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Abstract
Amyloid beta peptide (Aβ) is produced through the proteolytic processing of a transmembrane protein, amyloid precursor protein 
(APP), by β- and γ-secretases. Aβ accumulation in the brain is proposed to be an early toxic event in the pathogenesis of Alzheimer’s 
disease, which is the most common form of dementia associated with plaques and tangles in the brain. Currently, it is unclear what 
the physiological and pathological forms of Aβ are and by what mechanism Aβ causes dementia. Moreover, there are no efficient drugs 
to stop or reverse the progression of Alzheimer’s disease. In this paper, we review the structures, biological functions, and neurotoxicity 
role of Aβ. We also discuss the potential receptors that interact with Aβ and mediate Aβ intake, clearance, and metabolism.  
Additionally, we summarize the therapeutic developments and recent advances of different strategies for treating Alzheimer’s disease. 
Finally, we will report on the progress in searching for novel, potentially effective agents as well as selected promising strategies for the 
treatment of Alzheimer’s disease. These prospects include agents acting on Aβ, its receptors and tau protein, such as small molecules, 
vaccines and antibodies against Aβ; inhibitors or modulators of β- and γ-secretase; Aβ-degrading proteases; tau protein inhibitors and 
vaccines; amyloid dyes and microRNAs.
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Introduction
Alzheimer’s disease is the most common type of dementia.  It 
affects tens of millions of people worldwide, and this num-
ber is rising dramatically.  The social and economic burden 
of Alzheimer’s disease is high.  The amyloid hypothesis[1-3]  
proposes β-amyloid (Aβ) as the main cause of the disease 
and suggests that misfolding of the extracellular Aβ protein 
accumulated in senile plaques[4] and the intracellular deposi-
tion of misfolded tau protein in neurofibrillary tangles cause 
memory loss and confusion and result in personality and cog-
nitive decline over time.  Accumulated Aβ peptide is the main 
component of senile plaques and derives from the proteolytic 
cleavage of a larger glycoprotein named amyloid precursor 
protein (APP).  APP is a type 1 membrane glycoprotein that 
plays an important role in a range of biological activities, 
including neuronal development, signaling, intracellular trans-
port, and other aspects of neuronal homeostasis.  Several APP 
cleavage products may be major contributors to Alzheimer’s 

disease, causing neuronal dysfunction.  Deposits of Aβ pep-
tides are mainly observed in the region of the hippocampus 
and the neocortex as well as in the cerebrovasculature (CAA)[5].

As Aβ peptides are the main components of senile plaques, 
understanding the structures and biochemical properties of Aβ 
will advance our understanding of Alzheimer's disease at the 
molecular level.  Aβ monomers aggregate into different forms 
of oligomers, which can then form regular fibrils.  The peptides 
share a common structural motif and aggregation pathway, 
providing a powerful conceptual framework for understand-
ing the pathogenic mechanism and disease-specific factors.  
Here, we review the structure and biology of Aβ, which may 
constitute a core pathway for the growing number of neuro-
degenerative diseases, including Alzheimer’s, Parkinson’s, 
and Huntington’s diseases, as well as structure-based drug 
discovery, which may contribute to the development of novel 
treatment strategies against different degenerative diseases.

Structure of the amyloid beta peptide
Molecular architecture of APP and its proteolysis in the 
amyloidogenic pathway
The Aβ peptides are cleaved from the much larger precur-
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sor APP.  APP is an integral membrane protein expressed in 
many tissues, especially in the synapses of neurons, which 
plays a central role in Alzheimer’s disease (AD) pathogen-
esis.  APP consists of a single membrane-spanning domain, 
a large extracellular glycosylated N-terminus and a shorter 
cytoplasmic C-terminus.  It is one of three members of a larger 
gene family in humans.  The other two family members are 
the APP-related proteins (APLPs) APLP1 and APLP2[6].  APP 
has been implicated as a regulator of synaptic formation and 
repair[7], anterograde neuronal transport[8] and iron export[9].  It 
is produced as several different isoforms, ranging in size from 
695 to 770 amino acids.  The most abundant form in the brain 
(APP695) is produced mainly by neurons and differs from lon-
ger forms of APP in that it lacks a Kunitz-type protease inhibi-
tor sequence in its ectodomain[10].  APP isoform 695 is mainly 
expressed in neurons, whereas APP751 and APP770, which 
contain the Kunitz-type serine protease inhibitory domain 
KPI, are mainly expressed on peripheral cells and platelets[11, 12] 
(Figure 1).

APP is best known as the precursor molecule cut by 
β-secretases and γ-secretases to produce a 37 to 49 amino acid 
residue peptide, Aβ[13], that lies at the heart of the amyloid 
cascade hypothesis and whose amyloid fibrillar form is the 
primary component of amyloid plaques found in the brains of 
Alzheimer's disease patients.  Human APP can be processed 
via two alternative pathways: amyloidogenic and nonamy-
loidogenic.  APP is first cleaved by α-secretase (nonamyloido-
genic pathway) or β-secretase (amyloidogenic pathway), 
generating membrane-tethered α- or β-C terminal fragments 
(CTFs).  The cleavage of APP by α-secretase releases sAPPα 
from the cell surface and leaves an 83-amino-acid C-terminal 
APP fragment (C83).  The production of sAPPα increases in 
response to electrical activity and the activation of muscarinic 
acetylcholine receptors, suggesting that neuronal activity 

increases the α-secretase cleavage of APP [14].  Further process-
ing involves the intramembrane cleavage of α- and β-CTFs 
by γ-secretase, which liberates the P3 (3 kDa) and Aβ (4 kDa) 
peptides, respectively[15, 16].  The amyloidogenic processing of 
APP thus involves sequential cleavages by β- and γ-secretase 
at the N and C termini of Aβ, respectively (Figure 2)[17].  The 
99-amino-acid C-terminal fragment of APP (C99 ) generated 
by β-secretase cleavage can be internalized and further pro-
cessed by γ-secretase at multiple sites to produce cleavage 
fragments of 43, 45, 46, 48, 49 and 51 amino acids that are 
further cleaved to the main final Aβ forms, the 40-amino-acid 
Aβ40 and the 42-amino-acid Aβ42, in endocytic compart-
ments[18, 19].  The cleavage of C99 by γ-secretase liberates an 
APP intracellular domain (AICD) that can translocate to the 
nucleus, where it may regulate gene expression, including the 
induction of apoptotic genes.  The cleavage of APP/C99 by 
caspases produces a neurotoxic peptide (C31)[20].  The β-site 
APP cleaving enzyme is abundant in neurons, which may 
accelerate the amyloidogenic processing pathway in the brain 
and impair neuronal survival.  The three-dimensional struc-
ture of human γ-secretase was determined by single-particle 
cryo-electron microscopy in 2014[21].  The γ-secretase complex 
comprises a horseshoe-shaped transmembrane domain, which 
contains 19 transmembrane segments (TMs), and a large 
extracellular domain (ECD) from the nicastrin subunit, which 
localizes immediately above the hollow space formed by the 
TM horseshoe.  This structure serves as an important basis for 
understanding the mechanisms of γ-secretase function.  The 
γ-secretase complex consists of four different proteins, prese-
nilin, nicastrin, presenilin enhancer 2 and anterior pharynx-
defective 1.  Presenilin is activated by auto-processing to gen-
erate N- and C-terminal cleavage products that both contain 
aspartyl protease sites that together are required for the activ-
ity of the mature γ-secretase.  Nicastrin, presenilin enhancer 
2 and anterior pharynx-defective 1 are critical components of 
γ-secretase and may modulate enzyme activity in response 
to physiological stimuli[22-24].  This unique cleavage process of 
APP provides essential targets for AD therapeutics[25].

Aβ monomer
Aβ monomers aggregate into various types of assemblies, 
including oligomers, protofibrils and amyloid fibrils.  Amyloid 
fibrils are larger and insoluble, and they can further assemble 
into amyloid plaques, while amyloid oligomers are soluble 
and may spread throughout the brain.  The primary amino 
acid sequence of Aβ was first discovered from extracellular 
deposits and amyloid plaques in 1984[2].  The primary amino 
acid sequence of the 42-amino-acid Aβ isoform Aβ42 is shown 
here (Figure 3A).  Aβ encompasses a group of peptides rang-
ing in size from 37 to 49 residues. Amyloid plaques with Aβ as 
the main component are most commonly found in the neocor-
tex in the brain of Alzheimer's disease patients[26].

Aβ is commonly thought to be intrinsically unstructured 
and hence cannot be crystallized by common methods.  Many 
studies therefore focus on optimizing conditions that can sta-
bilize Aβ peptides.  The three-dimensional solution structure 

Figure 1.  Molecular architecture of APP. Schematic representation of 
human APP isoforms and the APP-like proteins (APLP), APLP1 and APLP2.  
APP isoforms range in size from 695 to 770 amino acids.  The most 
abundant form in brain is APP695, which lacks a Kunitz type protease 
inhibitor sequence in its ectodomain.  APP751 and APP770 contain the 
Kunitz type serine protease inhibitory domain (KPI) are mainly expressed 
on the surface of peripheral cells and platelets.
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of different fragments of the Aβ peptide was determined using 
nuclear magnetic resonance (NMR) spectroscopy, molecular 
dynamic (MD) techniques and X-ray crystallography.  Most 
structural knowledge about Aβ comes from NMR and molecu-
lar dynamics.

Early NMR-derived models of the solution structure of Aβ 
peptide (1-28) indicated that it folds into a predominately 
α-helical structure with β-sheet conversion in membrane-like 
media that may also occur during the early stages of amyloid 
formation in Alzheimer's disease[27] (Figure 3B).  It is the major 
proteinaceous component of amyloid deposits in Alzheimer's 
disease, where the side chains of histidine-13 and lysine-16 
residing on the same face of the helix are in close proxim-
ity.  The solution structure of Aβ peptide (1-40) suggests that 
the C-terminus of the peptide has an α-helix conformation 
between residues 15 and 36 with a kink or hinge at 25-27 in 
aqueous sodium dodecyl sulfate (SDS) micelles, while the 
peptide is unstructured between residues 1 and 14, which are 
mainly polar and likely solvated by water.  The deprotonation 
of two acidic amino acids in the helix promotes a helix-to-coil 
conformational transition that precedes the aggregation of 
Aβ1-40[28] (Figure 3C).  Solid-state NMR spectroscopy-derived 
models of the solution structure of Aβ peptide (10-35) show 
that in water[29] (Figure 3D), the peptide collapses into a com-
pact series of loops, strands, and turns without alpha-helical 
or beta-sheet structure.  The van der Waals and electrostatic 
forces maintain its conformational stabilization.  Approxi-
mately 25% of the surface is uninterruptedly hydrophobic, and 
the compact coil structure is meta-stable, which may lead to a 
global conformational rearrangement and the formation of an 

intermolecular beta-sheet secondary structure caused by fibril-
lization.  The 3D NMR structures of Aβ peptide (8-25) and Aβ 
peptide (28-38) show two helical regions connected by a regu-
lar type I β-turn.  Aβ peptide (25-35) is a highly toxic synthetic 
derivative of Aβ peptides.  Researchers have used NMR and 
CD investigation of Aβ peptide (25-35) and fluoro-alcohols to 
scan its conformational properties.  The peptide behaves as a 
typical transmembrane helix in a lipidic environment, form-
ing fibrillar aggregates, which suggests a direct mechanism of 
neurotoxicity[30, 31].

NMR-guided simulations of Aβ peptides 1-40 (Aβ40) and 
1-42 (Aβ42) also suggested very different conformational 
states[32], with the C-terminus of Aβ42 being more structured 
and residues 31-34 and 38-41 forming a β-hairpin that reduces 
the C-terminal flexibility, which may be responsible for the 
greater propensity of Aβ42 than Aβ40 to form amyloids.  Rep-
lica exchange molecular dynamics studies suggested that Aβ40 
and Aβ42 can indeed populate multiple discrete conforma-
tions, comprising α-helix or β-sheet conformers, and the struc-
tural states transition rapidly[33].  More recent studies identified 
a multiplicity of discrete conformational clusters by statistical 
analysis[34].  However, the most recent NMR structure of Aβ40 
shows significant secondary and tertiary structure[35].  The 
hydrophobic C-terminal of the Aβ is critical in triggering the 
transformation from α-helical to β-sheet structure and plays 
a key role in determining the state of protein aggregation in 
Alzheimer's disease[36].

