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Anti-inflammatory disease-modifying
treatment and short-term disability
progression in SPMS

ABSTRACT

Objective: To investigate the effect of disease-modifying treatment on short-term disability out-
comes in secondary progressive multiple sclerosis (SPMS).

Methods: Using MSBase, an international cohort study, we previously validated a highly accurate
definition of SPMS. Here, we identified patients in MSBase who were either untreated or treated
with a disease-modifying drug when meeting this definition. Propensity score matching was used
to select subpopulations with comparable baseline characteristics. Disability outcomes were
compared in paired, pairwise-censored analyses adjusted for treatment persistence, visit density,
and relapse rates.

Results: Of the 2,381 included patients, 1,378 patients were matchable (treated n 5 689,
untreated n5 689). Median pairwise-censored follow-up was 2.1 years (quartiles 1.2–3.8 years).
No difference in the risk of 6-month sustained disability progression was observed between the
groups (hazard ratio [HR] 0.9, 95% confidence interval [CI] 0.7–1.1, p 5 0.27). We also did not
find differences in any of the secondary endpoints: risk of reaching Expanded Disability Status
Scale (EDSS) score $7 (HR 0.6, 95% CI 0.4–1.1, p 5 0.10), sustained disability reduction (HR
1.0, 95%CI 0.8–1.3, p5 0.79), or change in disability burden (area under the EDSS-time curve,
b 5 20.05, p 5 0.09). Secondary and sensitivity analyses confirmed the results.

Conclusions: Our pooled analysis of the currently available disease-modifying agents used after
conversion to SPMS suggests that, on average, these therapies have no substantial effect on
relapse-unrelated disability outcomes measured by the EDSS up to 4 years.

Classification of evidence: This study provides Class IV evidence that for patients with SPMS, dis-
ease-modifying treatment has no beneficial effect on short-term disability progression.
Neurology® 2017;89:1050–1059

GLOSSARY
ARR 5 annualized relapse rate; ASCEND 5 A Clinical Study of the Efficacy of Natalizumab on Reducing Disability Pro-
gression in Participants With Secondary Progressive Multiple Sclerosis; AUC 5 area under the EDSS-time curve; CI 5
confidence interval; EDSS 5 Expanded Disability Status Scale; HR 5 hazard ratio; IFN 5 interferon; MIMS 5 Mitoxantrone
in Multiple Sclerosis; RRMS5 relapsing-remitting multiple sclerosis; SPECTRIMS5 Secondary Progressive Efficacy Clinical
Trial of Recombinant Interferon-Beta-1a in MS; SPMS 5 secondary progressive multiple sclerosis.

While substantial progress has been made in the development of effective treatments for relaps-
ing-remitting multiple sclerosis (RRMS) in past decades, similar success has not been achieved in
secondary progressive multiple sclerosis (SPMS).1,2 Currently, interferon (IFN) b-1b and mi-
toxantrone are the only anti-inflammatory agents that have been approved for SPMS treatment
in Europe and the United States.3,4 However, a recent Cochrane review concluded that IFNb is
not useful in SPMS, and the use of mitoxantrone is limited by serious adverse events, namely
cardiotoxicity and increased risk of leukemia.5,6 More recently, a randomized controlled trial of
natalizumab in SPMS (A Clinical Study of the Efficacy of Natalizumab on Reducing Disability
Progression in Participants With Secondary Progressive Multiple Sclerosis [ASCEND],
NCT01416181) failed to show a statistically significant effect on confirmed disability
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progression.7 Newer oral drugs approved for
RRMS such as fingolimod, dimethyl fuma-
rate, or teriflunomide have not yet been stud-
ied.8 However, in the absence of other
therapeutic options, these anti-inflammatory
drugs are still being used in SPMS despite
the weight of evidence not supporting this
practice.

Because randomized controlled trials evalu-
ating treatment outcomes in SPMS are associ-
ated with high cost, a feasible alternative
strategy is to use existing longitudinal registries
of clinical outcome data to examine potential
therapeutic effects.9 MSBase is a large, inter-
national, observational cohort study of
patients with MS, and we previously demon-
strated its utility in the analysis of treatment
outcomes using propensity matching to miti-
gate treatment indication bias.10–12 The aim of
the present study was to investigate the effect
of anti-inflammatory disease-modifying treat-
ment used after conversion to SPMS on dis-
ability outcomes.

