse sites (16 tissues), a 

CFOS protein bound site, and it is associated with 4 altered transcription factor (TF) motifs 

(Irf, SETDB1, STAT, YY1). Similarly, rs871995 is located in promoter histone marks (18 

tissues), enhancer histone marks (8 tissues), DNAse sites (1 tissue), and is associated with 3 

TF altered motifs (Foxp1, Hoxa10, Irf). Details on chromatin-state annotation of the PRKG1 
variants are provided in Supplemental Table 4.

Finally, we verified whether the loci identified in Stage-1 had the same effect directions in 

the Stage-2 cohorts. In all of the analyses (African-specific, European-specific, and trans-

population), we observed that the number of Stage1-identified loci with the same effect 

directions in the Stage-2 cohorts was higher than would be expected by chance (Figure 2): 

42 loci in AAs (ppermutation = 0.022); 33 loci in EAs (ppermutation = 0.004); and 28 loci in the 

trans-population analysis (ppermutation = 0.041). Considering these loci with the same 

direction in both cohorts (Supplemental Table 5), we observed significant enrichment for: 

GO:0016286~small conductance calcium-activated potassium channel activity in AAs; GO:

0040011~locomotion in EAs; GO:0050890~cognition and GO:0042517~positive regulation 
of tyrosine phosphorylation of Stat3 protein. Details regarding the results of enrichment 

analysis are reported in Table 3. The analysis based on KEGG pathways identified several 

significant enrichments (Supplemental Table 6). Calcium signaling pathway (KEGG ID: 

04020) was also confirmed by this analysis. Other relevant molecular pathways were: 

Cytokine-cytokine receptor interaction (KEGG ID: 04060); Long-term potentiation (KEGG 

ID: 04720); Insulin signaling pathway (KEGG ID: 04910).

Discussion

To our knowledge, this study, which included 24,445 individuals, is the largest GEWIS in 

psychiatric genetics, and the first examining risk for alcohol misuse. Because the cohorts 

investigated were assessed using different instruments and criteria intended to measure 

similar domains, we applied the proxy-phenotype approach.16

In AAs, our proxy-phenotype analysis uncovered a variant, rs1729578, identified in the 

ASTARRS cohorts and replicated in the Yale-Penn samples. The rs1729578*C allele 

showed an interaction with trauma exposure in relation to alcohol misuse symptoms. 

Although it has similar allele frequencies in European- and African-ancestry populations, no 

effect was observed in the European cohort, possibly due to a different haplotype structure in 

these groups.38 In African populations, the variant is in high LD (r2 > 0.8) with other two 

variants, rs1194520 and rs871995. These SNPs are located in an intron of PRKG1, the gene 

encoding cGMP-dependent protein kinase 1. Functional annotation from the Roadmap 

Epigenomics Consortium and the ENCODE Project Consortium indicated that these variants 

are located in genomic regulatory regions.36, 37 Specifically, they are located within multiple 

chromatin marks across different tissues. Previous studies have demonstrated that non-

coding variants identified by GWAS are enriched for chromatin modifications.39 The 

PRKG1 protein product, cGMP-dependent protein kinase 1, corresponds to both the type I 

alpha and type I beta isoforms of cyclic guanosine monophosphate (cGMP)-dependent 

protein kinase, by alternative transcript splicing.40, 41 The gene is most strongly expressed in 

Polimanti et al. Page 7

Mol Psychiatry. Author manuscript; available in PMC 2018 January 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



smooth muscle, platelets, cerebellar Purkinje cells, hippocampal neurons, and the lateral 

amygdala.40, 41 cGMP plays an important role in learning and memory,42 and a PRKG1 
knockout mouse model showed alterations in the cerebellar phospho-proteome that suggests 

impaired cerebellar long-term depression at Purkinje cell synapses.43 PRKG1 mutant mice 

also show differences from wild-type mice in circadian rhythms, sleep and distinct aspects 

of learning.44 Mouse models also demonstrate that cGMP-dependent protein kinase 1 in the 

amygdala is critical for auditory-cued fear memory and long-term potentiation.45, 46 In vitro 
studies also show that cGMP-dependent protein kinase 1 isoforms are involved in serotonin 

transporter regulation.47 In Drosophila melanogaster, the homolog of the human PRKG1, 