Aggregation of Aβ into fibrils
Early proposals supported the so-called “amyloid cascade 

Figure 2.  Human APP proteolytic pathways. Human APP proteolysis in the non-amyloidogenic pathway and amyloidogenic pathway. Non-amyloidogenic 
processing of APP refers to the sequential processing of APP by membrane bound α-secretases, which cleave within the Aβ domain to generate the 
membrane-tethered α-C terminal fragment CTFα (C83) and the N-terminal fragment sAPPα.  CTFα is then cleaved by γ-secretases to generate extracel-
lular P3 and the APP intracellular domain (AICD).  Amyloidogenic processing of APP is carried out by the sequential action of membrane bound β- and 
γ-secretases.  β-Secretase cleaves APP into the membrane-tethered C-terminal fragments β (CTFβ or C99) and N-terminal sAPPβ.  CTFβ is subsequently 
cleaved by γ-secretases into the extracellular Aβ and APP intracellular domain (AICD).
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hypothesis,” which proposes that Aβ aggregation into plaques 
leads to neurotoxicity and dementia[37] through common cyto-
pathic effects that contribute to the pathogenesis of Alzheimer 
disease and other amyloidosis.  While the Aβ peptide can 
rapidly aggregate to form fibrils that deposit into the amy-
loid plaques, which are found to be linked with Alzheimer’s 
disease, later studies demonstrated that there is no direct cor-
relation between amyloid plaques[38] and the loss of synapses 
and neurons in brains with Alzheimer’s disease[39, 40].  Many 
pathways may lead to the peptide aggregation.  Early stud-
ies indicated that the amyloid polypeptide is organized in a 
characteristic “cross β” pattern in a regular manner, in which 
adjacent chain segments are folded in an anti-parallel manner 
within the fiber lattice[41].  Later research revealed that the pep-
tide chains of β-strand segments run perpendicular to the long 
fibril, and the intermolecular hydrogen bonds of β-strands run 
parallel to the axis in a “cross β” structural pattern[42].  

Solid-state NMR measurements have shown that amyloid 
fibril “cross β” structures exist in two patterns: parallel and 
antiparallel.  The crosslinking of Aβ peptides by tissue trans-

glutaminase (tTg) indicated that the Aβ fibril is a hydrogen-
bonded, parallel β-sheet that defines the long axis of the 
Aβ fibril propagation[43].  Specific amino acid contacts have 
implications for the overall fibril formation of the extended 
Aβ (10-35) and its stability, morphology and parallel organiza-
tion[44].  Multiple quantum (MQ) 13C NMR data indicate an in-
register, parallel organization[45].  These measurements, known 
as experimental EM, STEM, and solid-state NMR, suggest that 
the supramolecular structures of Aβ peptide (1-40) fibrils, Aβ 
peptide (10-35), and Aβ peptide (1-42) fibrils are organized as 
β-sheets[46, 47].  As Aβ peptide aggregation pathways are deter-
mined by the primary amino acid sequence and the intermo-
lecular interactions, later studies in the structural organization 
of disease-related amyloid fibrils have led to the identification 
of the exact register motif.  In addition to the parallel pattern, 
several short peptide segments of Aβ can adopt an antiparallel 
pattern[48].  Solid-state NMR spectroscopy indicates amyloid 
fibrils with a simple and intriguing structural motif[49].  Site-
directed spin labeling and electron paramagnetic resonance 
(SDSLEPR) spectroscopy for amyloid fibrils confirmed that this 

Figure 3.  Structures of Aβ monomer, fibril and oligomers.  (A) The primary amino acid sequence of the 42 amino acid Aβ isoform Aβ42.  Aβ 
encompasses a group of peptides ranging in size from 37–49 residues.  (B) The structure of amyloid beta peptide (1–28), which forms a predominately 
alpha-helical structure that can be converted to a beta-sheet structure in membrane-like media (PDB code: 1AMC, 1AMB), it’s the major proteinaceous 
component of amyloid deposits in Alzheimer's disease.  The side chains of histidine-13 and lysine-16 residing on the same face of the helix are close.  
(C) Solution structure of amyloid beta peptide (1–40), in which the C-terminal two-thirds of the peptide form an alpha-helix conformation between 
residues 15 and 36 with a kink or hinge at 25–27 in aqueous sodium dodecyl sulfate (SDS) micelles with a bend centered at residue 12, while the 
peptide is unstructured between residues 1 and 14 which are mainly polar and likely solvated by water (PDB code: 1BA4, 1BA6).  It collapsed into 
a compact series of loops, strands, and turns with no alpha-helical or beta-sheet structure.  The van der Waals and electrostatic forces maintain its 
conformational stabilization.  Approximately 25% of the surface is uninterrupted hydrophobic, and the compact coil structure is meta-stabled, which 
may lead to a global conformational rearrangement and formation of intermolecular beta-sheet secondary structure caused by fibrillization.  (D) Amyloid 
beta peptide (10–35) forms a collapsed coil structure (PDB code: 1HZ3).  It collapsed into a compact series of loops, strands, and turns with no alpha-
helical or beta-sheet structure.  The van der Waals and electrostatic forces maintain its conformational stabilization.  Approximately 25% of the surface 
is uninterrupted hydrophobic, and the compact coil structure is meta-stabled, which may lead to a global conformational rearrangement and formation 
of intermolecular beta-sheet secondary structure caused by fibrillization.  (E) Proposed pathway for the conversion of amyloid beta monomers to higher 
order oligomers, protofibrils and fibrils.  Aβ monomers can form higher order assemblies ranging from low molecular weight oligomers, including dimers, 
trimers, tetramers, and pentamers, to mid-range molecular weight oligomers including hexamers, nonamers and dodecamers to protofibrils and fibrils.
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parallel, exact register structural motif is highly conserved[50-52].  
Progress has been made by disulfide cross-linking within 
preformed fibrils, with results indicating that they are located 
proximally inside the hairpin turn.  Residues 17 and 34 could 
be efficiently cross-linked by a disulfide bond, while residues 
17/35 and 17/36 were not efficiently cross-linked in fibrils.  
Purified double mutant proteins consisted of disulfide-bonded 
monomers that were able to assemble into amyloid fibrils[53].  
The 17/35 residues on the C-terminal strand would need to 
flip 180 degrees to provide the structural flexibility allowing 
Aβ to assemble into at least two slightly different forms[54-56].  
These results are inconsistent with the hairpin model based on 
electrostatic interactions, with the exception of the side chains 
of Glu22 and Lys28[57].  It is unclear whether small differences 
in the fibril structure are pathologically significant; however, 
the slight two-residue difference in Aβ40 and Aβ42 leads to 
great differences in their biophysical, biological, and clinical 
behaviors.  The 3D structure of residues 15-42 of Aβ42 adopts 
a double-horseshoe-like cross-β-sheet entity with maximally 
buried hydrophobic side chains, in which residues 1-14 are 
partially ordered and in a β-strand conformation, which is 
the more neurotoxic species, aggregates much faster, and 
dominates in senile plaque in Alzheimer's disease patients[58].  
Further studies reported that cognitive deficits appeared 
before plaque deposition or the detection of insoluble amyloid 
fibrils[59, 60].  In contrast, the amount of oligomeric Aβ[61, 62] is 
increased in Alzheimer's disease brain extracts[63], which is the 
basis for the Aβ oligomer hypothesis[64-66], which posits that 
soluble Aβ oligomers rather than insoluble fibrils or plaques 
trigger synapse failure and memory impairment[67], resulting 
in  impaired brain function in the final stages of the disease.  

Aβ oligomers
While amyloid fibrils are larger, insoluble, and assemble into 
amyloid plaques forming histological lesions that are charac-
teristic of Alzheimer's disease, Aβ oligomers are soluble and 
may spread throughout the brain.  The size distribution of 
Aβ oligomers is heterogeneous.  There is a broad consensus 
for the preferential accumulation of a soluble high-molecular-
weight species of approximately 100–200 kDa under relatively 
physiological conditions in vitro[68-72].  Aβ monomers can form 
higher-order assemblies ranging from low-molecular-weight 
oligomers, including dimers, trimers, tetramers, and pentam-
ers, to midrange  molecular weight oligomers, including hex-
amers, nonamers and dodecamers, to protofibrils and fibrils 
(Figure 3E).  In contrast to the fibril structure, relatively little 
is known about the structure of amyloid oligomers.  Soluble 
oligomers prepared in the presence of detergents seem to 
feature substantial beta sheet content with mixed parallel 
and antiparallel character[73].  The structural characterization 
of oligomers is complicated because their oligomeric states 
are more transient than fibrils, and preparing homogeneous 
populations of oligomers is difficult[74].  They can be stabilized 
by detergents, which may help to alleviate this problem[75].  
There was little structural information on the oligomeric state 
of amyloid beta until 2010, when low temperature and low 

salt conditions made it possible to isolate pentameric disc-
shaped oligomers devoid of beta structure[76].  Circular dichro-
ism and infrared spectroscopy indicate that Aβ oligomers are 
extended coil or beta sheet structures[63].  Hydrogen deuterium 
exchange analysis also indicates that they have a stable core, 
which  is consistent with substantial beta sheet character, as 
40% of the total backbone hydrogen bonds are resistant to 
exchange in the oligomeric conformation with a stable beta 
sheet secondary structure[77].  In contrast, fifty percent of the 
backbone hydrogen bonds are resistant to exchange in the 
mature amyloid fibril, indicating that a small increase in main 
chain hydrogen bonding accompanies the transition to the 
fibrillar conformation[78].  Computational studies suggest that 
Aβ oligomers form an antiparallel beta-turn-beta motif[79].  The 
solution conformation of Aβ is of significant importance  dur-
ing self-assembly in water environments.  The soluble peptide 
has no alpha-helical or beta-sheet character but adopts a col-
lapsed coil structure[80].  A particular conformation that forms 
ring-shaped pentamers and hexamers is stable by microsecond 
all-atom MD simulations[81].

The relationship between oligomers and fibrils remains 
to be established.  There seem to be some similar structural 
elements, as they both appear to be extended or beta sheet 
structures and both display similar amounts of main chain 
hydrogen bonding that is resistant to exchange.  On the other 
hand, amyloid oligomers and fibrils appear to contain mutu-
ally exclusive and non-overlapping conformations recognized 
as generic antibody epitopes that are common to amyloids of 
different sequences[74, 82].  Oligomers are a kinetic intermedi-
ate waxing at early times during the development of fibrils[83].  
Different types of soluble amyloid oligomers have a common 
structure and share a common mechanism of toxicity[63].  It is 
also unknown whether the oligomer structures represent basic 
units of amyloid protein that then assemble into fibrils or are 
just in equilibrium with monomers, which directly form fibrils 
without intermediate oligomeric structure.  Oligomers appear 
as spherical aggregates at early times and then elongate by 
the coalescence of spherical subunits with a “bead” appear-
ance, forming the precursor of protofibrils on the pathway 
to mature fibers.  The parallelism between Aβ monomers 
represents a key organizing principle for amyloid oligomers 
and may also serve  as a common structural motif for amyloid 
fibrils[71, 84].  Other studies suggest that the spherical oligomers 
simply dilute the  Aβ monomer concentration and may be off-
pathway intermediates[85] or that both on-pathway and off-
pathway concurrence is possible under special conditions[69].     