METHODS Standard protocol approvals, registrations,

and patient consents. The MSBase cohort study (reg-
istered with World Health Organization Interna-
tional Clinical Trials Registry Platform, identifier
ACTRN12605000455662) was approved by the
Melbourne Health Human Research Ethics Com-
mittee and by the local ethics committees in all par-
ticipating centers (or exemptions granted, according
to applicable local laws and regulations). If required,
written informed consent was obtained from
enrolled patients in accordance with the Declaration
of Helsinki.

Database and study population. Longitudinal clinical
data from 36,910 patients from 122 MS centers in
57 countries were extracted from the MSBase registry
in January 2016. For this study, we selected patients
with SPMS diagnosed retrospectively according to
our previously validated definition.13 The minimal
dataset comprised patient sex, year of birth, year of
the first clinical presentation, MS course, treating
center, and at least 2 clinical visits with recorded
Expanded Disability Status Scale (EDSS) and func-
tional system scores at least 6 months apart. Patients
previously participating in randomized trials involv-
ing active agents or receiving alemtuzumab, cladri-
bine, or autologous stem cell transplantation before
baseline were excluded because we could not control
for potential carryover effects of these treatments. The
study baseline was defined as the time of the diagnosis

of SPMS, regardless of the patients’ treatment status,
to avoid immortal-time bias.

The data quality assessment was conducted with
a series of procedures to identify any invalid or incon-
sistent entries, as described elsewhere.14 The analyzed
data were recorded as part of clinical practice, mostly
at large tertiary MS centers. The usual data entry
practice was real-time or near–real-time data entry
(at the time of clinical visits). The MSBase protocol
stipulates a required annual update of the minimum
dataset, but patients with less frequent visits were not
excluded from the analysis. Categorized results of
brain MRI were reported by treating neurologists.
The data entry portal was either the iMed patient
record system or the MSBase online data entry system.

Study endpoints. Our study was designed to provide
class IV evidence to address the primary research
question, which was the effect of disease-modifying
treatment on the cumulative risk of disability progres-
sion after conversion to SPMS. Disability was scored
by accredited scorers (Neurostatus certification was
required at each center) using the EDSS, calculated
on the basis of functional system and ambulation
scores. Disability progression was defined as an EDSS
score increase of 1 point (0.5 points if baseline EDSS
score was $6) sustained for $6 months. Disability
reduction was defined as decrease of EDSS score by 1
point (0.5 points if baseline EDSS score was $6.5)
sustained for $6 months.15 The endpoint of EDSS
score$7 was reached at the time a patient progressed
to EDSS step 7 with confirmation over the next $6
months. A relapse was defined as occurrence of new
symptoms or exacerbation of existing symptoms per-
sisting for at least 24 hours, in the absence of concur-
rent illness or fever, and occurring at least 30 days
after a previous relapse. Individual annualized relapse
rate (ARR) was calculated as the annualized number
of recorded relapses between baseline and a censoring
event. Burden of disability over the follow-up period
was quantified as the area under the EDSS-time curve
(AUC) using the trapezium rule.11,16 MS duration
was calculated from the first demyelinating event.
The prospective on-study follow-up was defined as
the time between the first and last available EDSS
entries.

