

HHS Public Access

Author manuscript *Biol Blood Marrow Transplant*. Author manuscript; available in PMC 2018 May 01.

Published in final edited form as: *Biol Blood Marrow Transplant.* 2017 May ; 23(5): 767–775. doi:10.1016/j.bbmt.2017.01.078.

Allogeneic Hematopoietic Cell Transplant for Adult Chronic Myelomonocytic Leukemia

Hien D Liu¹, Kwang Woo Ahn^{2,3}, Zhen-Huan Hu², Mehdi Hamadani², Taiga Nishihori⁴, Baldeep Wirk⁵, Amer Beitinjaneh⁶, David Rizzieri⁷, Michael R. Grunwald⁸, Mitchell Sabloff⁹, Richard F. Olsson^{10,11}, Ashish Bajel¹², Christopher Bredeson¹³, Andrew Daly¹⁴, Yoshihiro Inamoto¹⁵, Navneet Majhail¹⁶, Ayman Saad¹⁷, Vikas Gupta¹⁸, Aaron Gerds¹⁹, Adriana Malone²⁰, Martin Tallman²¹, Ran Reshef²², David I. Marks²³, Edward Copelan⁸, Usama Gergis²⁴, Mary Lynn Savoie²⁵, Celalettin Ustun²⁶, Mark R Litzow²⁷, Jean-Yves Cahn²⁸, Tamila Kindwall-Keller²⁹, Gorgun Akpek³⁰, Bipin N Savani³¹, Mahmoud Aljurf³², Jacob M Rowe³³, Peter H Wiernik³⁴, Jack W Hsu³⁵, Jorge Cortes³⁶, Matt Kalaycio³⁷, Richard Maziarz³⁸, Ronald Sobecks³⁷, Uday Popat³⁹, Edwin Alyea⁴⁰, and Wael Saber² ²CIBMTR (Center for International Blood and Marrow Transplant Research), Department of Medicine, Medical College of Wisconsin, Milwaukee, WI

³Division of Biostatistics, Institute for Health and Society, Medical College of Wisconsin, Milwaukee, WI

⁴Department of Blood and Marrow Transplantation, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL

⁵Division of Bone Marrow Transplant, Seattle Cancer Care Alliance, Seattle, WA

⁶University of Miami Sylvester Cancer Center, Miami, Florida

⁷Division of Hematologic Malignancies and Cellular Therapy, Duke University, Durham, NC

⁸Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Carolinas HealthCare System, Charlotte, NC

⁹Division of Hematology, Department of Medicine, University of Ottawa and Ottawa Hospital Research Institute, Ottawa Canada

¹⁰Division of Therapeutic Immunology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden

¹¹Centre for Clinical Research Sormland, Uppsala University, Uppsala, Sweden

¹²Royal Melbourne Hospital, Victoria, Australia

¹³The Ottawa Hospital Blood and Marrow Transplant Program and the Ottawa Hospital Research Institute, Ottawa, ON, Canada

Corresponding Author: Hein Doung Liu, Cleveland Clinic Taussig Cancer Institute, 9500 Euclid Ave R35, Cleveland, OH 44195, Phone: (216)445-5531, Fax: (216)445-7444, duongh@ccf.org.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

¹⁴Tom Baker Cancer Centre, Calgary, Canada

¹⁵Division of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, Tokyo, Japan

¹⁶Blood & Marrow Transplant Program, Cleveland Clinic Taussig Cancer Institute, Cleveland, OH

¹⁷Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL

¹⁸Blood and Marrow Transplant Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada

¹⁹Hematologic Oncology and Blood Disorders, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH

²⁰Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY

²¹Leukemua Service, Department of Medicine, Memorial Sloan

²²Blood and Marrow Transplantation Program and Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY

²³Pediatric Bone Marrow Transplant, University Hospitals Bristol NHS Trust, Bristol, United Kingdom

²⁴Hematologic Malignancies & Bone Marrow Transplant, Department of Medical Oncology, New York Presbyterian Hospital/Weill Cornell Medical Center, New York, NY

²⁵Tom Baker Cancer Centre, Calgary, AB

²⁶Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota Medical Center, Minneapolis, MN

²⁷Division of Hematology and Transplant Center, Mayo Clinic Rochester, Rochester, MN

²⁸Department of Hematology, University Hospital, Grenoble, France

²⁹Division of Hematology/Oncology, University of Virginia Health System, Charlottesville, VA

³⁰Stem Cell Transplantation and Cellular Therapy Program, Banner MD Anderson Cancer Center, Gilbert, AZ

³¹Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN

³²Department of Oncology, King Faisal Specialist Hospital Center & Research, Riyadh, Saudi Arabia

³³Department of Hematology, Shaare Zedek Medical Center, Jerusalem, Israel

³⁴Our Lady of Mercy Medical Center, Bronx, NY

³⁵Division of Hematology & Oncology, Department of Medicine, Shands HealthCare & University of Florida, Gainesville FL

³⁶Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX

³⁷Cleveland Clinic Foundation, Cleveland, OH

³⁸Adult Blood and Marrow Stem Cell Transplant Program, Knight Cancer Institute, Oregon Health and Science University, Portland, OR

³⁹MD Anderson Cancer Center, Houston, TX

⁴⁰Center for Hematologic Oncology, Dana-Farber Cancer Institute, Boston, MA

Abstract

Allogeneic hematopoietic cell transplantation (HCT) is potentially curative for patients with chronic myelomonocytic leukemia (CMML), however, few data exist regarding prognostic factors and transplant outcomes. We performed this retrospective study to identify prognostic factors for post-transplant outcomes. The CMML-specific prognostic scoring system (CPSS) has been validated in subjects receiving non-transplant therapy and was included in our study. From 2001-2012, there were 209 adult subjects who received HCT for CMML reported to the Center for International Blood and Marrow Transplant Research (CIBMTR). The median age at transplant was 57 years (range 23-74). Median follow up was 51 months (range, 3-122). On multivariate analyses, CPSS scores, Karnofsky performance status (KPS), and graft source were significant predictors of survival (p=0.004, p=0.01, p=0.01, respectively). Higher CPSS scores were not associated with disease-free survival, relapse, or transplant-related mortality. In a restricted analysis of subjects with relapse following HCT, those with intermediate-2/high risk had a nearly two-fold increased risk of death after relapse compared to those with low/intermediate-1 CPSS scores. Respective 1, 3 and 5-year survival rates for low/intermediate-1 risk subjects were 61% (95% confidence interval [CI], 52%–72%), 48% (95% CI, 37%–59%), and 44% (95% CI, 33%– 55%), and for intermediate-2/high risk subjects were 38% (95% CI, 28%-49%), 32% (95% CI, 21% - 42%), and 19% (95% CI,8%-29%). We conclude that higher CPSS score at time of transplant, lower KPS, and a bone marrow (BM) graft are associated with inferior survival after HCT. Further investigation of CMML disease-related biology may provide insights into other risk factors predictive of post-transplant outcomes.