The structure of Aβ aggregate forms and the aggregation 
pathways remain challenging research issues, though consid-
erable progress has been made recently.  The interactions of 
Aβ with transition metals have revealed potential pathogenic 
interactions and structural consequences.  Oligomers that may 
normally be embedded in the membrane bind to transition 
metals such as Cu, Zn and Fe[86, 87].  Constitutively metal-bound 
senile plaques play a role in accelerating the aggregation of 
amyloid beta peptide[88], and the expression of Aβ oligomers 
may, in turn, regulate metal transition homeostasis[89-91].  
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NMR data have provided information on the structure of the 
Aβ-(1-16)-Zn2+ complex in aqueous solution.  The residues 
His(6), His (13), and His (14) and the Glu (11) carboxylate were 
identified as ligands that tetrahedrally coordinate the Zn(II) 
cation[92].

All these different structures have been generated in dif-
ferent environments and determined by different techniques.  
The special form of Aβ structures may be not stable or may 
be stabilized only in a unique solution; they may be similar 
but not the same as each other; one structure may depict one 
representative form of Aβ, and all the forms of Aβ may co-
exist in vivo.  Aβ forms a myriad of structures in the mono-
meric and oligomeric states, all of which result in similar fibril 
structures.  Amyloid fibrils of Aβ form a parallel, in-register 
cross β-sheet structure.  The accumulation of Aβ into long, 
unbranched fibrils is a hallmark of the disease, as is the loss of 
neurons due to cell death in parallel with the Aβ aggregation 
process.  These new insights into the structures and aggrega-
tion pathways may help to uncover the mechanisms of amy-
loid pathogenesis in degenerative diseases, ultimately leading 
to new therapeutic strategies to prevent the formation of toxic 
aggregates (Table 1).

Biological function of amyloid beta
Aβ production
Alzheimer’s disease is characterized by abnormal accumula-
tion of the Aβ protein, which is important for memory and 
cognition, in the brain regions.  Aβ is a normal product of 
the cellular metabolism derived from the amyloid precursor 
protein (APP).  APP is synthesized in the endoplasmic reticu-
lum (ER) and then transported to the Golgi complex, where it 
completes maturation and is finally transported to the plasma 
membrane.  Mature APP at the plasma membrane is cleaved 
by the successive action of the β-secretase and γ-secretase to 
generate Aβ (Figure 2)[93].  The newly generated Aβ either is 
released to the extracellular space or remains associated with 
the plasma membrane and lipid raft structures.  The binding 
of Aβ to ganglioside GM1 in the lipid rafts strongly favors Aβ 
aggregation[94].  The binding of ApoE to Aβ taken up by the 
cells through receptor-mediated endocytosis mediated by LRP 
(LDL receptor-related protein), and LDLR regulates aggrega-
tion but also the cellular uptake of Aβ[95].  Endocytosed Aβ 
also has access to other subcellular compartments through 
the vesicular transport system.  Earlier studies  pointed to 
Aβ fibrils as the neurotoxic agent leading to cellular death, 
memory loss, and other AD characteristics.  Over the last two 
decades, further investigation has suggested that oligomeric or 
prefibrillar species of the Aβ peptide are the most damaging to 
neuronal cells.  Soluble Aβ can bind to numerous molecules in 
the extracellular space, including cell surface receptors, metals 
and cellular membranes.

Aβ binding receptors
The extracellular accumulation of Aβ in neuritic plaques and 
the binding of Aβ to a variety of receptors appear to be the 
characteristic hallmarks of Alzheimer’s disease.  The binding 

of Aβ to a variety of receptors has been proposed as a cause 
for the neuronal toxicity: Aβ oligomers were proposed to 
induce mitochondrial dysfunction and oxidative stress in AD 
neurons, resulting in a massive calcium influx and toxicity in 
neurons[96].  Furthermore, soluble oligomeric Aβ was proposed 
to be toxic through binding to a variety of receptors, including 
lipids, proteoglycans, and proteins, such as the Aβ-binding 
p75 neurotrophin receptor (P75NRT), the low-density lipo-
protein receptor-related protein (LRP), cellular prion protein 
(PrPc), metabotropic glutamate receptors (mGluR5), α sub-
unit containing nicotinic acetylcholine receptor (α7nAChR), 
N-methyl-D-aspartic acid receptor (NMDAR), β-adrenergic 
receptor (β-AR), erythropoietin-producing hepatoma cell line 
receptor (EphR), and paired immunoglobulin-like receptor 
B (PirB)[97]. The Aβ/Aβ receptor interactions are proposed to 
generate and transduce neurotoxic signals into neurons, caus-
ing cellular defects such as mitochondrial dysfunction and the 
ER stress response.  In addition, some Aβ receptors are most 
likely to internalize Aβ into neurons to display distinct cellular 
defects (Figure 4).

NMDAR and α7nAChR
NMDAR and α7nAChR are both ion channel receptors.  Sev-
eral reports suggest that Aβ interacts with NMDARs at post-
synaptic terminals, and antibodies raised against the GluN1 or 
GluN2B subunit of NMDARs markedly block the binding of 
the Aβ oligomer to neurons[98, 99], indicating that Aβ oligomers 
partially co-localize with the GluN2B subunits of NMDARs 
at the cell surface[100].  Indeed, Aβ directly or indirectly binds 
to NMDAR subunits to activate NMDAR, and thus Aβ oligo-
mers induce calcium dysregulation, neuronal death [101], and 
synaptic dysfunction[102, 103].  Moreover, Aβ oligomers promote 
the endocytosis of NMDARs, which requires the activation of 
α7nAChR signaling[104].  The receptor α7nAChR is another can-
didate Aβ-binding receptor and binds to soluble Aβ with high 
affinity[105].  The α7nAChR-expressing cells are susceptible to 
Aβ-induced toxicity in vitro[106], and it mediates Aβ-induced 
tau phosphorylation via the ERK and JNK pathways[107].  In a 
mouse model of AD, α7nAChR may exacerbate AD pathology 
in a mouse model, while its deficiency may improve cognitive 
deficits and synaptic pathology[108].

Aβ binding p75 neurotrophin receptor (p75NTR)
The receptor p75NTR is a TNF family low affinity receptor 
for neurotrophins.  Aβ binds to both p75NTR monomers and 
trimers (Figure 4), which activates their intracellular signal-
ing to induce apoptosis in human neuroblastoma cells.  Early 
studies compared neuroblastoma cell clones that either did not 
express any of the neurotrophin receptors or had been engi-
neered to express full-length or various truncated forms of the 
p75NTR[109].  These studies showed that p75NTR binds to Aβ 
via its extracellular domain, which directly signals cell death 
via its death domain.  In fact, this signaling leads to the activa-
tion of caspase 8 and caspase 3 and to the production of reac-
tive oxygen species (ROS) and cellular oxidative stress[110].  In 
addition, Aβ can interact synergistically with cytokines TNFα 
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Table 1.  Summary of Aβ structural studies.

Proteins and peptides Structure Characteristic PDB code
 
Aβ1-28

Aβ1-40 with Met(O)

Aβ10-35

Aβ1-42

Two mutants (K16E, K16F) of Aβ1-28

Rat Aβ1-28 and its interaction with zinc

Monomer; NMR; In membrane-like media the peptide folds 
to form a predominately alpha-helical structure with a bend 
centered at residue 12.

Monomer; NMR; forms C-terminal alpha-helix; two acidic 
amino acids promote a helix-coil conformational transition.

Monomer; NMR spectroscopy; Aβ collapsed into a compact 
series of loops, strands, and turns and the absence of alpha-
helical or beta-sheet structure in water.

Monomer; NMR; two helical regions encompassing residues 
8-25 and 28-38, connected by a regular type I beta-turn.

Monomer; NMR spectroscopy; the two mutations may 
stabilize the helix and also influence aggregation and fibril 
formation.

Monomer; NMR spectroscopy;
A helical region from Glu16 to Val24 exists; Arg13, His6, 
His14 residues provide Zn2+-binding sites; Zn2+-binding is 
more stable.

1AMC

1AMB

1BA4

1BA6

1HZ3

1IYT

1BJB 

1BJC

1NMJ

(To be continued)
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Proteins and peptides Structure Characteristic PDB code
 
Aβ25-35

Aβ1-42

Aβ16-21

Aβ35-42

Aβ1-40

Aβ1-40

Monomer; CD and NMR;
Aβ (25-35) is highly toxic and forms fibrillar aggregates.

Monomer; CD and Solution NMR;
Alpha helix embedded in membrane, beta-sheet structures 
of amyloid fibrils

X-Ray; fiber-forming segments of Aβ. Self-complementing 
pairs of β-sheets termed steric zippers.

Polymorphic oligomers, protofibers, and fibers; Homo 
tetramer-A4; β-sheets termed steric zippers.

Rat homo dimer-A2; Solution NMR; zinc-binding domain 
formed by residues 1-16 of Aβ.

Monomer; Solution NMR; 310-helix from
H13 to D23 and the N- and C-termini collapse against the 
helix.

1QWP

1QXC

1QYT

1Z0Q

2Y29

2Y3L

2LI9

2LFM

(To be continued)
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Aβ17-36

Aβ1-40 in complex with
affibody protein Z (Aβ3)

Aβ1-40 in complex with Fab-bound 
human Insulin Degrading Enzyme (IDE)

Aβ1-40 complex with an engineered 
lipocalin (Anticalin H1GA)

Aβ1-42 fibrils

Aβ37-42 fibrils

Aβ fibrils

Homo 16-mer-A16; X-Ray; Crystallizes to form trimers that 
further assemble into oligomers; Trimers consist of three 
β-hairpins; Two trimers form hexamer; four trimers form 
dodecamer, and 5 dodecamers form an annular pore.

Homo trimer-A3; Solution NMR; Z(Aβ3), nanomolar affinity, 
Bound Aβ(1-40) features beta-hairpin comprising residues 
17-36

Hetero trimer-ABC; X-Ray

X-Ray

Homo pentamer-A5; Solution NMR; residues 18-42 form 
intermolecular parallel beta-strand-turn-beta-strand motif

Homo tetramer-A4; X-Ray; a pair of beta-sheets, with the 
facing side chains of the two sheets interdigitated in a dry 
'steric zipper'

Fibrils; solid-state NMR; the fibril backbone arrangement, 
stacking registry, and "steric zipper" core interactions

5HOW

2OTK

4M1C

4MVI
4MVK
4MVL

2BEG

2ONV

2MPZ

Proteins and peptides Structure Characteristic PDB code
 

 



1214
www.nature.com/aps

Chen GF et al

Acta Pharmacologica Sinica

and IL1β, which markedly strengthens the neurotoxic actions 
of Aβ/p75NTR signaling and potentiates neuronal damage.  
Aβ-bound p75NTR triggers cell death in the hippocampus of 
human Alzheimer's disease brains.  Taken together, these find-
ings indicated that p75NTR-expressing neurons endowed with 
receptors for proinflammatory cytokines might be the reason 
for the target selectivity of Aβ cytotoxic actions in Alzheimer's 
disease[111, 112].  

Low-density lipoprotein receptor-related protein (LRP)
The low-density lipoprotein receptor-related protein (LRP), 
also known as alpha-2-macroglobulin receptor (A2MR), apoli-
poprotein E receptor (APOER) or cluster of differentiation 91 
(CD91), is a protein receptor found in the plasma membrane 
of cells involved in receptor-mediated endocytosis.  LRP1 is 
involved in various biological processes such as lipoprotein 
metabolism and cell motility, and pathologically in neurode-
generative diseases, atherosclerosis and cancer[113].  