Matching and statistical analysis. Matching and statisti-
cal analysis was conducted by the first author using R
(version 3.1.2).17 Applying an intention-to-treat
design, we allocated included patients to the treat-
ment arm if they were receiving 1 of the following
drugs on the day on which the diagnostic criteria for
SPMS were first fulfilled: IFNb-1a subcutaneously,
IFNb-1b subcutaneously, IFNb-1a intramuscularly,
glatiramer acetate, natalizumab, fingolimod, dimethyl
fumarate, teriflunomide, mitoxantrone, or rituximab.
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Otherwise, they were assigned to the no-treatment
arm. Patients were then matched on their propensity
for receiving vs not receiving disease-modifying treat-
ment with the MatchIt package.18 The propensity
score was based on a multivariable logistic regression
model with treatment allocation as the outcome vari-
able and the demographic and clinical variables avail-
able to treating neurologists at the time of conversion
to SPMS as the independent variables. These
included sex, age, and disease duration at baseline,
baseline EDSS, EDSS change leading to the diagnosis
of SPMS, disability trajectory (i.e., the regression line
projected over the EDSS/time points), number of
relapses 12 months before baseline, and center. To
adjust for residual imbalance between the treated and
untreated groups, the observed postbaseline ARR was
used as an additional independent variable for the
final model. Patients were then matched in a 1:1 ratio
with nearest-neighbor matching within a caliper of
0.1 SD of the propensity score, without replacement.
The common on-treatment follow-up was deter-
mined as the shorter of the 2 individual follow-up
periods for each matched patient pair (pairwise cen-
soring) to control attrition bias.9,11 All subsequent
analyses were then completed with paired models
and were adjusted for treatment persistence during
the follow-up and for visit density. The cumulative
hazards of the confirmed disability progression or
reduction events were evaluated with conditional pro-
portional hazards models for both first event and
recurrent events (with robust estimation of variance
for the latter), with the frailty term indicating the
matched pairs. For confirmed EDSS score $7, we
applied a conditional proportional hazards model
for time to single event, which was additionally
adjusted for baseline EDSS. Proportionality of haz-
ards was assessed with the Schoenfeld global test, and
we used Kaplan-Meier plots to visualize the time-to-
event data. After assessment of normality of data dis-
tribution, annualized changes in AUC were analyzed
by a paired linear regression model.

Six sensitivity analyses were carried out: (1) repeat-
ing the analyses without matching on observed post-
baseline ARR, (2) assessing only patient pairs with
treatment persistence $2 years, (3) an as-treated
approach with pairwise censoring at the time of the
change of the treatment status (i.e., discontinuing
treatment in the treated group or starting treatment
in the untreated group), (4) including only patients
with a baseline EDSS score ,6, (5) including only
patients who experienced relapses in the year before
baseline, and (6) including only patients treated with
an aggressive anti-inflammatory agent (mitoxantrone,
rituximab, natalizumab, or fingolimod).

A secondary analysis was performed to evaluate
a potential for delayed treatment effect.19 The

therapeutic time lag was estimated, depending on
the baseline EDSS. For each matched pair, we sub-
tracted 3 from the median EDSS step to obtain the
number of years of the presumed lag. Only events
that occurred after the calculated period were
included in this analysis. An additional analysis was
performed in which treatment status at conversion to
SPMS was replaced by the proportion of follow-up
time spent on disease-modifying agents in both the
original model and the model for a therapeutic lag to
evaluate the effect of overall treatment exposure.

Observed differences were considered significant
at p# 0.05. A post hoc power analysis was conducted
to define the lower bounds of the minimum effect
sizes at a5 0.05 detectable in the available data set at
1 2 b 5 0.9. Series of simulations (n 5 200) were
carried out for each of the statistical models using the
observed distributions of the outcome variables.
The minimum detectable effect sizes were 0.80 (haz-
ard ratio [HR]) for confirmed disability progression,
0.56 (HR) for reaching confirmed EDSS score $7,
0.74 (HR) for confirmed disability reduction, 0.85
(HR) for relapses, and 0.07 EDSS-years for the
change of AUC.

RESULTS A total of 2,381 patients were included in
the analysis (figure 1 and table e-1 at Neurology.org).
Baseline characteristics are shown in table 1. Several
demographic factors and markers of disease severity
differed markedly between the unmatched patient
groups. The logistic model, used to estimate pro-
pensity scores, showed that being untreated at the
time of SPMS diagnosis was associated with lower
ARR in the year before and after diagnosis of SPMS,
older age, longer disease duration, faster disability
increment, and center-specific practice (table e-2).
The propensity-matching procedure retained 689
(50%) treated and 689 (69%) untreated patients,
improving the overall match, as indicated by the
decrease from 0.27 to 0.04 (by 92%) in the mean
difference in propensity scores (figure e-1). This was
reflected by the improved match in the individual
determinants of treatment allocation, including age,
disease duration, and number of relapses in the year
before the diagnosis of SPMS (table 1).