Keywords

Chronic Myelomonocytic Leukemia; Allogeneic Hematopoietic Cell Transplant; Transplant Outcomes

Introduction

Chronic myelomonocytic leukemia (CMML) is a clonal hematopoietic stem cell disorder with both myelodysplastic and myeloproliferative properties. In the original French-American-British (FAB) classification, it was included under myelodysplastic syndromes (MDS) with 2 subtypes based upon white blood cell count, an MDS variant (CMML-MD) and a myeloproliferative variant (CMML-MP). However, these concomitant properties made it difficult to classify, prompting a new category of myeloproliferative/myelodysplastic disorders (MPD/MDS) that was formed in the World Health Organization (WHO) classification of myeloid disorders in 2001.^{1,2} The diagnosis of CMML is characterized by a

peripheral blood monocytosis, absence of Philadelphia chromosome, absence of rearrangements of PDGFRA or PDGFRB, presence of <20% blasts in the blood and bone marrow, and evidence of dysplasia in at least one precursor cell lineage (although if myelodyspasia is absent, the diagnosis of CCML can still be made if there is a clonal abnormality or persistent monocytosis and all other causes have been excluded). CMML is further divided into two subcategories with prognostic significance: CMML-1 (presence of <5% blasts in the peripheral blood and <10% blasts in the bone marrow) and CMML-2 (presence of 5–19% blasts in the peripheral blood and 10–19% in the bone marrow). The diagnosis of CMML-2 can also be made if Auer rods are present, irrespective of blast count.^{3,4}

CMML has a heterogeneous clinical course, with much variability in survival and rates of transformation to acute myeloid leukemia. Expected survival ranges from months to several years.^{5–7} Rates of transformation to acute myeloid leukemia (AML) range from 4% to 44%.^{5–7} In a study reported from MD Anderson Cancer Center (MDACC) of 213 patients, the median survival was 12 months with 19% progressing to AML after a median of 7 months (range, 1 to 96 months).⁵ Given this wide variability, studies have focused on identifying important risk factors for prognosis and outcomes. A CMML-specific prognostic scoring system (CPSS) assessed at the time of diagnosis has been validated in the non-transplant setting.⁸ The CPSS incorporates CMML FAB type, CMML WHO type, CMML-specific cytogenetics, and RBC transfusion dependence.

Unfortunately, effective treatment options for CMML are limited. There are no specific therapies for CMML and the optimal treatment is not yet defined. Several studies in patients with MDS receiving azacitidine and decitabine have included CMML patients, however, the number of CMML patients included is small and results are difficult to interpret for this population.^{9,10} Allogeneic hematopoietic cell transplant (HCT) remains the only potentially curative treatment and outcomes following transplant are sparse.^{11–18} Some of these reports suggest that the percentage of blasts present in the peripheral blood, cytogenetic abnormalities, and transplant type may have prognostic importance following transplant. However, the studies are limited by small numbers of patients from single institutions and no definitive conclusions have been made.

Our retrospective study assessed the outcomes of 209 consecutive adult subjects who underwent HCT for CMML reported to the Center for International Blood and Marrow Transplant Research (CIBMTR) registry from 2001 through 2012. The purpose of our study was to identify prognostic risk factors for post-transplant outcomes.

Patients and Methods

Data Sources

The CIBMTR is a combined research program of the Medical College of Wisconsin and the National Marrow Donor Program. CIBMTR comprises a voluntary network of more than 450 transplantation centers worldwide that contribute detailed data on consecutive allogeneic allogeneic and autologous HCT to a centralized Statistical Center. Observational studies conducted by CIBMTR are performed in compliance with all applicable federal

regulations pertaining to the protection of human research participants. Protected health information issued in the performance of such research is collected and maintained in CIBMTR's capacity as a Public Health Authority under the Health Insurance Portability and Accountability Act Privacy Rule. Additional details regarding the data source are described elsewhere.¹⁹

Subject Eligibility

Between 2001 and 2012, 209 adult patients (18 years of age or older) who underwent first HCT from HLA-identical sibling or adult unrelated-donor for CMML were identified for this analysis. Patients receiving cord blood transplants (N=20), ex-vivo T cell depletion (N=6), CD34-selection (N=6), or post-transplant cyclophosphamide (N=1) as part of their graft-versus-host disease (GvHD) prophylaxis were excluded. Subjects missing 100-day follow-up data were also excluded.

Study Endpoints

Primary endpoints were treatment-related mortality (TRM), relapse/progression, disease-free survival (DFS) and survival. TRM was defined as death from any cause in the first 28 days post transplantation, irrespective of relapse status, or death beyond day +28 without any evidence of disease recurrence; relapse was considered a competing event. Relapse/ progression was defined as reported by the transplantation centers. DFS is defined as time to relapse or death from any cause. Survival is defined as time to death from any cause. Subjects were censored at time of last follow-up. Secondary endpoints included hematopoietic recovery, acute and chronic graftversus- host disease (GvHD). Hematopoietic recovery was defined as time to absolute neutrophil count 0.5×10^9 /L for 3 consecutive days and time to platelets 20×10^9 /L without transfusions for 7 days, using the first of 3 consecutive results obtained on different days. Acute and chronic GvHD were diagnosed and graded using consensus criteria.^{20,21} For hematopoietic recovery and GvHD, death without the event was considered a competing event. The transplantation conditioning regimen intensity was determined according to the CIBMTR Reduced-Intensity Conditioning (RIC) Regimen Workshop.²² CPSS scores were calculated at the time of transplant and were based on information from CIBMTR registry. The CPSS scoring system incorporates CMML FAB type, CMML WHO type, CMML-specific cytogenetics, and RBC transfusion dependence.⁸ Within the CPSS scoring system, there are 4 risk groups: low (score = 0), intermediate-1 (score =1), intermediate-2 (score = 2-3, and high (score = 4-5). each variable is assigned the same weight. A score is calculated by adding together the points according to risk factors. WHO subtype CMML-1 and CMML-2 are assigned 0 and 1 points, respectively. FAB subtype CMML-MD and CMML-MP are assigned 0 and 1 points, respectively. CMMLspecific cytogenetic risk classification is as follows: low, normal and isolated -Y (0 points); intermediate, other abnormalities (1 point); high (2 points), trisomy 8, complex karyotype (3 abnormalities), and abnormalities of chromosome 7. Of note, the CPSS scoring system also include red blood cell transfusion defined as having at least 1 RBC transfusion every 8 weeks over a period of 4 months. The CIBMTR registry includes information about transfusion dependency, but does not specify the frequency of transfusion.