LRP is a multifunctional cell surface receptor of more 
than 600 kDa in size with a single transmembrane-spanning 
domain.  LRP has more than 20 identified ligands, many of 
which are localized to the central nervous system.  The broad 
categories of these ligands include apolipoprotein E (apoE) 
and lipid-related ligands as well as protease and protease 
inhibitor complexes such as APP containing Kunitz proteinase 
inhibitor, α2M, tissue plasminogen activator and plasminogen 
activator inhibitor 1 complexes, and others such as lactofer-

rin.  Cholesterol is imported into neurons by apoE via LRP1 
receptors.  Starving neurons of cholesterol and malfunction 
of the neuronal cholesterol metabolism is thought to be a 
causal factor in Alzheimer's disease[114].  In addition, over-
accumulation of copper in the brain is associated with reduced 
LRP1-mediated clearance of Aβ across the blood brain barrier.  
This defective clearance may contribute to the buildup of neu-
rotoxic Aβ[115].  Together, these studies support a critical role 
of the multifunctional receptor LRP in Aβ metabolism and 
Alzheimer’s disease.

LRP also interacts with the amyloid precursor protein itself.  
LRP regulates APP trafficking and processing by different 
mechanisms.  SorLA (also called SORL1, SORLA1, or LR11) 
is a neuronal apolipoprotein E receptor that can regulate the 
intracellular transport and processing of the APP in neurons.  
It alters the localization of APP to discrete intracellular com-
partments, resulting in a decrease of extracellular Aβ levels[116].  
LRP and LRP1B expression and endocytosis are thought to 
play opposing roles in APP endocytosis, resulting in increased 
APP processing to Aβ levels in the presence of LRP for a rapid 
fast endocytosis rate and decreased Aβ production in the pres-
ence of LRP1B for a slower endocytosis rate[117].  

PrPc and mGlu5 receptors in astrocyte upregulation by Aβ
PrPc is a glycosylphosphatidylinositol (GPI)-anchored mem-
brane protein that can undergo a conformational change to 
an infectious, pathological state called scrapie prion protein 

Figure 4.  Biological functions of Aβ.  Aβ monomers can form higher order assemblies ranging from low molecular weight oligomers (including dimers, 
trimers, tetramers, and pentamers) to midrange-molecular weight oligomers, high molecular weight oligomers, protofibrils fibrils and senile plaques.  
Soluble Aβ can interact with potential receptors and activate downstream pathways to generate reactive oxygen species, hyperphosphorylate Tau 
protein, and cause inflammatory responses, which may result in neuronal death and lead to Alzheimer’s disease.
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(PrPSc), which is linked to transmittable spongiform encepha-
lopathies and causes terminal neurodegenerative disorders 
[118].  PrPc-binding ligands include the laminin γ1-chain, Cu2+ 
ions and Aβ42 oligomers[119, 120], the latter of which binds PrPc 
with high affinity[121].

Metabotropic glutamate receptors (mGluR5) are members 
of the G-protein coupled receptor superfamily.  mGluR5 has 
been specifically implicated in neurodegenerative diseases 
such as Alzheimer’s disease, Parkinson’s disease and Hunting-
ton’s disease[122-124].  The activation of mGluR5 has been shown 
to decrease the fragile X mental retardation protein (FMRP)-
mediated translation repression of APP and to stimulate 
sAPPα secretion, which induces the β-secretase pathway and 
Aβ production.  FMRP can stimulate neural pruning and syn-
aptic plasticity, which results in neuroprotection under normal 
physiological conditions[125].  More recently, mGluR5 has been 
suggested to be the primary co-receptor for both PrPc and Aβ 
oligomers[126] (Figure 4).  The extracellular domain of mGluR5 
interacts with both PrPc and Aβ42, which results in the activa-
tion of Ca2+ release from intracellular stores, thus promoting 
PKC translocation and ERK1/2 phosphorylation.  Aβ42 and 
PrPc also activate mGluR5 to stimulate Fyn kinase-mediated 
APP protein translation.

Immune globin receptors FccRIIb and PirB
Two immune globin receptors, FccRIIb and PirB, originally 
believed to function exclusively in the immune system, were 
recently shown to play neuropathic roles as Aβ receptors in 
Alzheimer's disease brains[97, 127, 128].  These two proteins show 
similarity in their structures and in the high binding affinity 
for Aβ oligomers.  Both have immunoglobulin (Ig) domains 
in their extracellular domains and immunoreceptor tyrosine-
based inhibitory (ITI) motifs in their intracellular domains.  
FccRIIb has two Ig domains and one ITI motif, whereas PirB 
has six Ig domains and four ITI motifs.  FccRIIb interacts with 
low-molecular-weight oligomers via its second Ig domain, and 
PirB binds to high-molecular weight-oligomers via its first two 
Ig domains.

Other receptors
Other receptors, such as microglia receptors, are also involved 
in the amyloid cascade.  Microglial membrane receptors bind 
Aβ and contribute to microglial activation and Aβ phagocy-
tosis and clearance.  These receptors can be categorized into 
several groups.  The scavenger receptors (SRs) include scav-
enger receptor A-1 (SCARA-1), MARCO, scavenger receptor 
B-1 (SCARB-1), CD36 and the receptor for advanced glyca-
tion end product (RAGE)[129].  The G-protein coupled recep-
tor (GPCR) group includes formyl peptide receptor 2 (FPR2) 
and chemokine-like receptor 1 (CMKLR1)[130], and the toll-like 
receptor (TLR) group includes TLR2, TLR4, and the co-recep-
tor CD14[131].  Functionally, SCARA-1 and CMKLR1 participate 
the uptake of Aβ, and RAGE is responsible for the activation 
of microglia and production of proinflammatory mediators in 
response to Aβ binding.  CD36, CD36/CD47/α6β1-integrin, 
CD14/TLR2/TLR4, and FPR2 display functions in both Aβ 

binding and microglia activation.  In addition, MARCO and 
SCARB-1 exhibit the ability to bind Aβ and may be involved 
in the progression of Alzheimer's disease[132].  

A variety of microglia receptors are involved in Aβ clear-
ance and in triggering an inflammatory response.  Some recep-
tors, including RAGE and NLRP3, are mainly implicated in 
the generation of an inflammatory response by triggering a 
signaling cascade that results in the production of proinflam-
matory mediators[133].  Other receptors, such as SR-AI and 
TREM2, participate the clearance of Aβ by inducing inter-
nalization of Aβ fibrils.  Complement receptors, Fc receptors, 
FPRL1/FPR2, CD36, and TLRs are involved in both Aβ clear-
ance and the generation of inflammatory responses, while the 
microglia receptor CD33 seems to accelerate Aβ accumulation.

Aβ degradation
The production of Aβ is normally counterbalanced by several 
processes, including proteolytic degradation, cell-mediated 
clearance (which may itself involve proteolytic degradation), 
active transport out of the brain, and deposition into insoluble 
aggregates.  A growing body of evidence suggests that pro-
teolytic degradation is a particularly important determinant of 
cerebral Aβ levels and, by extension, of Aβ-associated pathol-
ogy[134].  The individual Aβ-degrading proteases neprilysin, 
endothelin-converting enzymes, insulin-degrading enzyme, 
plasmin and other Aβ-degrading proteases play important 
roles in Aβ degradation and Alzheimer's disease, although 
their relative importance remains to be established (Figure 5).  

Neprilysin (NEP) is a 93-kDa zinc metallo-endopeptidase 
implicated in the degradation of a wide array of bioactive pep-
tides[135] and is the most efficient Aβ peptidase.  It is a type 2 
membrane glycoprotein with its active site located in the intra-
luminal/extracellular space, into which Aβ peptides are nor-
mally secreted[136].  NEP is also localized to the early Golgi and 
endoplasmic reticulum and other subcellular compartments.  
Synthetic Aβ was first demonstrated to undergo proteolysis 
by NEP, and Aβ degradation was most strongly inhibited by a 
potent and selective inhibitor of NEP, thiorphan[137].  The over-
expression of NEP resulted in a lack of amyloid accumulation 
in APP transgenic mice, while the absence of NEP expression 
resulted in amyloid aggregation in APP transgenic mice[138, 139].  
These experimental and clinical observations, therefore, sup-
port the hypothesis that Aβ degradation and the development 
of idiopathic Alzheimer's disease may be greatly affected by 
the regulation of an aging-induced reduction of NEP activity.

Endothelin converting enzymes 1 and 2 (ECE1 and ECE2) 
are membrane-bound zinc metalloproteinases belonging to the 
same family as NEP (M13 family).  While other members of 
the M13 family are capable of degrading Aβ in cell culture or 
in vitro[140, 141], the addition of phosphoramidon, a known inhib-
itor of ECEs, can significantly elevate the secretion of Aβ into 
the medium of cultured cells.  The overexpression of ECEs in 
cultured cells stably expressing APP led to a reduction of more 
than ninety percent in the level of secreted Aβ, and this effect 
was reversed by treatment with phosphoramidon.  Taken 
together, the involvement of ECEs may play a causal role in 
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the degradation of Aβ[142].
Insulin-degrading enzyme (IDE) is a 110-kDa zinc metallo-

endopeptidase that degrades a broad range of substrates, 
including insulin, glucagon, and amylin, along with a range of 
other bioactive peptides[143], as well as the intracellular domain 
of APP[144].  Early studies identified IDE as the first protease 
to degrade Aβ in vitro within crude brain homogenates[145], 
and IDE was later identified independently as the major Aβ 
degrading component secreted into the medium by a range of 
cultured cells[146].  Moreover, IDE might indirectly affect Aβ 
levels via its effects on AICD levels, which has recently been 
implicated in the transcriptional regulation of APP[147] and 
neprilysin expression[148-149].  

Plasmin is a serine protease that is the ultimate effector in 
the fibrinolytic cascade.  Plasmin  can degrade and reduce the 
toxicity of both monomer and fibril Aβ[150-153].  

Other candidate Aβ-degrading proteases remain to be 
identified. The matrix metalloproteases (MMPs) MMP2 and 
MMP9[154, 155] have been shown to degrade Aβ in vitro.  Angio-
tensin-converting enzyme is yet another metalloprotease that 
may play an important role in the pathogenesis of Alzheimer's 
disease and that has been shown to degrade Aβ in vitro[156].  
Cathepsin D, an aspartyl protease localized within lysosomes 
and endosomes, was identified as a major Aβ-degrading 
enzyme in brain homogenates[157], and its expression level in 
the brain is altered in Alzheimer's disease[158].

Aβ transport
In addition to degradation, Aβ released into the extracellular 
space can be transported between different compartments, 
such as from the brain to the blood or from the blood to the 

brain, and can also be cleared by chaperones, such as apoE, 
which can affect Aβ metabolism after it is released by cells and 
influence Aβ aggregation, clearance, and transport[159].  

The carrier- and receptor-mediated transport of Aβ across 
the blood brain barrier (BBB) regulates brain Aβ levels[160-165].  
The concentration of soluble Aβ in the CNS, which is central 
to the formation of neurotoxic oligomeric Aβ species[166] and 
vascular aggregated forms of Aβ, is critically influenced by 
Aβ transport exchange across the BBB.  This transport pro-
cess has been reported to be regulated by receptors, such as 
advanced glycation end products (RAGE)[167], or the low-
density lipoprotein receptor-related protein 1 (LRP1)[168, 169].  
Moreover, other receptors such as glycoprotein 330 (gp330/
megalin)[170] and P-glycoprotein[171] may also contribute to the 
transport of Aβ across the BBB, and the Aβ-binding proteins 
α2-macroglobulin, apoE and apoJ appear to influence this pro-
cess[172].  The levels and form of Aβ may be greatly determined 
by not only the vascular clearance and BBB transport of Aβ, 
proteolytic degradation[173, 174], oligomerization, and aggrega-
tion but also by the production[175, 176] and clearance of different 
forms of Aβ (fibrillar vs soluble) by other cells of the neurovas-
cular unit, such as astrocytes[177-179].  These activities may also 
play a major role in determining the brain accumulation and 
associated neuronal and vascular toxicity.  Plasma Aβ levels 
may contribute more to Alzheimer's disease toxicity in cogni-
tively normal elderly individuals[180, 181].  Strategies to clear Aβ 
from the vascular system can reduce the Aβ levels and amy-
loid load in the CNS.  These strategies include the use of an 
anti-Aβ antibody[182-184], non-immune approaches with gelso-
lin, GM1[185], sRAGE[186] or soluble forms of LRP-1, sLRP-1 frag-
ments[187] and insulin-like growth factor I[187].  Many receptors 

Figure 5.  Aβ homeostasis involves production, aggregation, transport, degradation, and clearance.  Aβ is produced in peripheral tissues and the CNS, 
where it can aggregate and form insoluble fibrils.  Soluble Aβ can be transported across the BBB from blood to brain via RAGE, and from brain to blood 
via LRP.  Aβ can also bind to transport proteins, eg, apoE, apoJ, α2-macroglobulin (α2M), which may influence Aβ sequestration as well as the form of 
its accumulation in brain.  Aβ can be proteolytically degraded by the proteases Neprilysin (Nep), endothelin converting enzymes (ECE), insulin degrading 
enzyme (IDE), plasmin and other Aβ-degrading proteases (MMP, Cathepsin D), as well as by microglia-mediated degradation.
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are involved in inducing Aβ transport and clearance.  Among 
them, RAGE is an influx transport receptor that binds soluble 
Aβ and mediates pathophysiological cellular responses[188-190].  
RAGE also mediates the transport of plasma Aβ across the 
BBB.  LRP-1 functions as a clearance receptor for Aβ at the 
BBB[191, 192] (Figure 5).