The results of the primary analysis are shown in
figure 2. We did not observe any difference in the
cumulative hazard of confirmed disability progression
events (HR 0.9, 95% CI [confidence interval]
0.7–1.1, p 5 0.27) or in the proportion of patients
free from disability progression (HR 0.9, 95% CI
0.7–1.1, p5 0.19) between the treated and untreated
groups at the time of SPMS conversion. There was no
difference in the risk of reaching confirmed EDSS
score $7 (HR 0.6, 95% CI 0.4–1.1, p 5 0.10).
The cumulative hazards of confirmed disability
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reduction also did not differ between the 2 groups
(HR 1.0, 95% CI 0.8–1.3, p 5 0.79), nor did the
proportion of patients with sustained disability (HR
1.0, 95% CI 0.7–1.3, p5 0.96). We did not observe
any difference in the change of AUC either (treated
0.07 [95% CI 0.03–0.11] vs untreated 0.12 [95% CI
0.08–0.16], p 5 0.09). The matching process effec-
tively adjusted the analysis for a potential effect of
postbaseline relapses (HR 1.0, 95% CI 0.9–1.1,

p 5 0.80). In participants for whom sufficient MRI
data were available (48% in the treated and 43% in
the untreated group), the proportion of patients who
showed new or gadolinium-enhancing lesions at any
time during the follow-up was 20% in the treated and
23% in the untreated arm of the study (table 2).

The sensitivity analysis, which was not adjusted
for postbaseline ARR (table 3), confirmed the out-
comes of the primary analysis, except that the treated

Figure 1 CONSORT (Consolidated Standards of Reporting Trials) diagram of patient disposition (primary
analysis)

DMT 5 disease-modifying therapy; EDSS 5 Expanded Disability Status Scale.
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group showed a lower risk of reaching confirmed
EDSS score $7 (HR 0.4, 95% CI 0.2–0.7, p ,

0.01). Sensitivity analyses 2 through 5 (requiring
a minimal treatment persistence of 2 years after the
diagnosis of SPMS, using the as-treated approach,
including only patients with an EDSS score ,6 at
baseline, and including only patients with relapses in
the year before baseline) fully replicated the results of
the primary analysis. The sensitivity analysis includ-
ing patients treated with one of the more aggressive
anti-inflammatory agents largely confirmed the pri-
mary analysis, but it also showed a lower risk of expe-
riencing relapses in the treated group, despite being
matched on postbaseline ARR (HR 0.7, 95% CI 0.6–
1.0, p 5 0.03).

The secondary analysis adjusted for a hypothesized
treatment lag found no evidence for a delayed

beneficial effect of disease-modifying treatment at
the time of SPMS conversion on the cumulative haz-
ard of disability progression events (HR 0.8, 95% CI
0.6–1.1, p 5 0.28). When we replaced treatment
status at conversion to SPMS in the primary analysis
with the overall treatment exposure during the
follow-up, there was no difference in the risk of EDSS
progression associated with a greater proportion of
time spent on treatment without (HR 0.8, 95% CI
0.6–1.0, p 5 0.054) or with (HR 0.9, 95% CI
0.7–1.3, p5 0.67) adjustment for the therapeutic lag.