Statistical Analysis

Descriptive tables of donor- and collection-related variables were prepared. Probabilities of DFS and survival at 1, 3, and 5 years were calculated using the Kaplan-Meier estimator, with lost follow-up treated as a censoring event. Incidence rates for other outcomes were generated using the cumulative incidence estimates to adjust for competing risks (death without the event of interest). Point-wise p-values were calculated to evaluate the differences at specified time points.

Multi-variate analyses for survival, TRM, relapse, and GVHD were performed using the Cox proportional hazard model adjusting for the effects of covariates. Logistic regression was utilized to analyze neutrophil engraftment at 28 days and platelet recovery at 100 days. Covariates considered for prognostic value included: patient-related variables (patient age, gender, and Karnofsky score), disease-related variables (time from diagnosis to transplant, CPSS prior to transplant, treatment prior to transplant), and transplant-related variables (graft source, donor type, donor age, antithymocyte globulin (ATG)/alemtuzumab use, GvHD prophylaxis, donor/recipient sex match, donor/recipient CMV status, year of transplantation). Adjusted analyses of the outcomes were performed where additional covariates and interactions were determined by stepwise selection. We attempted to identify a profile for high vs. low risk prognosis for survival and relapse. Due to the small sample size available, the entire cohort was used for training to select the model and five-fold crossvalidation was used to assess out-ofsample performance. We also performed multi-variate analysis for OS restricted to patients who relapsed following HCT. Adjusted cumulative incidence curves were produced for TRM and relapse of the high vs. low risk groups. SAS 9.3 (SAS Inc.) was used for all analyses.

Results

Transplantation Subjects

Subject- and disease-related characteristics are presented in Table 1. Between 2001 and 2012, 209 consecutive adult patients from 94 institutions underwent HCT for CMML. The median ages at transplant for patients with low/intermediate-1 and intermediate-2/high were 59 years and 55 years, respectively. The majority of patients were male (71% in patients with low/intermediate-1 and 66% in intermediate-2/high). Most patients had Karnofsky Performance Scores (KPS) of 90–100%. CPSS scores at the time of transplant (HCT specific CPSS scores) were available for 80% of subjects. Cytogenetic data were available for 86% of subjects. Median time from diagnosis to transplant was 8 months. Approximately one-third of subjects were transplanted from an HLA-identical sibling. The remaining two-thirds were transplanted donors; a majority of these subjects (70%) were from well-matched unrelated donors. Peripheral blood (PB) was used as the graft source in 84% of subjects. Myeloablative conditioning regimens were given to 51% of subjects. Almost all patients received non-total body irradiation (TBI) based therapies (only 5 patients received TBI). GVHD prophylaxis mostly consisted of tacrolimus-based regimens (61%). The median follow up of surviving patients was 51 months.

Hematopoietic Recovery

On univariate analysis, rates of neutrophil recovery at days 28 and 100 were comparable between subjects with low/intermediate-1 and those with intermediate-2/high HCT specific CPSS scores (94% [95% CI, 86%–98%] and 89% [95% CI, 79% to 95%] at day 28, respectively, p=0.40; 99% [95% CI, 87% to 100%] and 96% [95% CI, 80% to 99%] at day 100, respectively, p=0.51). Platelet recovery at day 28 was comparable between groups. However, more subjects in the low/intermediate-1 group achieved platelet recovery at day 100 compared to the intermediate-2/high risk group (94% [95% CI, 86% to 98%] compared to 80% [95% CI, 69% to 87%] (p=0.007). There were no primary graft failures. (Table 2)

Neutrophil engraftment and platelet recovery between subjects receiving PB and BM graft were also compared. Neutrophil engraftment at day 28 was lower for subjects in the BM group; however by day 100, groups were similar: BM group 78% (95% CI, 59%–89%) and PB group 94% (95% CI, 89%–97%) at day 28, BM group 94% (95% CI, 69%–99%) and PB group 98% (93%–99%) at day 100. Platelet recovery at day 28 was again lower for subjects in the BM group; however by 100, groups were again similar: BM group 44% (95% CI, 26%–60%) and PB group 70% (95% CI, 62%–76%) at day 28, BM group 73% (95% CI, 51%–86%) and PB group 88% (95% CI, 82%–92%) at day 100.

Acute and Chronic GvHD

On univariate analysis, the cumulative incidence of grades 2 to 4 acute GvHD at day 100 were comparable between those with low/intermediate-1 and intermediate-2/high risk disease groups (34% [95% CI, 24% to 44%] and 38% [95% CI, 27% to 49%], respectively). On multivariate analysis, only donor type was associated with acute GvHD (p=0.002). The cumulative incidence of chronic GVHD at 1, 3, and 5 years were also comparable between groups (50% [95% CI, 38% to 60%] and 41% [95% CI 30% to 52%] at 1 year; 51% [95% CI, 40% to 61%] and 41% [95% CI, 30% to 52%] at 3 years; 51% [95% CI 40% to 61%] and 41% [95% CI, 30% to 52%], respectively). (Table 2) On multivariate analysis, only donor type was associated with acute GvHD (p=0.002). (Table 3)