ApoE can regulate Aβ transport, clearance, and aggregation.  
ApoE is a 299-amino-acid lipid transport protein expressed 
as three different isoforms: apoE2, apoE3 and apoE4.  E3 is 
the most common isoform, and E4 is responsible for a genetic 
predisposition to Alzheimer's disease, increasing the risk of 
Alzheimer's disease by approximately 3-fold more than the 
E3 allele, whereas E2 decreases AD risk[193].  Glial cells such 
as astrocytes and microglia secrete apoE into the interstitial 
fluid (ISF) of the brain.  When Aβ is secreted into the brain ISF, 
mostly by neurons, apoE-containing high-density lipoproteins 
(HDL) interact with Aβ and influence its clearance into cells 
via the endocytic LDL receptor family member LDLR.  The 
binding of apoE/Aβ complexes to heparin sulfate proteogly-
cans (HSPG) can increase the retention of Aβ in the extracellu-
lar matrix of the brain and arterioles.  This process may play a 
role in the development of cerebral amyloid angiopathy (CAA)
[194].  ApoE and Aβ have been shown to colocalize in detergent-
insoluble glycolipid-rich membrane domains (DIGs), which 
may promote their interaction.  In the ISF, apoE/Aβ interac-
tions likely determine whether and when Aβ will aggregate.  
ApoE may also play a role in Aβ transport out of the brain via 
ISF/bulk flow, which can modulate both soluble and fibrillary 
Aβ clearance as well as transport and fibrillogenesis and, in 
doing so, plays an important role in Alzheimer's disease and 
CAA pathogenesis[195].

Aβ forms and their toxicity
The different forms of Aβ include soluble Aβ, Aβ oligomer 
and Aβ present in amyloid plaques.  In addition, a dynamic 
compartmentalization of the different types of Aβ may exist 
between plaques and soluble Aβ[196], and the different Aβ 
forms may contribute to neurodegeneration at different stages 
of the disease[197].  Aβ has also been reported to form aggre-
gates in two fundamental types of reactions: non-metal-depen-
dent association and metal-dependent association.  Non-metal 
Aβ aggregates form soluble oligomers and amyloid fibrils, 
while metal Aβ aggregates form ionically bridged aggregates, 
covalently crosslinked oligomers, and seeds for non-metal-
dependent Aβ fibrillization[198].  Accumulating Aβ first forms 
Aβ oligomers and gradually deposits as fibrils and senile 
plaques.  In addition, tau protein becomes hyperphosphory-
lated in response to kinase/phosphatase activity changes 
mediated by Aβ aggregation, leading to the formation of neu-
rofibrillary tangles (NFTs), neuronal and eventual synaptic 
dysfunction, and finally Alzheimer's disease (Figure 4).  When 
the process of self-aggregation occurs on neuron membranes, 
it generates a toxic aldehyde called 4-hydroxynonenal and 
leads to lipid peroxidation, which can damage the function 
of ion-motive ATPases, glucose transporters and glutamate 
transporters.  In turn, Aβ promotes depolarization of the syn-

aptic membrane, excessive calcium influx and mitochondrial 
damage, which impairs the ability of cells to conduct normal 
physiological activities[79].

Furthermore, the aggregation of Aβ may also produce free 
radicals as ROS that react rapidly with proteins or lipids, 
resulting in the formation of “toxic” oxidized proteins and 
peroxided lipids.  Oxidized proteins are harmful to the mem-
brane integrity and may also alter the sensitivity to oxidative 
modifications of enzymes such as glutamine synthetase (GS) 
and creatine kinase (CK), which are critical to neuronal func-
tion[199, 200].  Peroxidized lipids can generate toxic products 
such as 4-hydroxy-2-nonenal (HNE) and 2-propenal (acrolein) 
that migrate to different parts of neurons and cause multiple 
harmful alterations to cellular activity.  The deleterious func-
tions associated with neuronal death include the inhibition of 
ion-motive ATPases and glial cell Na+-dependent glutamate 
transport, loss of Ca2+ homoeostasis, and disruption of signal-
ing pathways[201-203].  In addition to proteins and lipids, oxida-
tive stress induced by Aβ aggregation has also been reported 
to cause DNA oxidation, leading to DNA damage.

Sustained elevation of Aβ levels and continuous aggregation 
might also promote a chronic response of the innate immune 
system by activating microglia, which can lead to neuronal 
loss through direct phagocytosis.  The immunological recep-
tors that are activated by Aβ include toll-like receptor 2 
(TLR2), TLR4, TLR6, and their co-receptors CD14, CD36, and 
CD47[204, 205].  In addition, Aβ aggregation also causes inflam-
matory responses and the release of inflammation-related 
mediators, such as eicosanoids, chemokines, proinflammatory 
cytokines and complement factors, which can increase neu-
ronal death and the loss of neuronal synapses and impair the 
clearance of Aβ and the neuronal debris mediated by microg-
lia.  In addition to the microglia driven neuroinflammatory 
response[206], this processes is probably also mediated indi-
rectly by regulating kinase/ phosphatase activity.

Moreover, when the Aβ precursor APP accumulates at the 
mitochondrial membrane, it blocks the translocation of inner 
mitochondrial metabolites and proteins, leading to disruption 
of the electron-transport chain and mitochondrial dysfunction, 
which may in turn increase excessive Aβ generation and result 
in greater toxicity in a feed-forward loop[207, 208].  Excessive 
Aβ levels also activate the mitochondrial fission proteins Fis1 
and Drp1, thereby inducing mitochondrial fragmentation[209].  
Aβ localized in the mitochondria can interact with the proapop-
totic factors Aβ-binding alcohol dehydrogenase (ABAD) and 
cyclophilin D (CypD), resulting in increased neuronal cell death[210].  
Therefore, there may be a vicious feedback loop between 
increased Aβ production and mitochondrial dysfunction.

Extracellular deposits of fibrils or amorphous aggregates of 
Aβ peptide form plaques and diffuse deposits, while intracel-
lular fibrillar aggregates of hyperphosphorylated and oxidated 
tau can form neurofibrillar tangles.  These plaques and neuro-
fibrillary tangles are deposited mainly in brain regions, such 
as the hippocampus, amygdala, entorhinal cortex, and basal 
forebrain, that influence memory and learning and emotional 
behaviors. Aβ can damage synapses and neurites, and plaque 
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deposits in brain regions reduce the number of synapses. Aβ 
specifically damages neurons that produce serotonin and nor-
epinephrine or that employ glutamate or acetylcholine as neu-
rotransmitters. After synthetic Aβ fragments were found to kill 
cultured neurons[211], the chemical and cell biological bases for 
the synaptic dysfunction and death of neurons in Alzheimer's 
disease were reported by a series of studies. Aβ, particularly 
in its aggregating forms, can impair synaptic ion and glucose 
transporters, and electrophysiological studies have shown that 
Aβ impairs synaptic plasticity.  Decreasing sAPPα levels can 
increase the resistance of neurons to oxidative and metabolic 
insults, which is consistent with sAPPα contributing to the 
demise of neurons, which is coincident with the increased pro-
duction of Aβ in Alzheimer's disease[212, 213].  Memory deficits 
correlate with the formation of Aβ oligomers, which appear 
relatively early in the process of Aβ deposition in APP mutant 
mice[214].  Remarkably, the immunization of APP mutant mice 
with human Aβ42 resulted in the removal of Aβ deposits from 
the brain and the reversal of cognitive deficits, adding to the 
evidence that Aβ deposition is a pivotal event in Alzheimer's 
disease[215].

Aβ and Alzheimer's disease
The cause of most Alzheimer's cases is still unknown.  
Although it is characterized mostly by the formation of amy-
loid plaques in the brain, there are several other competing 
hypotheses regarding the cause of the disease.

The amyloid hypothesis proposed that the fundamental 
cause of the Alzheimer's disease is the deposits of extracellular 
Aβ peptides[216].  Mutations in the human APP gene cause the 
development of amyloid plaques and Alzheimer's-like brain 
pathology, especially in early-onset familial Alzheimer’s dis-
ease (EOFAD)[217, 218].  Mutations in the human APP gene are 
close to the γ-secretase site and can increase the Aβ42/Aβ40-
ratio.  It is reported that mutations that alter residues C-ter-
minal to the Aβ42 site reduce cleavage efficiency and increase 
the Aβ42/Aβ40 ratio[219].  AD-causing mutations also occur in 
the genes PSEN1 and PSEN2.  Mutations in the human PSEN1 
and PSEN2 genes affect γ-secretase activity and can increase 
the Aβ42/Aβ40 ratio.  Some early-onset families do not show 
mutations in APP, PSEN1 or PSEN2.  Several additional key 
proteins may be involved in γ-and β-secretase cleavage events, 
as well as in the hyperphosphorylation of tau and the develop-
ment of neurofibrillary tangles[65, 220].  Late-onset Alzheimer’s 
disease (LOAD) is characterized by a pattern of interwoven 
genetic and non-genetic factors.  These risk-factor genes each 
affect one or more of the known pathogenic mechanisms: 
increased Aβ production and aggregation; decreased Aβ clear-
ance and degradation; increased inflammation; and resistance 
to γ-secretase activity, and thus lead to neurodegeneration in 
AD[221].  Among these risk genes, for APOE, the alleles occur-
ring at the APOE loci ε2, ε3 and ε4 were tested and shown to 
be associated with increased risk of AD[222, 223].  Other research-
ers have been led to suspect that non-plaque Aβ oligomers are 
toxic and might be the main cause of neurodegenerative disor-
ders such as Alzheimer's disease[224].

Non-Aβ hypothesis
The cause of most Alzheimer's cases is still unknown.  Numer-
ous reports on genetic evidence suggest that Aβ and its aggre-
gation in senile plaques play an important role in the patho-
genesis of AD. Aβ cleavage by β-secretase and γ-secretase 
from APP can result in oligomers that form higher-order 
fibrils, which then give rise to Aβ plaques.  However, genetic 
causes only explain the small proportion (1% to 5%) of AD 
cases in which genetic differences have been identified[225].  
The dominant mutations in the genes APP, PSEN1 and 
PSEN2[226], which are implicated in AD pathology, are only 
present in a very small portion of Alzheimer's cases.  It has 
also been reported that the accumulation of the more insoluble 
Aβ42 over Aβ40 is an important trigger for AD pathogenesis, 
while APP can alternatively be cleaved by α-secretase to gen-
erate non-plaque-forming extracellular peptides in the non-
amyloidogenic processing pathway[227].  Our previous studies 
have tested the effect of all 28 FAD-linked C99 mutations and 
found that most familiar Alzheimer's disease (FAD)-linked 
APP mutant proteins cause partial resistance to γ-secretase 
cleavage[228].  Among them, only mutations that affect residues 
C-terminal to the Aβ42 cleavage site (Aβ42-53) markedly affect 
cleavage efficiency and increase the Aβ42 production that 
leads to AD.