DISCUSSION In this observational, propensity
score–matched analysis of disability outcomes in pa-
tients with SPMS followed up for .4 years, we did
not observe a therapeutic benefit of disease-modifying
drugs that are currently used in RRMS on short-term

Table 1 Patient characteristics at baseline

Characteristics

Unmatched Matched

Treated Untreated da Treated Untreated da

Patients, n (% female) 1,379 (69) 1,002 (69) 689 (69) 689 (69)

Age, mean 6 SD, y 44 6 10 49 6 11 0.41 47 6 10 48 6 10 0.08

Disease duration, mean 6 SD, y 13.3 6 7.9 16.7 6 10.1 0.39 15.0 6 9.0 15.5 6 8.4 0.06

Relapses 12 mo before baseline (ARR), mean 6 SD 0.24 6 0.51 0.11 6 0.39 0.27 0.15 6 0.40 0.13 6 0.41 0.05

Patients relapsing within 12 mo before baseline, n (%) 289 (21) 96 (10) 95 (14) 75 (11)

Disability, EDSS score, mean 6 SD 5.4 6 1.3 5.5 6 1.3 0.02 5.5 6 1.3 5.5 6 1.3 0.02

Increase in disability, ΔEDSS, mean 6 SD 1.2 6 0.9 1.2 6 0.9 0.03 1.2 6 0.9 1.2 6 0.8 0.02

MRI: new or contrast-enhancing lesions, n (%)

Missing 982 (71)b 802 (80)b 496 (72)b 536 (78)b

No 347 (25)b (87)c 182 (18)b (91)c 167 (24)b (87)c 141 (20)b (92)c

Yes 50 (4)b (13)c 18 (2)b (9)c 26 (4)b (13)c 12 (2)b (8)c

Prebaseline proportion of time on treatment, mean 6 SD 0.93 6 0.20 0.09 6 0.22 4.08 0.93 6 0.20 0.10 6 0.25 3.67

Treatment at inclusion, n (%)

IFNb-1a subcutaneously 367 (27) 173 (25)

IFNb-1b subcutaneously 299 (22) 171 (25)

Glatiramer acetate 218 (16) 115 (17)

IFNb-1a intramuscularly 178 (13) 82 (12)

Natalizumab 161 (12) 68 (10)

Fingolimod 104 (8) 49 (7)

Mitoxantrone 44 (3) 26 (4)

Dimethyl fumarate 4 (,1) 3 (,1)

Rituximab 2 (,1) 0

Teriflunomide 2 (,1) 2 (,1)

Postbaseline follow-upd, median (quartiles), y 4.5 (2.5, 7.2) 4.4 (2.6, 7.4) 0.05 2.1 (1.2, 3.8) 2.1 (1.2, 3.8) 0.00

Persistence in the treated/untreated group,d median (quartiles), y 2.9 (1.5, 5.1) 2.4 (1.1, 4.5) 0.12 1.6 (0.9, 2.9) 1.5 (0.8, 2.8) 0.04

Abbreviations: ARR 5 annualized relapse rate; EDSS 5 Expanded Disability Status Scale; IFN 5 interferon.
aCohen d.
b Proportion of all patients.
c Proportion of patients with available MRI.
d For the matched patients, follow-up and persistence after pairwise censoring as per the primary analysis are given.
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progression of disability in patients meeting an
objective definition of SPMS.

Of the 5 phase III randomized controlled trials
investigating the effects of IFNb compared to placebo
in SPMS, only the European study of IFNb-1b (pla-
cebo-controlled multicenter randomized trial of inter-
feron beta-1b in treatment of secondary progressive
multiple sclerosis: European Study Group on Inter-
feron Beta-1b in Secondary Progressive MS [EUSP])
showed a difference in time to confirmed progression
in favor of IFNb-1b.4 In contrast, the North Ameri-
can trial of IFNb-1b and 3 randomized controlled
trials using IFNb-1a (Secondary Progressive Efficacy
Clinical Trial of Recombinant Interferon-Beta-1a in
MS [SPECTRIMS], International MS Secondary Pro-
gressive Avonex Clinical Trial [IMPACT], and the
Nordic trial) could not demonstrate a difference
between the treated and untreated groups.20–23 In

EUSP and SPECTRIMS, patients were younger and
their disease duration was shorter than reported in
other trials.6 This difference is of importance because
a trend for better response was found for patients with
prestudy relapses, younger age, and shorter disease
duration in the European trial, which could explain
the discordant results of that study.4 The Mitoxan-
trone inMultiple Sclerosis (MIMS) trial showed a ben-
eficial effect of mitoxantrone in a mixed population of
patients with worsening RRMS and SPMS, and the
trial recruited patients with a markedly higher mean
number of relapses in the year before inclusion (1.27–
1.42) than our study (0.13–0.15).3 With a mean age
at inclusion of 47 years, disease duration of 15 years,
and EDSS score of 5.5, the core characteristics of our
study population lay within the range of the North
American, SPECTRIMS, IMPACT, and Nordic tri-
als.20–23 In agreement with these studies, we could not