the well-studied foraging (for) gene encodes a cGMP-dependent protein kinase (PKG). Two 

for variants have been observed in nature: rover allele (forR) with high PKG activity; and 

sitter allele (fors) with low PKG activity.48 In Drosophila, PKG activity interacts with early 

life stress in determining adult exploratory and fitness traits.49, 50 PKG activity seems to 

control synaptic transmission tolerance to acute stress at the Drosophila larval 

neuromuscular junction, where inhibition promotes functional protection, while activation 

increases susceptibility to neurotransmission breakdown.51 A GWAS of post-traumatic 

stress disorder identified PRKG1 as a risk locus in a military cohort independent from those 

investigated in the current studies,52 also supporting the role of PRKG1 in stress-response 

related traits in humans.

Finally, our proxy-phenotype analysis demonstrated that the enrichment for loci with same 

effect direction in stage-1 and stage-2 was unlikely to be due to chance. Investigating these 

loci, we observed indicative GO enrichments. The enrichment for GO:0016286~small 
conductance calcium-activated potassium channel activity confirmed previous findings of 

genome-wide genetic and epigenetic investigations on the role of potassium channels and 

calcium metabolism in substance use disorders.21, 22, 53 Both GO:0040011~locomotion and 

GO:0050890~cognition appear consistent with the role of genes involved in mobility and 

cognitive functions highlighted by the PRKG1 result. GO:0042517~positive regulation of 
tyrosine phosphorylation of Stat3 protein suggests that mechanisms related to STAT3 
regulation are involved in the trauma response. STAT3 is involved in signal transduction and 

transcription activation of a wide range of genes in response to cell stimuli,54 but no studies 

have yet investigated its involvement in the behavioral stress response. Pathway-based 

enrichment analysis confirmed the GO result related to the calcium metabolism (Calcium 

signaling pathway, KEGG ID: 04020). Besides this confirmatory result, the most significant 

pathway enrichment was observed for Cytokine-cytokine receptor interaction (KEGG ID: 

04060). This is a relevant pathway related to immune functions such as inflammatory host 

defenses, cell growth, differentiation, cell death, angiogenesis, and development and repair 

processes aimed at the restoration of homeostasis. Our previous GWAS of PTSD showed a 

strong overlapping with autoimmune diseases19 and our current finding confirm the role of 

immune functions in trauma response.

In conclusion, our study provides the first genome-wide evidence regarding a mechanism by 

which traumatic life events interact with human genetic variation in relation to alcohol 

misuse. However, although to our knowledge this is the largest GEWIS performed in 

psychiatric genetics, our current findings are still limited and further GEWIS with larger 

sample sizes together with translational studies will be needed to uncover more completely 
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how traumatic experience interacts with the genetic predisposition to modify risk for alcohol 

use disorders. Our main result is the identification of PRKG1 rs1729578 as a risk locus 

interacting with trauma exposure in determining alcohol misuse. Our study design included 

different types of trauma within the “lifetime trauma exposure” category. Since certain 

traumatic experiences may be consequences of the alcohol abuse (e.g., individuals who 

abuse alcohol are more likely to have motor vehicle collisions than those who do not abuse 

alcohol), further studies are needed to dissect the complex interactive network of alcohol 

misuse, trauma experience, and genetics. Additional experiments are also necessary to 

understand the molecular mechanisms (e.g., epigenetic changes, transcriptional regulation) 

involved in this interactive process. However, the PRKG1 locus encodes a prospective target 

for the development of pharmacological treatments for stress-response related traits. Indeed, 

an in vivo study has shown that the blockade of a1-adrenergic receptors mitigates stress-

disturbed cGMP signaling.55 Further studies should consider whether pharmacological 

treatments targeted at the cGMP signaling system are useful to reduce risk behaviors, such 

as alcohol misuse, in subjects exposed to traumatic events. Other potential targets for future 

translational investigations of trauma-related psychopathologies include potassium channels, 

calcium metabolism, and STAT3 regulation system.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Regional Manhattan Plots of PRKG1 rs1729578 in African American overall meta-analysis 

(ASTARRS cohorts + Yale-Penn cohorts).
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Figure 2. 
Null distribution of direction-replication ratios generated through 1,000 random 

permutations. Blue lines indicate observed values.
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