AD pathogenesis includes both Aβ-dependent and 
Aβ-independent mechanisms.  There are still many doubts 
about the real pathogenesis of AD and the β-amyloid con-
tribution to the onset of the disease.  Aβ or Aβ oligomers or 
plaques are not solely responsible for the onset of the disease.  
More than 30 mutations responsible for FAD are localized in 
the APP gene; however, the “type London” APP mutations, 
causing only a slight increase in β-amyloid production, cause 
the onset of the pathology earlier than the “type Swedish” 
mutations, which induce a greater increase of the protein[229], 
suggesting that there are other mechanisms involved in the 
onset of AD.  In fact, the Aβ-independent mechanisms are 
mediated via APP, intracellular fragments and PS1 via the 
cellular processes, such as inflammation, oxidative stress and 
Ca2+ dysregulation, implicated in AD pathogenesis[230].  Cdk5 
may be influenced by or interact with both pathways, and 
its activation triggers DNA damage, cell cycle activation and 
neurodegeneration[231].  Non-Aβ factors such as Tau and ApoE 
also contribute to AD pathology[232].  All these pathways can 
lead to synaptic dysfunction, neurodegeneration and AD.  

The senile plaques also do not seem to be an exclusive fea-
ture of Alzheimer's disease.  They increase with age, even in 
healthy subjects, and the number of plaques in healthy controls 
is often comparable with the number found in age-matched 
affected individuals[233].  Moreover, β-amyloid is physiologi-
cally produced in healthy brains during neuronal activity and 
is necessary for synaptic plasticity and memory[234].  Further-
more, in the AD population, there is only a weak correlation 
between the number of senile plaques and the severity of the 
pathology.  The cleavage of APP by γ-secretase produces some 
fragments called AICD (APP intracellular domain), which 
appear to play an important role in the onset of AD.  In fact, it 
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is known that transgenic mice for AICD show tau phosphory-
lation and aggregation and decreased cell proliferation/sur-
vival, even in the absence of endogenous APP[235].  High levels 
of AICD may also play an important role in the pathology in 
human brains[236].  The challenges to the Amyloid Hypothesis 
of Alzheimer's Disease are sharply formulated[237].  There are 
several other competing hypotheses, such as the cholinergic 
hypothesis, the tau hypothesis, and the hypothesis that some 
other environmental risk factors, may contribute additional 
causes of the disease.

The cholinergic hypothesis proposed that AD is caused by 
cholinergic effects such as reduced synthesis of the neurotrans-
mitter acetylcholine, or the initiation of large-scale aggrega-
tion of amyloid and neuroinflammation[238, 239].  Most currently 
available drug therapies are based on this hypothesis[240].

The genetic heritability of Alzheimer's disease reveals that 
most AD is caused by mutations in one of the genes that 
encoding APP and presenilins 1 and 2[241].  Most mutations in 
these genes increase Aβ42 production.  Environmental and 
genetic risk factors, such as the ε4 allele of the apolipoprotein 
E (APOE)[242], increase the risk of the disease by threefold.  
Mutations in the TREM2 gene make the risk of developing 
Alzheimer's disease several times higher[243].  Other genes also 
appear to affect the risk, including CASS4, CELF1, FERMT2, 
HLA-DRB5 ,  INPP5D ,  MEF2C ,  NME8 ,  PTK2B ,  SORL1 , 
ZCWPW1, SlC24A4, CLU, PICALM, CR1, BIN1, MS4A, ABCA7, 
EPHA1, and CD2AP[244].

The tau hypothesis postulates that tau protein abnormalities 
initiate the disease cascade as hyperphosphorylated tau forms 
neurofibrillary tangles, leading to the disintegration of micro-
tubules in brain cells[245], which may result in dysfunction of 
the biological activity between neurons and later in the death 
of the cells.

Other hypotheses include such environmental risk factors 
as smoking and infection, and a neurovascular hypothesis has 
been proposed, suggesting that the blood-brain barrier is criti-
cal for brain Aβ homeostasis and regulates Aβ transport via 
the LRP receptor and RAGE, as mentioned before[246].  These 
findings point to new therapeutic targets for AD.  

Aβ and inflammation
Aβ peptides are the major components of the senile plaques 
present in Alzheimer's disease.  Recent studies have shown 
that the soluble assemblies of Aβ also stimulate neuronal 
dysfunction and may play a prominent role in stimulating 
the proinflammatory activation of primary microglia[247].  In 
the context of inflammation, compared to fibrillar assemblies, 
oligomer Aβ preparations induce greater or differential proin-
flammatory cytokine production by microglia and astrocytes 
in vitro[248].  Indeed, studies in primary glia demonstrate that 
the oligomer Aβ-induced increase in proinflammatory cyto-
kines, such as nitric oxide, NO, TNFα and TNFβ secretion, 
occurs earlier and is greater than the increase induced by 
fibrillar assemblies of Aβ[249].  Thus, for different forms of Aβ, 
identifying their levels at different stages of AD, the inflamma-
tory response they produce, and their underlying mechanisms 

(eg, receptor mediated) may provide critical information for 
therapeutic development.

Other aspects of biology of Aβ
In addition to the key role in the pathology of AD, Aβ gener-
ated in the brain and peripheral tissues also function in many 
other aspects of biology. Aβ has been shown to be a ligand 
with various receptors, as mentioned in the previous sec-
tion.  It can also be transported between tissues and across 
the blood-brain barrier by complex trafficking pathways[176] 
to destinations where it can induce and modulate proinflam-
matory activities in response to a variety of environmental 
stressors[250, 251]. Aβ also functions similarly to a group of bio-
molecules collectively known as “antimicrobial peptides” 
(AMPs) that function in the innate immune system.  It inhib-
its the growth of eight of 12 clinically important pathogens 
screened[252] and acts as an anti-microbial peptide in several 
infection models including mice, C elegans, and cell culture 
models[253].  This new function stands in stark contrast to cur-
rent models of Aβ-dependent pathology and will play signifi-
cant roles in the development of future AD treatment strate-
gies.

Therapeutic approaches for the treatment of Alzheimer's 
disease
Drugs approved by the FDA
To date, only a total of five drugs developed to improve the 
symptoms of Alzheimer's disease have been approved by 
the FDA.  It is important to note that a new drug, Namzaric 
(donepezil and memantine)[254] was approved in 2014.  The five 
drugs function by two different mechanisms.  One is cholines-
terase inhibition, which delays Alzheimer's disease by block-
ing hydrolysis of the critical neurotransmitter acetylcholine.  
This category of drugs includes donepezil (Aricept)[255, 256], 
approved in 1996; rivastigmine (Exelon)[255, 256], approved in 
2000; and galantamine (Razadyne)[257], approved in 2001.  The 
other one is memantine (Namenda)[258], approved in 2003, 
a non-competitive N-methyl-D-aspartate (NMDA) channel 
blocker that reduces the activity of the neurotransmitter gluta-
mate, which plays an important role in learning and memory 
by binding to the NMDA receptor.  Memantine can inhibit the 
prolonged influx of Ca2+ ions, particularly from extrasynaptic 
receptors, that forms the basis of neuronal excitotoxicity.  It is 
an option for the management of patients with moderate to 
severe Alzheimer's disease.  Namzaric is a combination of the 
two drugs to reduce the levels of both acetylcholine and gluta-
mate (Table 2).

Novel therapeutic approaches for Alzheimer's disease
Researchers have identified several novel therapeutic 
approaches for Alzheimer’s disease that focus on the reduc-
tion of amyloid oligomer levels.  Methods that are currently 
under development include the inhibition of oligomerization 
using small molecule inhibitors, the neutralization of oligo-
meric species using immunotherapy, the overexpression of 
Aβ-degrading enzymes to control Aβ oligomer levels in the 
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brain, catalytic Aβ antibodies to hydrolyze specific aggregates, 
β-sheet breakers to break existing β-sheet structures, Aβ block-
ers to block amyloid channels, and therapies directed against 
the tau protein to lead to the partial reversal of brain patholo-
gies.  All these approaches are in preclinical research stages, 
and their therapeutic efficiency remains unknown.

Small molecule inhibitors
These molecules (2-amino-4-chlorophenol, 4-aminophenol, 
4-aminoanisole, 3,4-dihydroxybenzoic acid, 2-hydroxy-
3-ethoxy benzoaldehyde ) block Aβ oligomerization or 
fibrillization[259].  Fourteen naturally occurring polyphenolic 
compounds and polyphenol-containing black tea extracts 
inhibit the assembly of alpha-synuclein into multimeric oligo-
mers, which are cytotoxic and share common structural ele-
ments with amyloid oligomers[260, 261].  Polyphenols derived 
from red wine prevent Aβ oligomerization and attenuate cog-
nitive deterioration.  The main phenolic component of olive 
oil, oleuropein, has been shown to possess antioxidant[262], 
anti-inflammatory[263] and hypolipidemic activities[264].  Small 
molecules (NQTrp, ClNQTrp, coumarin, furosemide, D737) 
that inhibit Aβ aggregation[265, 266] or remodel toxic soluble 
oligomers of Aβ[267] inhibit oligomer formation[268-274] (Table 3).  

Secretase inhibitors and modulators
Since β-secretase and γ-secretase are responsible for the 

release of Aβ from the intracellular domain of APP, com-
pounds that can partially inhibit the activity of either β- or 
γ-secretase have been extensively explored.  β-Secretase 
inhibitors (eg, MK-8931, CTS21166) can block the first cleavage 
of APP inside the cell[275, 276].  A novel orally active β-secretase 
inhibitor, AZD3293, was tested in phase II/III clinical trials by 
Astra Zeneca and Eli Lilly[277].  γ-Secretase inhibitors can block 
the second cleavage of APP in the cell membrane and were 
expected to stop the subsequent formation of Aβ and its toxic 
fragments[278].  One γ-secretase inhibitor, semagacestat, was a 
candidate drug for a causal therapy against Alzheimer's dis-
ease, originally developed by Eli Lilly and Élan, but is unfor-
tunately being stopped as there is no effect in phase III clinical 
trials[279].  An alpha-secretase agonist, EHT-0202[276], biases APP 
processing towards the non-amyloidogenic pathway.  A new 
γ-secretase modulator, CHF5074, showed a longer survival 
time for treated animals[280].  Selective Aβ42-reducing agents 
(eg, tarenflurbil) modulate γ-secretase to decrease Aβ42 pro-
duction in favor of shorter Aβ versions[281] (Table 4).  

Immunotherapeutic approach
Immunotherapy stimulates the host immune system to recog-
nize and attack Aβ or produces antibodies that enhance the 
clearance of Aβ oligomers or plaques to prevent plaque depo-
sition.  Active or passive Aβ immunization can prevent Aβ 
oligomerization, which is why antibodies to Aβ can be used to 

Table 2.  Summary of approved drugs for the treatment of Alzheimer's disease.

Name Targets Effects Ref

Donepezil (Aricept) Cholinesterase inhibitor  Blocks acetylcholine neurotransmitter  [255, 256]
Rivastigmine (Exelon)  Cholinesterase inhibitor  Blocks acetylcholine neurotransmitter [350]
Galantamine (Razadyne) Cholinesterase inhibitor  Blocks acetylcholine neurotransmitter [257]
Memantine (Namenda) NMDA receptor antagonist Blocks glutamate neurotransmitter and  [258]
  improves learning and memory
Donepezil and Memantine   Cholinesterase inhibitor and  Blocks acetylcholine and glutamate neurotransmitters [254]
(Namzaric) NMDA receptor antagonist and improves learning and memory
 

Table 3.  Summary of small molecule inhibitors of amyloid oligomers for the treatment of Alzheimer's disease.