Treatment Related Mortality

On univariate analysis, there was no significant difference in TRM at 1, 3, or 5 years between low/intermediate-1 (15% [95% CI, 9% to 24%], 20% [95% CI, 12% to 29%] and 22% [95% CI, 13% to 32%]) and intermediate-2/high risk groups (19% [95% CI, 11% to 29%], 21% [95% CI, 12% to 31%], and 26% [16% to 37%], respectively). (Table 2) On multivariate analysis, higher HCT specific CPSS scores and KPS scores were not associated with TRM (p=0.08 and p=0.03, respectively). (Table 3)

Relapse

On univariate analysis, relapse rates at 1, 3, and 5 years between low/intermediate-1 and intermediate-2/high groups were comparable (46% [95% CI, 35% to 56%], 50% [95% CI, 39% to 61%], 52% [95% CI, 40% to 63%], respectively, and 54% [95% CI, 41% to 64%], 56% [95% CI, 44% to 67%], and 60% [95% CI, 47 % to 70%], respectively). On multivariate analysis, HCT specific CPSS scores were not associated with relapse (p=0.112). (Table 3)

Survival Outcomes

On univariate analysis, DFS rates were comparable: for low/intermediate-1 risk groups, at 1, 3, and 5 years were 38% (95% CI, 28% to 49%), 30% (95% CI, 20% to 40%), and 26% (95% CI, 17% to 37%), respectively, and for intermediate-2/high risk groups were 28% (95% CI, 18% to 38%), 23% (95% CI, 14% to 33%), and 14% (95% CI, 6% to 24%), respectively. On multivariate analysis, CPSS scores did not impact DFS (p=0.21), however higher KPS scores were associated with improved DFS (p=0.02). (Table 3)

On univariate analysis, low/intermediate-1 risk groups had higher rates of OS at 1, 3, and 5 years: corresponding rates for low/intermediate-1 risk groups were 61% (95% CI, 51% to 71%), 48% (95% CI, 37% to 59%), and 44% (95% CI, 33% to 56%) respectively and for intermediate-2/high risk groups were 38% (95% CI 27% to 49%), 31% (95% CI, 21% to 42%), and 18% (95% CI, 8% to 30%) respectively. (Table 2) On multivariate analysis, HCT specific CPSS scores, KPS and graft source were significant predictors of survival (p=0.005, p=0.01, and p=0.02, respectively). Patients receiving PB had more favorable outcome. (Table 3) Adjusted OS and DFS starting at time of transplant, based on HCT specific scores, are shown in Figures 1 and 2.

To investigate why higher HCT specific CPSS scores were associated with higher mortality but not DFS, we performed multivariate analysis restricted to patients with relapse following HCT. Those with intermediate-2/high risk had nearly two-fold increased risk of death after relapse compared to those with low/intermediate-1 HCT specific CPSS scores.

On multivariate analysis, survival of patients who received pre-HCT treatment with hypomethylating agents (HMA), chemotherapy, or both was not different compared to those who received no prior therapy (p=0.96).

Discussion

Allogeneic HCT remains the only potentially curative treatment for patients with CMML. Few data exist regarding transplant outcomes and there are no randomized clinical trials comparing transplant to non-transplant approaches. Most studies are limited by their retrospective nature and small sample size. (Table 4) While our study is also retrospective, it represents a large series with a long median follow up. The median age of our patients was 57 years, older than in other reported studies.^{11–18, 22} The median follow up in our study is 51 months, longer than in most other reported studies.^{11–13, 15–18, 23–27} Subjects underwent either myeloablative or RIC preparative regimen. The majority of patients received PB as their graft source. Our study is unique in that we not only describe transplant outcomes, but we also validated a predictive model for survival and relapse. Patient stratification according to HCT specific CPSS scores was prognostic for transplant outcomes.

Given the heterogeneity of clinical outcomes for patients with CMML, it is important to better define and stratify risk for patients with CMML. The International Prognostic Scoring System (IPSS) is widely used for myelodysplastic syndrome. However, for CMML patients, analysis and validation were restricted to patients with WBC $< 12 \times 10^9$ /L, excluding patients with myeloproliferative characteristics and not applicable for all patients with

CMML.²⁸ There are several prognostic scoring systems developed for CMML, however, they each have limitations and have not been validated in the setting of transplant.^{5,6,29–31} (Table 5) The CPSS incorporates CMML FAB type, CMML WHO type, CMML-specific cytogenetics, and RBC transfusion dependence. The CPSS calculated at diagnosis is a simple scoring system that was developed in the large patient sample size and was externally validated, in the non-transplant setting.⁸ The CPSS score at diagnosis has been shown to be predictive of survival and risk of progression to AML. Our study sought to validate the CPSS, calculated at the time of transplant, in the setting of HCT. In multivariate analysis, higher HCT specific CPSS scores were associated with inferior survival. It was not, however, associated with DFS, relapse, or TRM. In order to further investigate why higher HCT specific CPSS scores were associated with higher mortality, but not with DFS, we performed an analysis restricted to subjects who relapsed after transplant. This revealed that subjects with intermediate-2/high risk HCT specific CPSS scores had a nearly two-fold increased risk of death after relapse compared to those with low/intermediate-1 HCT specific CPSS scores. Intermediate-2/high risk patients do have higher disease burden and poorer risk cytogenetic abnormalities. Higher HCT specific CPSS scores are predictive of poorer treatment response and more aggressive biology. Interestingly, regardless of HCT specific CPSS scores, the main cause of death was primary disease. (Table 6) Post-transplant donor lymphocyte infusion and/or 2nd HSCT were similar between groups. Other posttransplant strategies, such as azacitidine maintenance in patients with myelodysplastic syndromes or acute myeloid leukemia, may be beneficial for these patients and warrants further investigation.³²

We observed favorable survival with PB graft compared to BM. The majority of subjects received PB grafts. While the incidence of acute or chronic GVHD was comparable between those who received PB or bone marrow grafts, subjects who received PB grafts had improved survival compared with those who received bone marrow. This is contrary to what has been reported in other studies.^{33–36} It is also interesting to note that no deaths in the bone marrow graft group were due to graft failure. It is unclear why those patients with BM had poorer survival; however our study is limited in that only a small number of subjects received bone marrow grafts (16%).