Figure 2 Disability outcomes

Proportion of patients free from disability progression (A), patients not reaching confirmed EDSS score$7 (B), and patients with sustained disability (i.e., no
confirmed disability reduction) (C), and change in annualized area under the EDSS-time curve (D) among patients treated (DMT) or untreated (control) with an
anti-inflammatory drug. Results of the paired matched analysis with pairwise censoring are shown. Error bars indicate 95% confidence interval (CI). DMT5

disease-modifying therapy; HR 5 hazard ratio.
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demonstrate an effect of anti-inflammatory treatment
on confirmed disability progression. There was also no
significant difference in the risk of reaching an EDSS
score$7, probability of disability reduction, or reduc-
tion in the overall disease burden (quantified as AUC).

Recently, a post hoc analysis of the SPECTRIMS
trial and the study of glatiramer acetate in primary pro-
gressive MS (a multinational, multicenter, double-blind,
placebo-controlled study to evaluate the efficacy, tolera-
bility and safety of glatiramer acetate for injection in pri-
mary progressive multiple sclerosis patients [PROMiSe])
has suggested that an effect of immunomodulatory dis-
ease-modifying treatment on disability progression is
potentially delayed in proportion to the preexisting dis-
ability.19,20,24 In our study, we did not identify a thera-
peutic lag; however, our median follow-up was 2.1
years, which has limited our ability to examine the treat-
ment lag over an extended period of time. As demon-
strated, our study was sufficiently powered to study the
effect of therapy on disability progression independently
of its effect on relapses.

In this study, we combined exposure to all disease-
modifying drugs to maximize power. We also con-
ducted a sensitivity analysis restricting therapy to highly
aggressive therapies. While these drugs reduced the risk
of relapses, they did not show a significant beneficial
treatment effect on disability outcomes. The low num-
ber of patients exposed to individual drugs precluded us
from drawing conclusions about the effect of single drug
exposure vs no treatment. Therefore, we cannot rule out
that 1 or more of these drugs, when studied in isolation,
may demonstrate an effect on disability outcomes in
SPMS. To clarify this point, further research is required.

Like other studies of treatment outcomes in
SPMS, the limitation of our primary disability out-
come is inherent in the limitation of the EDSS.
The EDSS relies heavily on lower limb function,
and its sensitivity to cognitive changes and upper limb
function in more advanced MS is relatively low. It is
also known to be less stable in the lower end of the
EDSS spectrum.25 We have eliminated this variability
by using only EDSS scores $4. To mitigate the
known treatment indication bias, we used propensity
score–based matching. Unlike randomization, pro-
pensity score–based matching does not eliminate

Table 2 MRI disease activity during follow-up

New or
contrast-enhancing
lesions, n (%) Treated Untreated

Missing 360 (52)a 394 (57)a

No 262 (38)a (80)b 226 (33)a (77)b

Yes 67 (10)a (20)b 69 (10)a (23)b

a Proportion of all patients in a group.
b Proportion of patients with available MRI.

Table 3 Sensitivity analyses

HR (95% CI)/b
Coefficient

p
Value

(1) Not adjusted for ARR
(n 5 1,392)

Disability progressiona 0.8 (0.7–1.1) 0.16

EDSS score ‡7a 0.4 (0.2–0.7) ,0.01

Disability reductiona 1.1 (0.8–1.4) 0.51

Incidence of relapsesa 1.1 (0.9–1.2) 0.34

Change in AUCb 0.02 0.56

(2) Minimum persistence ‡2 y
(n 5 422)