Name Targets Effects Ref

2-Amino-4-chlorophenol Blocks Aβ oligomerization and fibrillization  Blocks neurotoxicity  [259]
4-Aminophenol Blocks Aβ oligomerization and fibrillization  Blocks neurotoxicity  [259]
4-Aminoanisole Blocks Aβ oligomerization and fibrillization  Blocks neurotoxicity  [259]
3,4-Dihydroxybenzoic acid Blocks Aβ oligomerization and fibrillization  Blocks neurotoxicity  [259]
2-Hydroxy-3-ethoxy benzoaldehyde Blocks Aβ oligomerization and fibrillization Blocks neurotoxicity  [259]
Resveratrol  Remodels soluble oligomers and amyloid fibrils  Attenuates cognitive deterioration [351]
 into nontoxic species
NQTrp Inhibits the fibrillization of amyloidogenic proteins Reduces Aβ aggregation [269, 270]
ClNQTrp Inhibits the fibrillization of amyloidogenic proteins Reduces Aβ aggregation [269, 270]
Coumarin Inhibits Aβ aggregation Prevents cognitive decline [266]
Furosemide Inhibits Aβ oligomerization Increases the life span [273]
D737 Inhibits Aβ formation  Prevents toxicity and ROS accumulation [274]
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decrease cerebral plaque levels.  This decrease is accomplished 
by promoting microglial clearance and redistributing the pep-
tide from the brain to the systemic circulation.  Several epit-
opes of Aβ are exposed and available for antibody capture of 
the soluble peptides, while others are available for antibodies 
to bind with oligomers.  One such Aβ vaccine is CAD106, cur-
rently in clinical trial[265], which induced efficacious Aβ anti-
body titers of different IgG subclasses mainly recognizing the 
Aβ3-6 epitope.  The 20-amino-acid SDPM1 protein can bind to 
Aβ40 and Aβ42 tetramers and block subsequent Aβ amyloid 
accumulation.  Aβ42 immunization leads to the clearance of 
amyloid plaques in patients with Alzheimer's disease but does 
not prevent progressive neurodegeneration[282].  A more recent 
study showed that programmed death 1 (PD-1) inhibitors, 
which are FDA-approved cancer drugs, may be effective in 
clearing Aβ plaques and improving cognitive performance in 
a mouse model of Alzheimer's disease[283].  Anti-Aβ antibodies 
(solanezumab, gantenerumab, crenezumab, IVIG), which can 
bind soluble Aβ and improve cognitive performance, are cur-
rently in clinical trials[165, 284, 285].  Solanezumab accommodates 
a large Aβ epitope (960 Å2 buried interface over residues 16 to 
26) that forms extensive contacts and hydrogen bonds to the 

antibody, largely via main-chain Aβ atoms and a deeply bur-
ied Phe19-Phe20 dipeptide core Solanezumab and crenezumab 
both share identity with the Aβ KLVFF epitope[286].  The 
human anti-Aβ monoclonal antibody, gantenerumab, binds 
Aβ plaques and targets the N-terminus and central portion 
of Aβ[287].  Intravenous immune globulin (IVIG) derived from 
human plasma contains IgGs that recognize conformational 
epitopes of Aβ fibrils and oligomers[288].  Intravenous immuno-
globulin G[289] and 2E6[290] bind to soluble Aβ and reduce amy-
loid aggregation (Table 5).

Anti-aggregation agents
Anti-aggregation agents[291], such as apomorphine, can pre-
vent Aβ peptides from aggregating or clear aggregates once 
they are formed[292].  The hormone melatonin may be effec-
tive against amyloid by interacting with dimers of the soluble 
Aβ peptide and inhibiting their aggregation[293-295].  The can-
nabinoid HU-210[296] has been shown to prevent Aβ-induced 
inflammation[297].  The endocannabinoids anandamide and 
noladin have also been shown to be neuro-protective against 
Aβ in vitro[298].  Apomorphine[299], melatonin[300], and tannic 
acid[301] can prevent Aβ aggregation.  A number of small mol-

Table 4.  Summary of secretase inhibitors and modulators for the treatment of Alzheimer's disease.

Name Targets Effects Ref

Semagacestat (LY450139) γ-Secretase inhibitor Reduces Aβ formation [278]
CHF-5074 γ-Secretase modulators Increases life span [280]
MK-8931 β-Secretase inhibitor Reduces Aβ levels [275]
AZD3293 β-Secretase inhibitor Reduces the production of Aβ [277]
CTS21166 β-Secretase inhibitor Reduce the amount of beta-amyloid [276]
EHT-0202 α-Secretase agonist Biases APP processing towards the [276]
  non-amyloidogenic pathway
Tarenflurbil  Modulates β-secretase to reduce  Potential treatment for Alzheimer's disease [281]
 Aβ42 production
 

Table 5.  Summary of immunotherapeutic approaches for the treatment of Alzheimer's disease.

Name Targets Effects Ref

CAD106 Aβ vaccine Inhibits Aβ oligomerization and cytotoxicity [352]
SDPM1 Aβ antibody  Blocks subsequent Aβ amyloid aggregation [353]
PD-1 inhibitors T-cell-mediated autoimmune
 meningoencephalitis Clears Aβ plaques and improves cognitive performance [354]
Gantenerumab Humanized monoclonal antibody to Aβ Binds to aggregated Aβ and reduces Aβ plaques in the brain [284]
Solanezumab Humanized monoclonal antibody to Aβ Binds to soluble Aβ and reduces amyloid load via  [182]
  peripheral sink mechanism
Crenezumab Humanized monoclonal antibody to Aβ Inhibits aggregation and promotes disaggregation [284]
IVIG Human polyclonal anti-Aβ antibody Binds to Aβ and reduces neurotoxicity [285]
Intravenous Human immunoglobulin preparation  Primarily binds to soluble Aβ and reduces amyloid load [289]
immunoglobulin G containing endogenous polyclonal via peripheral sink mechanism
 antibodies to Aβ
2E6 Heterodimer of immunoglobulin light chain  Hydrolyzes Aβ peptides [290]
 variable domains
 



1222
www.nature.com/aps

Chen GF et al

Acta Pharmacologica Sinica

ecules extracted from traditional Chinese herbal medicine 
have been shown to be capable of inhibiting Aβ aggregation.  
Among them, LJW0F2 purified from the flowers of Lonicera 
japonica Thunb could inhibit Aβ42 aggregation and attenuate 
the cytotoxicity induced by Aβ42 aggregation[302].  Resve-
ratrol, curcumin, EGb761, isoliquiritigenin, protocatechuic 
acid, atractylenolide III, chlorogenic acid, euphorbiafactor L3, 
euphorbiafactor L2, ganoderic acid D, and ganoderic acid DM 
extracts from Chinese herbal medicine can inhibit Aβ aggre-
gation[303, 304].  A series of substituted bisphenol A derivatives 
function as Aβ aggregation inhibitors and can inhibit neuro-
toxicity and increase cell viability[305] (Table 6).

Aβ-degrading proteases (AβDPs)
Aβ can be degraded by a number of peptidases and pro-
teinases, collectively known as Aβ-degrading proteases 
(AβDPs).  Aβ-degrading proteases play an important role in 
Aβ degradation and may be a good target for the treatment 
of Alzheimer's disease.  NEP has been reported to degrade 
Aβ oligomers that impair neuronal plasticity and cognitive 
function[306].  Several close homologues of NEP, NEP2[307] 
and human membrane metalloendopeptidase-like protein 
(hMMEL)[308], are also implicated in the degradation of Aβ[308].  
Members of the M13 family of zinc metalloproteases, endo-
thelin converting enzymes ECE1, ECE2, and ACE, are also 
known to be endogenous regulators of Aβ levels[142, 309].  The 
serine proteases plasmin, urokinase type and tissue type 
plasminogen activators (uPA and tPA, respectively) and acyl 
peptide hydrolase (APH) have been found to degrade Aβ both 
directly and indirectly[150, 310-312].  Several cysteine proteases, 
including cathepsin D[141], cathepsin B[282,313], BACE1[283, 291], and 
BACE2 [314] are also involved in Aβ degradation (Table 7).  

Therapies directed against the tau protein
Neurofibrillary tangles (NFTs) caused by hyperphosphory-
lated tau are an important pathogenic factor in Alzheimer’s 

disease, and the tau protein is therefore also an important 
biological target for innovative therapies.  The inhibition of 
tau protein oligomerization and aggregation, tau phosphory-
lation, microtubule stabilization [epothilone D (BMS-241027), 
TPI-287][315], and the enhancement of tau degradation as well 
as tau immunotherapy (ACI-35[275]) are all potential strategies 
for Alzheimer’s disease therapy.  The tau protein hyperphos-
phorylation inhibitor LMTX can facilitate the clearance of tau 
from the brain and reduce Aβ aggregation and has reached 
phase three clinical trials[316].  The anti-tau AADvac1 vaccine is 
currently being investigated in phase II trials.  AADvac1 has 
been reported to significantly improve neurobehavioral defi-
cits and reduce neurofibrillary degeneration and mortality[317].  
Moreover, glycogen synthase kinase 3 beta (GSK-3β) inhibi-
tors, such as tideglusib and humulin R, can block the phos-
phorylation of tau protein and thus are potential drug targets 
for Alzheimer’s disease[318] (Table 8).   

Other blockers
A drug that is currently under investigation is liraglutide (Vic-
toza), which is typically used as a diabetes drug.  Treatment 
with Victoza improved object recognition and spatial recogni-
tion and resulted in cognitive benefits.  Other histological ben-
efits include a reduced inflammatory response and an increase 
in the number of young neurons in the dentate gyrus, where 
the Aβ level was also found to be significantly reduced[319].  
The β-sheet breakers or blockers that are capable of binding 
Aβ consist of short synthetic peptides.  They destabilize the 
β-sheet structure and inhibit the formation of Aβ oligomers 
or amyloids[320, 321].  Aβ oligomers can form calcium channels 
in membranes.  Calcium conductance through these channels 
can be blocked by compounds MRS2481 and MRS2485, which 
destabilize the β-sheet structure and decrease Aβ-promoted 
neuronal toxicity[322].  Bexarotene might serve as another class 
of anti-Alzheimer compounds by efficiently preventing the 
cholesterol-dependent increase in calcium fluxes promoted by 

Table 6.  Summary of anti-aggregation agents for the treatment of Alzheimer's disease.

Name Targets Effects Ref

Apomorphine Prevents Aβ aggregation Reduces cellular toxicity [299]
Hormone melatonin Inhibits Aβ aggregation Reverts amyloid deposition  [300]
Cannabinoid HU-210 Blocks microglial activation Prevents Aβ-promoted inflammation [296]
Tannic acid Binds Aβ fibrils Inhibits Aβ aggregation and cytotoxicity [301]
LJW0F2 Polysaccharide that blocks Aβ fibril formation Reduces neurotoxicity [302]
EGb761 Inhibits Aβ aggregation Reduces neurotoxicity [303]
Isoliquiritigenin Inhibits Aβ aggregation Reduces neurotoxicity [304]
Protocatechuic acid Inhibits Aβ aggregation Reduces neurotoxicity [304]
Atractylenolide III Inhibits Aβ aggregation Reduces neurotoxicity [304]
Chlorogenic acid Inhibits Aβ aggregation Reduces neurotoxicity [304]
Euphorbiafactor L3 Inhibits Aβ aggregation Reduces neurotoxicity [304]
Euphorbiafactor L2 Inhibits Aβ aggregation Reduces neurotoxicity [304]
Ganoderic acid D Inhibits Aβ aggregation Reduces neurotoxicity [304]
Ganoderic acid DM Inhibits Aβ aggregation Reduces neurotoxicity [304]
Substituted bisphenol A derivatives Inhibit Aβ aggregation Inhibit neurotoxicity and increase cell viability [305]
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Aβ in neural cells[323].  Voltage-gated calcium channel blockers, 
such as verapamil, diltiazem, isradipine and nimodipine, pro-
tect cultured neurons from Aβ-induced toxicity and thus could 
be potential candidates for treating Alzheimer's disease[324].  
The 5-HT6 receptor antagonist idalopirdine, in combination 
with a cholinesterase inhibitor, may also increase cognitive 
function[325].  Huperzine A[326, 327], 2,2',4'-trihydroxychalcone 
(TDC)[328] and bis(7)-cognitin[329] exhibit neuroprotective effects.  
Agenin[330] and clioquinol[331] can inhibit Aβ deposition.  
Other inhibitors, such as the RAGE inhibitor azeliragon, the 
α7-nAChR inhibitor encenicline and the calcium antagonist 
nilvaldipine, can improve memory and could be further candi-
dates for Alzheimer’s disease therapeutics[332-334] (Table 9).