We also evaluated the effect of prior therapy on transplant. Few published studies have included information on use of HMA and transplant outcomes. Over the last decade, hypomethylating agents have become a cornerstone of therapy for MDS and CMML.^{37–42} We cannot determine whether pre-transplant HMA therapy or chemotherapy affected transplant eligibility. However, our data shows that pre-transplant treatment with HMA therapy or chemotherapy had no impact on transplant outcomes. This is contrary to a recent publication from Kongtim *et al* that reports lower relapse and improved progression-free survival for patients treated with hypomethylating agents prior to alloHCT.¹⁸

Our registry-based study is limited to the data contained in the CIBMTR database. Transplantations were performed at many different institutions, with varying conditioning regiments and GvHD prophylaxis. We recognize that the original CPSS score was calculated at time of diagnosis. We use the same variables that are part of the original CPSS, now calculated at the time of transplant, to attempt to validate this scoring system in the HCT

setting. Another limitation of our study is that data regarding CPSS was missing for many of our subjects (20%). Another limitation is regarding missing details of transfusion dependence; as part of criteria for the CPSS, transfusion dependence is defined as requiring at least 1 red blood cell transfusion every 8 weeks over a period of 4 months.⁸ While patients may meet this minimal criteria, we do not have data on how many transfusions and how frequently these transfusions were required for our subjects. We also do not have data on whether subjects had splenomegaly prior to HCT, which has been suggested to also have prognostic significance.²⁵

We conclude that allogeneic HCT remains an important treatment that is curative for some patients with CMML. Higher HCT specific CPSS scores, lower KPS, and bone marrow graft source are associated with inferior outcomes following allogeneic HCT. Future investigation to further elucidate the biology of CMML may help identify other risk factors that better predict which patients benefit most from transplant.

Acknowledgments

I. CIBMTR Support List

The CIBMTR is supported primarily by Public Health Service Grant/Cooperative Agreement 5U24-CA076518 from the National Cancer Institute (NCI), the National Heart, Lung and Blood Institute (NHLBI) and the National Institute of Allergy and Infectious Diseases (NIAID); a Grant/Cooperative Agreement 5U10HL069294 from NHLBI and NCI; a contract HHSH250201200016C with Health Resources and Services Administration (HRSA/ DHHS); two Grants N00014-15-1-0848 and N00014-16-1-2020 from the Office of Naval Research; and grants from *Actinium Pharmaceuticals, Inc.; Alexion; *Amgen, Inc.; Anonymous donation to the Medical College of Wisconsin; Astellas Pharma US; AstraZeneca; Atara Biotherapeutics, Inc.; Be the Match Foundation; *Bluebird Bio, Inc.; *Bristol Myers Squibb Oncology; *Celgene Corporation; Cellular Dynamics International, Inc.; Cerus Corporation; *Chimerix, Inc.; Fred Hutchinson Cancer Research Center; Gamida Cell Ltd.; Genentech, Inc.; Genzyme Corporation; Gilead Sciences, Inc.; Health Research, Inc. Roswell Park Cancer Institute; HistoGenetics, Inc.; Incyte Corporation; Janssen Scientific Affairs, LLC; *Jazz Pharmaceuticals, Inc.; Jeff Gordon Children's Foundation; The Leukemia & Lymphoma Society; Medac, GmbH; MedImmune; The Medical College of Wisconsin; *Merck & Co, Inc.; *Mesoblast; MesoScale Diagnostics, Inc.; *Miltenyi Biotec, Inc.; National Marrow Donor Program; Neovii Biotech NA, Inc.; Novartis Pharmaceuticals Corporation; Onyx Pharmaceuticals; Optum Healthcare Solutions, Inc.; Otsuka America Pharmaceutical, Inc.; Otsuka Pharmaceutical Co, Ltd. - Japan; PCORI; Perkin Elmer, Inc.; Pfizer, Inc; *Sanofi US; *Seattle Genetics; *Spectrum Pharmaceuticals, Inc.; St. Baldrick's Foundation; *Sunesis Pharmaceuticals, Inc.; Swedish Orphan Biovitrum, Inc.; Takeda Oncology; Telomere Diagnostics, Inc.; University of Minnesota; and *Wellpoint, Inc. The views expressed in this article do not reflect the official policy or position of the National Institute of Health, the Department of the Navy, the Department of Defense, Health Resources and Services Administration (HRSA) or any other agency of the U.S. Government.

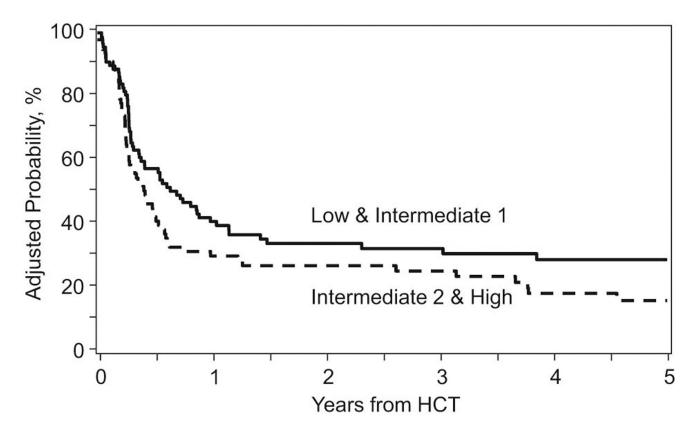
*Corporate Members

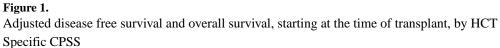
References

- Vardiman, JW., Pierre, R., Bain, B., et al. Chronic myelomonocytic leukaemia. In: Jaffe, ES.Harris, NL.Stein, H., Vardiman, JW., editors. World Health Organization Classification of Tumours: Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues. Lyon, France: IARC Press; 2001. p. 49-51.
- Orazi, A., Bennett, JM., Germing, U., et al. Chronic myelomonocytic leukaemia. In: Swerdlow, S.Campos, E.Lee Harris, N., et al., editors. World Health Organization Classification of tumours of haematopoietic and lymphoid tissues. Lyon, France: IARC press, World Health Organization; 2008. p. 76-81.
- 3. Emanuel PD. Juvenile myelomonocytic leukemia and chronic myelomonocytic leukemia. Leukemia. 2008; 22:1335–1342. [PubMed: 18548091]
- 4. Vardiman JW, Harris NL, Brunning RD, et al. The World Health Organization (WHO) classification of the myeloid neoplasms. Blood. 2002; 100:2292–2302. [PubMed: 12239137]