Disability progressiona 0.8 (0.6–1.0) 0.08

EDSS score ‡7a 0.5 (0.2–1.2) 0.11

Disability reductiona 1.1 (0.8–1.7) 0.47

Incidence of relapsesa 0.9 (0.8–1.1) 0.32

Change in AUCb 20.12 0.06

(3) As treated (n 5 1,048)

Disability progressiona 0.8 (0.6–1.1) 0.10

EDSS score ‡7a 0.6 (0.2–1.1) 0.09

Disability reductiona 1.1 (0.8–1.5) 0.62

Incidence of relapsesa 1.0 (0.9–1.2) 0.67

Change in AUCb 20.05 0.07

(4) EDSS score at inclusion
<6.0 (n 5 754)

Disability progressiona 1.1 (0.9–1.5) 0.43

EDSS score ‡7a 0.8 (0.5–1.2) 0.27

Disability reductiona 0.9 (0.6–1.3) 0.64

Incidence of relapsesa 1.1 (1.1–1.4) 0.14

Change in AUCb 0.02 0.56

(5) Only patients with relapses
12 mo before SPMS diagnosis
(n 5 124)

Disability progressiona 0.8 (0.4–1.7) 0.56

EDSS score ‡7a 0.3 (0–3.9) 0.35

Disability reductiona 0.9 (0.4–1.9) 0.79

Incidence of relapsesa 0.9 (0.6–1.3) 0.57

Change in AUCb 0.002 0.98

(6) Only aggressive anti-
inflammatory treatments,c

n 5 478

Disability progressiona 1.0 (0.7–1.6) 0.83

EDSS score ‡7a 2.4 (0.7–8.1) 0.15

Disability reductiona 1.0 (0.6–1.6) 0.94

Incidence of relapsesa 0.7 (0.6–1.0) 0.03

Change in AUCb 20.02 0.62

Abbreviations: ARR 5 Annualized relapse rate; AUC 5 area
under the EDSS-time curve; CI 5 confidence interval;
EDSS 5 Expanded Disability Status Scale; HR 5 hazard
ratio; SPMS 5 secondary progressive multiple sclerosis.
aHR (95% CI).
bb coefficient.
cMitoxantrone, rituximab, natalizumab, or fingolimod.
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unknown confounders. However, this is unlikely to
have a substantial effect on our overall conclusions
because sensitivity analyses with varying inclusion
criteria, with varying definitions of follow-up, and
without adjustment for postbaseline relapse activity
confirmed the results of the primary analysis.

Because of the relative lack of MRI data, we were
unable to match patients on MRI activity to analyze
potential subgroup effects in patients with radiologi-
cally active disease or to study treatment effects on
MRI outcomes. However, the occurrence of new
T2 lesions or contrast-enhancing lesions on MRI,
for the proportion of patients for whom it was re-
corded, was distributed evenly between the groups.
Pairwise censoring was applied to control for attrition
bias and to ensure validity of the patient match com-
pleted at baseline throughout the study. We also
adjusted for reporting bias by taking into account
the frequency of clinical follow-up. Finally, this study
reports mainly the outcomes of platform injectable
immunomodulatory therapies; only 21% of the trea-
ted patients received newer, more potent immuno-
therapies. On the other hand, our study used
a validated definition of SPMS.13 This and the size
of the analyzed multinational cohort argue for broad
generalizability of our observations.26

In line with the outcomes of most of the previous tri-
als, our present study shows that, on average, the cur-
rently available anti-inflammatory drugs do not
prevent relapse-unrelated accumulation of disability in
patients with established SPMS in the short term. How-
ever, our recent study showed that highly effective
immunotherapy mitigates predominantly relapse-
dependent disability accrual over 11 years in patients
with moderately advanced or advanced relapse-onset
MS (regardless of their SPMS status),27 a finding that
is mirrored by our observation of difference in the risk of
reaching EDSS step 7 in the sensitivity analysis unad-
justed for postbaseline ARR. Moreover, the S1P recep-
tor modulator siponimod has recently been reported to
reduce disability progression in patients with SPMS.28

Therefore, separate evaluations of the newer, potentially
more effective disease-modifying therapies in SPMS and
studies of treatment efficacy in SPMS with high inflam-
matory profile are needed.
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