Amyloid dyes
The traditional method of identifying amyloid fibrils in tissue 
sections is by the use of amyloid-staining dyes.  The first of 
these dyes was Congo red[335], whose staining is linked to the 
presence of the cross-β structure of fibrils.  Other amyloid dyes 
include iodine-sulfuric acid[336], thioflavin T or S[337], crystal 
violet[338], methyl violet[339], BTA-1[340], chrysamine G[341], ANS 
(1-anilinonaphthalene-8-sulfonic acid)[342], bisANS (4,4'-diani-
lino-1,1'-binaphthyl-5,5'-disulfonic acid)[342], Nile red[343], K114 
((trans, trans)-1-bromo-2,5-bis (4-hydroxystyryl) benzene)[344], 

FSB[345], curcumin[346], nanocurcumin[346], and others.  The thio-
flavin T staining method is widely used to identify and clas-
sify amyloid proteins in tissues.  Specific BTA-1 binding to Aβ 
plaques inhibits Aβ aggregation and cytotoxicity, making it a 
good drug candidate for Alzheimer's disease[340].  These amy-
loid dyes not only indicate the presence of mature amyloids 
but also function as a tool for dissecting their structure and 
the mechanism of amyloid formation.  They bind selectively to 
Aβ in the human brain and blood vessels in vitro.  They might 
thus lead  to further compounds for the development of tracer 
agents for the in vivo diagnosis of Alzheimer's disease and of 
inhibitors of Aβ aggregation as a novel therapy for Alzheim-
er's disease (Table 10).

MicroRNAs
MicroRNAs (miRNAs) are a class of conserved endogenous 
small noncoding RNAs known to regulate the expression of 
complementary messenger RNAs involved in AD develop-
ment[347].  MiRNAs in the brain play an important role in Aβ 
generation, targeting the mRNAs of APP, β-secretase and 
γ-secretase and altering Aβ expression.  MiRNAs may provide 
a novel therapeutic approach to the treatment of AD while 
also providing new insights into the etiology of this neurologi-
cal disorder[348].  A series of specific miRNAs can regulate APP 

Table 7.  Summary of β-degrading proteases (AβDPs) for the treatment of Alzheimer's disease.

Name Targets Effects Ref

NEP Endogenous regulator of Aβ Degrades Aβ oligomers [306]
NEP2 Homologues of NEP Degradation of Aβ [307]
hMMEL Homologues of NEP Degradation of Aβ [308]
ECE1 Endothelin converting enzyme Endogenous regulator of Aβ [142, 309]
ECE2 Endothelin converting enzyme Endogenous regulator of Aβ [142, 309]
ACE Endothelin converting enzyme Endogenous regulator of Aβ [142, 309]
Plasmin Serine protease Degrades both monomeric and fibrillar forms of Aβ [150, 355]
Acylpeptide hydrolase Serine protease Degrades secreted Aβ dimers and trimers [356, 357]
Cathepsin D  Cysteine protease Degradation of Aβ [358]
BACE1  Cysteine protease Degradation of Aβ [291]
BACE2  Cysteine protease Degradation of Aβ [359]
Cathepsin B Cysteine protease Degradation of Aβ [282]
 

Table 8.  Summary of novel therapeutic approaches directed against the tau protein for the treatment of Alzheimer's disease.

Name Targets Effects Ref

LMTX Inhibitor of tau hyperphosphorylation Facilitates clearance of tau from the brain and anti-Aβ aggregation  [316]
Epothilone D  Microtubule stabilizer Increases BBB permeability and microtubule stability [315]
(BMS-241027)
TPI-287 Microtubule stabilizer Increases BBB permeability and microtubule stability [315]
AADvac1 Tau active vaccination Improves neurobehavioral deficits, and reduces neurofibrillary  [317]
  degeneration and mortality
ACI-35 Anti-tau vaccine Stimulates the immune system to produce antibodies which  [275]
  target the tau protein
Tideglusib GSK-3β inhibitor Blocks phosphorylation of tau protein [318]
Humulin R GSK-3β inhibitor Blocks phosphorylation of tau protein [318]
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expression and serve as an ideal target for AD therapeutic 
drug design.  Both miR-107 and miR-29 may potentially target 
the mRNA of BACE1, which is the key enzyme responsible for 
generating Aβ protein from APP[349].

Conclusions
Aβ is the major component of senile plaques and partici-

pates in Alzheimer's disease progression through its neuro-
toxic effects.  Identifying Aβ structures, biology, receptors 
and Aβ-based therapeutic approaches for the treatment of 
Alzheimer's disease therefore remains of paramount impor-
tance.  In this review, we have addressed the different struc-
tures involved in Aβ accumulation and have discussed the 
current understanding of the biological function and neuro-

Table 9.  Summary of other blockers for the treatment of Alzheimer's disease.

Name Targets Effects Ref

Liraglutide (Victoza)  A diabetes drug Cognitive benefits, reduced inflammatory  [319]
  response and an increase of young neurons
β-Sheet breaker  Binds Aβ and destabilizes its structure Inhibits oligomer or amyloid formation [320, 321]
MRS2481   Small molecule blocker of Abeta channel Protects neurons from Aβ induced toxicity [322]
MRS2485 Small molecule blocker of Abeta channel Protects neurons from Aβ induced toxicity [322]
Bexarotene  Inhibits the binding of cholesterol to Aβ and prevents  Anti-Alzheimer [323]
 calcium-permeable amyloid pore formation
Verapamil  Voltage-gated calcium channel blocker Protects neurons from Aβ-induced toxicity [324]
Diltiazem  Voltage-gated calcium channel blocker Protects neurons from Aβ-induced toxicity [324]
Isradipine  Voltage-gated calcium channel blocker Protects neurons from Aβ-induced toxicity [324]
Nimodipine  Voltage-gated calcium channel blocker Protects neurons from Aβ-induced toxicity [324]
Huperzine A A novel lycopodium alkaloid Neuroprotective effects [326, 327]
Arctigenin Inhibits Aβ production and promotes Aβ clearance  Ameliorates memory impairment [330]
2,2',4'-trihydroxychalcone  Represses beta-cleavage of APP and production of Aβ Improves the memory impairment [328]
(TDC)
Bis(7)-cognitin Inhibition of AChE, NMDA receptor, nitric oxide synthase,  Neuroprotective effects [329]
 and amyloid precursor protein/beta-amyloid cascade
Clioquinol Inhibits metal-ion binding to Aβ Inhibits Aβ deposition [331]
Idalopirdine 5-HT6 receptor antagonist In combination with a cholinesterase  [325]
  inhibitor may increase the cognitive function
Azeliragon RAGE inhibitor Mediates transport of the Aβ peptide into  [332]
  the brain
Encenicline α7-nAChR inhibitor Restores memory function [333]
Nilvaldipine Calcium antagonist Cognition improvement [334]
 

Table 10.  Summary of amyloid dyes for the treatment of Alzheimer's disease.

Name Targets Effects Ref

Congo red Binds Aβ fibrils Neuroprotective effects [335]
Iodine-sulphuric acid Binds Aβ fibrils Inhibits Aβ aggregation and cytotoxicity [336]
Thioflavin-T Binds Aβ fibrils Inhibits Aβ aggregation and cytotoxicity [337]
Crystal violet Binds Aβ fibrils Inhibits Aβ aggregation and cytotoxicity [338]
Methyl violet Binds Aβ fibrils Inhibits Aβ aggregation and cytotoxicity [339]
BTA-1 Binds Aβ plaques Inhibits Aβ aggregation and cytotoxicity [340]
Chrysamine G Binds Aβ deposits Inhibits Aβ aggregation and cytotoxicity [341]
ANS (1-anilinonaphthalene-8-sulfonic acid) Binds Aβ fibrils Inhibits Aβ aggregation and cytotoxicity [342]
bisANS (4,4'-dianilino-1,1'-binaphthyl-5, Binds Aβ fibrils Inhibits Aβ aggregation and cytotoxicity [342]
5'-disulfonic acid)
Nile red Binds Aβ fibrils Inhibits Aβ aggregation and cytotoxicity [343]
K114 ((trans,trans)-1-bromo-2,5-bis Crosses the blood-brain barrier (BBB) 
(4-hydroxystyryl)benzene) and binds with amyloid plaques Inhibits Aβ aggregation and inflammation [344]
FSB Binds Aβ deposits Inhibits Aβ aggregation and cytotoxicity [345]
Curcumin Binds Aβ plaques Detects Aβ plaques and as Aβ-specific antibody [346]
Nanocurcumin Binds Aβ plaques Detects Aβ plaques and as Aβ-specific antibody [346]
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toxic role of Aβ and the potential receptors that interact with 
Aβ and mediate Aβ intake, clearance and metabolism.  Iden-
tification of the key Aβ receptor under relevant physiological 
conditions and obtaining crystal structures of full-length Aβ in 
different states are critical for the development of new thera-
peutic agents.

Over the last decade, advances have been made in under-
standing the structures of Aβ peptide forms.  Aβ peptide rap-
idly aggregates to form oligomers, protofibrils and fibrils that 
lead to the deposition of amyloid plaques.  Different structural 
approaches, such as NMR spectroscopy, distance geometry, 
molecular dynamic techniques, and X-ray crystallography, 
have shown that the structural conversion of Aβ oligomers 
to fibrils involves the association of these loosely aggregated 
strands into α-helical and parallel β-sheet structures, as well 
as that the structural states transition quickly.  Different signal 
transduction pathways are involved in Aβ expression, deg-
radation, transport and clearance.  The phosphorylation and 
activation of specific intracellular kinases represent common 
events in these signaling cascades, and these signaling mol-
ecules are potential targets for new Alzheimer's disease drugs.

Several therapeutic approaches for Alzheimer’s disease 
target amyloid oligomers.  Methods that are currently under 
development include the inhibition of Aβ oligomerization 
using small molecule inhibitors, the neutralization of oligo-
meric species using immunotherapy, the overexpression of 
Aβ-degrading enzymes in the brain, catalytic Aβ antibod-
ies for hydrolyzing specific aggregates, β-sheet breakers for 
destabilizing existing β-sheet structure and Aβ blockers for 
blocking amyloid channels and thereby leading to the partial 
reversal of brain pathologies.  The therapeutic targeting of 
microglia receptors implicated in the response to Aβ and their 
associated signaling pathways could reduce the inflammation 
associated with Alzheimer's disease.  Tau protein inhibitors or 
vaccines and amyloid dyes that selectively bind Aβ and inhibit 
Aβ aggregation offer additional novel therapeutic approaches 
for the treatment of Alzheimer's disease.  

We have summarized new progress in developing treat-
ments targeting Aβ and its receptors.  Existing Alzheimer's 
disease drugs only treat the symptoms of Alzheimer’s dis-
ease; they do not decelerate or cure it.  The last drug that was 
approved by the Food and Drug Administration for therapeu-
tic Alzheimer's disease treatment was namzaric in 2014.  In 
the last decade, several candidate drugs have failed to reach 
statistical significance in their primary outcomes.  The drugs 
currently undergoing clinical trials are inhibitors of Aβ pro-
duction and aggregation, Aβ antibodies and vaccines.  Identi-
fication of the key physiological Aβ receptors and the determi-
nation of their crystal structures in complex with Aβ will play 
a critical role in mitigating Alzheimer's disease progression 
and symptoms.
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