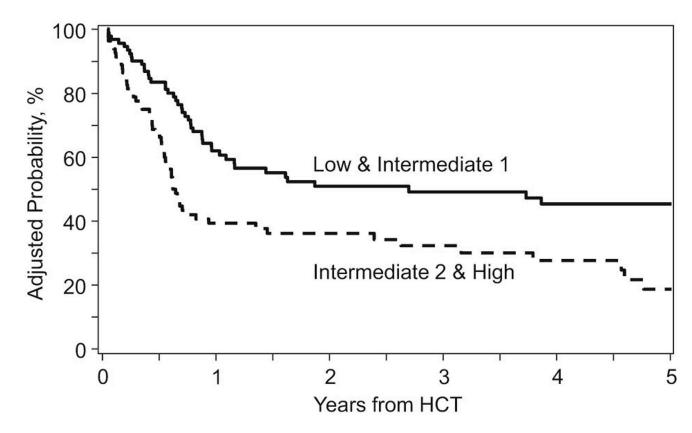
- Onida F, Kantarjian HM, Smith TL, et al. Prognostic factors and scoring systems in chronic myelomonocytic leukemia: a retrospective analysis of 213 patients. Blood. 2002; 99:840–849. [PubMed: 11806985]
- Germing U, Kundgen A, Gattermann N. Risk assessment in chronic myelomonocytic leukemia (CMML). Leukemia Lymphoma. 2004; 45:1311–1318. [PubMed: 15359628]
- Elliott MA. Chronic neutrophilic leukemia and chronic myelomonocytic leukemia: WHO defined. Best Pract Res Clin Haematol. 2006; 19:571–93. [PubMed: 16781489]
- Such E, Germing U, Malcovati L, et al. Development and validation of a prognostic scoring system for patients with chronic myelomonocytic leukemia. Blood. 2013; 121:3005–3015. [PubMed: 23372164]
- Fenaux P, Mufti GJ, Hellstrom-Lindberg E, et al. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomized, open-label, phase III study. Lancet Oncol. 2009; 10(3):223–32. [PubMed: 19230772]
- Zang DY, Deeg HJ, Gooley T, et al. Treatment of chronic myelomonocytic leukaemia by allogeneic marrow transplantation. Br J Haematol. 2000; 110:217–222. [PubMed: 10931002]
- Kroger N, Zabelina T, Guardiola P, et al. Allogeneic stem cell transplantation of adult chronic myelomonocytic leukaemia. A report on behalf of the Chronic Leukaemia Working Party of the European Group for Blood and Marrow Transplantation (EBMT). Br J Haematol. 2002; 118:67– 73. [PubMed: 12100129]
- Mittal P, Saliba RM, Giralt SA, et al. Allogeneic transplantation: a therapeutic option for myelofibrosis, chronic myelomonocytic leukemia and Philadephia-negative/BCR-ABLnegative chronic myelogenous leukemia. Bone Marrow Transplant. 2004; 33:1005–1009. [PubMed: 15048141]
- Kerbauy DM, Chyou F, Gooley T, et al. Allogeneic hematopoietic cell transplantation for chronic myelomonocytic leukemia. Biol Blood Marrow Transplant. 2005; 11:713–720. [PubMed: 16125642]
- Elliott MA, Tefferi A, Hogan WJ, et al. Allogeneic stem cell transplantation and donor lymphocyte infusions for chronic myelomonocytic leukemia. Bone Marrow Transplant. 2006; 37:1003–1008. [PubMed: 16604096]
- Laport GG, Sandmaier BM, Storer BE, et al. Reduced-intensity conditioning followed by allogeneic hematopoietic cell transplantation for adult patients with myelodysplastic syndrome and myeloproliferative disorders. Biol Blood Marrow Transplant. 2008; 14:246–255. [PubMed: 18215785]
- Krishnamurthy P, Lim ZY, Nagi W, et al. Allogeneic haematopoietic SCT for chronic myelomonocytic leukaemia: a single-centre experience. Bone Marrow Transplant. 2010 Jan. ePub.
- 17. Symeonidis A, van Biezen A, de Wreede L, et al. Achievement of complete remission predicts outcome of allogeneic haematopioetic stem cell transplantation in patients with chronic myelomonocytic leukaemia. A study of the Chronic Malignancies Working Party of the European Group for Blood and Marrow Transplantation. British J Haematology. 2015; 171:239–246.
- Kongtim P, Popat U, Jimenez An, et al. Treatment with hypomethylating agents before allogeneic stem cell transplant improves progression-free survival for patients with chronic myelomonocytic leukemia. Biol Blood Marrow Transplant. 2016; (22):47–53. [PubMed: 26343946]
- Horowitz M. The role of registries in facilitating clinical research in BMT: examples from the Center for International Blood and Marrow Transplant Research. Bone Marrow Transplant. 2008; 42(Suppl 1):S1–2.
- Rowlings PA, Przepiorka D, Klein JP, et al. IBMTR Severity Index for grading acute graft-versushost disease: retrospective comparison with Glucksberg grade. Br J Haematol. 1997; 97:855–864. [PubMed: 9217189]
- Shulman HM, Sullivan KM, Weiden PL, et al. Chronic graft-versus-host syndrome in man. A longterm clinicopathologic study of 20 Seattle patients. Am J Med. 1980; 69:204–217. [PubMed: 6996481]
- 22. Giralt S, Ballen K, Rizzo D, et al. Reduced-intensity conditioning regimen workshop: defining the dose spectrum. Report of a workshop convened by the center for international blood and marrow transplant research. Biol Blood Marrow Transplant. 2009; 15:367–369. [PubMed: 19203728]

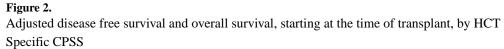
- Eissa H, Gooley TA, Sorror M, et al. Allogeneic hematopoietic cell transplantation for chronic myelomonocytic leukemia: relapse-free survival is determined by karyotype and comorbidities. Biol Blood Marrow Transplant. 2011; 17:908–915. [PubMed: 20932924]
- 24. Lim SN, Lee JH, Lee JH, et al. Allogeneic hematopoietic cell transplantation in adult patients with myelodysplastic/myeloproliferative neoplasms. Blood Res. 2013; 48:178–184. [PubMed: 24086937]
- 25. Park S, Labopin M, Yakoub-Agha I, et al. Allogeneic stem cell transplantation for chronic myelomonocytic leukemia: a report from the Societe Francaise de Greffe de Moelle et de Therapie Cellulaire. Eur J Haematology. 2013; 90:355–364.
- 26. Bajel A, Curley C, Ming Lim AB, et al. Allogeneic stem cell transplantation (allo-SCT) for chronic myelomonocytic leukemia – a Multiceentre Australian Experience: Prognostic Factors for Survival and Relapse. American Society for Hematology Annual Meeting Abstracts. :1927.
- Sanchez ME, Singh Abbi KK, Tamari R, et al. Allogeneic transplantation for chronic myelomonocytic leukemia (CMML) is associated with high disease-free survival even in the setting of high risk disease. American Society for Hematology Annual Meeting Abstracts. :2575.
- 28. Greenberg P, Cox C, LeBeau MM, et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood. 1997; 89(6):2079–88. [PubMed: 9058730]
- 29. Germing U, Strupp CA, Gattermann N. New prognostic parameters for chronic myelomonocytic leukemia. Blood. 2002; 100(2):731–732. [PubMed: 12123232]
- Such E, Cervera J, Costa D, et al. Cytogenetic risk stratification in chronic myelomonocytic leukemia. Haematologica. 2011; 96:375–383. [PubMed: 21109693]
- Patnaik MM, Padron E, LaBorde RR, et al. Mayo prognostic model for WHO-defined chronic myelomonocytic leukemia: ASXL1 and spliceosome component mutations and outcomes. Leukemia. 2013; 27:1504–1510. [PubMed: 23531518]
- 32. De Lima M, Giralt S, Thall PF, et al. Maintenance therapy with low-dose azacitidine after allogeneic hematopoietic stem cell transplantation for recurrent acute myelogenous leukemia or myelodysplastic syndrome: a dose and schedule finding study. Cancer. 2010; (116):5420–5431. [PubMed: 20672358]
- 33. Craddock C, Jilani N, Siddique S, et al. Tolerability and clinical activity of posttransplantation azacitidine in patients allografted for acute myeloid leukemia treated on the RICAZA trial. Biol Blood Marrow Transplant. 2016:385–390. [PubMed: 26363443]
- Remberger M, Ringden O, Blau IW, et al. No difference in graft-versus-host disease, relapse, and survival comparing peripheral stem cells to bone marrow using unrelated donors. Blood. 2001; 98:1739–1745. [PubMed: 11535506]
- 35. Eapen M, Logan BR, Confer DL, et al. Peripheral blood grafts from unrelated donors are associated with increased acute and chronic GVHD without improved survival. Biol Blood Marrow Transplant. 2007; 13:1461–1468. [PubMed: 18022576]
- 36. Khera N, Majhail NS, Brazauskas R, et al. Comparisons of characteristics and outcomes of trial participants and non-participants: example of Blood and Marrow Transplant Clinical Trials Network 0201 Trial. Biol Blood Marrow Transplant. 2015; 21:1815–1822. [PubMed: 26071866]
- Silverman LR, Demakos EP, Peterson BL, et al. Randomized controlled trial of azacitidine in patients with myelodysplastic syndrome: a study of the cancer and leukemia group B. J Clin Oncol. 2002; 20:2429–2440. [PubMed: 12011120]
- Kantarjian H, Issa JP, Rosenfeld CS, et al. Decitabine improves patient outcomes in myelodysplastic syndromes: results of a phase III randomized study. Cancer. 2006; 106:1794– 1803. [PubMed: 16532500]
- Wijermans P, Lubbert M, Verhoef G, et al. Low-dose 5-aza-2'-deoxycytidine, a DNA hypomethylating agent, for the treatment of high-risk myelodysplastic syndrome: a multicenter phase II study in elderly patients. J Clin Oncol. 2000; 18:956–962. [PubMed: 10694544]
- 40. Costa R, Abdulhaq H, Haq B, et al. Activity of azacitidine in chronic myelomonocytic leukemia. Cancer. 2011; 117(12):2690–6. [PubMed: 21656746]
- Braun T, Itzykson R, Renneville A, et al. Molecular predictors of response to decitabine in advanced chronic myelomonocytic leukemia: a phase 2 trial. Blood. 2011; 118(14):3824–31. [PubMed: 21828134]


 Ades L, Sekeres MA, Wolfromm A, et al. Predictive factors of response and survival among chronic myelomonocytic leukemia patients treated with azacitidine. Leuk Res. 2013; 37(6):609– 13. [PubMed: 23415110]


Highlights

• Hematopoietic cell transplant is an important and potentially curative treatment option for patients with chronic myelomonocytic leukemia.


- Higher CPSS scores, lower performance status, and bone marrow graft are associated with inferior survival post-BMT.
- Treatment with hypomethylating agents or chemotherapy prior to transplant did not impact transplant outcomes.


Liu et al.

Liu et al.

Table 1

Characteristics of patients received allogeneic HCT for CMML between 2001 and 2012

Number of patients 209 Number of centers 94 Patient-related 94 Age, median 57 (23–74) Gender 146 (70) Female 63 (30) Karnofsky score 90–100% 90–100% 127 (61) < 90% 74 (35) Missing 8 (4) Disease-related 1 Time from diagnosis to transplant, months 8 (2–170) HMA and chemotherapy prior to transplant 8 (4) Disease-related 1 Time from diagnosis to transplant, months 8 (2–170) HMA and chemotherapy prior to transplant 9 (9) HMA & chemo 6 (3) No HMA or chemo 106 (51) Missing 4 (2) CMML-1 140 (67) CMML-2 52 (25) Missing 17 (8) Blast in marrow prior to transplant 5% 5% 136 (65) > 5% 56 (27) Missing 17 (8) Intermediate-1 52 (25) <th>*</th> <th>e</th>	*	e
Number of centers 94 Patient-related 34 Age, median $57 (23-74)$ Gender 36 Male $146 (70)$ Female $63 (30)$ Karnofsky score $90-100\%$ $90-100\%$ $127 (61)$ $< 90\%$ $74 (35)$ Missing $8 (4)$ Disease-related 310 Time from diagnosis to transplant, months $8 (2-170)$ HMA and chemotherapy prior to transplant $4 (2)$ Chemo $19 (9)$ HMA & chemo $6 (3)$ No HMA or chemo $106 (51)$ Missing $4 (2)$ CMML-1 vs. CMML-2 $52 (25)$ Missing $17 (8)$ Blast in marrow prior to transplant 5% 5% $56 (27)$ Missing $17 (8)$ Intermediate-1 $52 (25)$ Intermediate-2 $63 (30)$ HIP $16 (8)$ Missing $40 (19)$ Platelet count prior to transplant <	Variable	N (%)
Patient-related 57 (23–74) Age, median 57 (23–74) Gender 146 (70) Female 63 (30) Karnofsky score 90–100% 90–100% 127 (61) < 90%	Number of patients	209
Age, median 57 (23–74) Gender 146 (70) Female 63 (30) Karnofsky score 90–100% 90–100% 127 (61) < 90%	Number of centers	94
Gender Male 146 (70) Female 63 (30) Karnofsky score 90–100% 127 (61) $90-100\%$ 74 (35) Missing 8 (4) Disease-related 8 Time from diagnosis to transplant, months 8 (2–170) HMA and chemotherapy prior to transplant 8 (2–170) HMA 74 (35) Chemo 19 (9) HMA & chemo 6 (3) No HMA or chemo 106 (51) Missing 4 (2) CMML-1 vs. CMML-2 52 (25) Missing 17 (8) Blast in marrow prior to transplant 5% 5% 56 (27) Missing 17 (8) HCT Specific CPSS 26 (25) Intermediate-1 52 (25) Intermediate-2 63 (30) High 16 (8) Missing 40 (19) Platelet count prior to transplant 100 × 10 ⁹ /L 100 × 10 ⁹ /L 88 (42) < 100 × 10 ⁹ /L 88 (42) < 100 × 10 ⁹ /L 121 (58) ANC prior to transplant	Patient-related	
Male 146 (70) Female 63 (30) Karnofsky score 90–100% 90–100% 127 (61) $<$ 90% 74 (35) Missing 8 (4) Disease-related 8 (2–170) HMA and chemotherapy prior to transplant 8 (2–170) HMA and chemotherapy prior to transplant 8 (2–170) HMA 74 (35) Chemo 19 (9) HMA & chemo 6 (3) No HMA or chemo 106 (51) Missing 4 (2) CMML-1 140 (67) CMML-2 52 (25) Missing 17 (8) Blast in marrow prior to transplant 5% 5% 136 (65) >5% 56 (27) Missing 17 (8) HCT Specific CPSS 100 Low 38 (18) Intermediate-1 52 (25) Intermediate-2 63 (30) High 16 (8) Missing 40 (19) Platelet count prior to transplant 100 × 10 ⁹ /L (100 × 10 ⁹ /L 88 (42) <td>Age, median</td> <td>57 (23–74)</td>	Age, median	57 (23–74)
Female 63 (30) Karnofsky score 90–100% 127 (61) $90-100\%$ 74 (35) Missing 8 (4) Disease-related Time from diagnosis to transplant, months 8 (2–170) HMA and chemotherapy prior to transplant 8 (2–170) HMA and chemotherapy prior to transplant 90 (9) HMA & chemo 6 (3) No HMA or chemo 106 (51) Missing 4 (2) CMML-1 140 (67) CMML-2 52 (25) Missing 17 (8) Blast in marrow prior to transplant 5% 5% 136 (65) >5% 56 (27) Missing 17 (8) HCT Specific CPSS 100 (7) Low 38 (18) Intermediate-1 52 (25) Intermediate-2 63 (30) High 16 (8) Missing 40 (19) Platelet count prior to transplant 100 × 10 ⁹ /L $100 × 10^9/L$ 88 (42) $< 100 × 10^9/L$ 88 (42) $< 100 × 10^9/L$ 121 (58) </td <td>Gender</td> <td></td>	Gender	
Karnofsky score $90-100\%$ 127 (61) $< 90\%$ 74 (35) Missing 8 (4) Disease-related 10 Time from diagnosis to transplant, months 8 (2–170) HMA and chemotherapy prior to transplant 8 (2–170) HMA and chemotherapy prior to transplant 90 (9) HMA & chemo 6 (3) No HMA or chemo 106 (51) Missing 4 (2) CMML-1 vs. CMML-2 52 (25) Missing 17 (8) Blast in marrow prior to transplant 5% 5% 136 (65) >5% 56 (27) Missing 17 (8) HCT Specific CPSS 100 × 10% Low 38 (18) Intermediate-1 52 (25) Intermediate-2 63 (30) High 16 (8) Missing 40 (19) Platelet count prior to transplant 100 × 10%/L $100 \times 10^9/L$ 88 (42) $< 100 \times 10^9/L$ 121 (58) ANC prior to transplant 143 (68)	Male	146 (70)
90–100% 127 (61) <90%	Female	63 (30)
< 90%	Karnofsky score	
Missing 8 (4) Disease-related 8 (2–170) HMA and chemotherapy prior to transplant 8 (2–170) HMA and chemotherapy prior to transplant 9 (9) HMA & chemo 6 (3) No HMA or chemo 106 (51) Missing 4 (2) CMML-1 vs. CMML-2 2 (25) Missing 17 (8) Blast in marrow prior to transplant 5% 5% 136 (65) >5% 56 (27) Missing 17 (8) Blast in marrow prior to transplant 5% (25) Low 38 (18) Intermediate-1 52 (25) Intermediate-2 63 (30) High 16 (8) Missing 40 (19) Platelet count prior to transplant 100 × 10 ⁹ /L $100 \times 10^9/L$ 88 (42) <100 × 10 ⁹ /L 121 (58) ANC prior to transplant 143 (68)	90–100%	127 (61)
Disease-related Time from diagnosis to transplant, months 8 (2–170) HMA and chemotherapy prior to transplant HMA HMA 74 (35) Chemo 19 (9) HMA & chemo 6 (3) No HMA or chemo 106 (51) Missing 4 (2) CMML-1 vs. CMML-2 22 (25) Missing 17 (8) Blast in marrow prior to transplant 5% 5% 136 (65) > 5% 56 (27) Missing 17 (8) HCT Specific CPSS 22 (25) Intermediate-1 52 (25) Intermediate-2 63 (30) High 16 (8) Missing 40 (19) Platelet count prior to transplant 100 × 10 ⁹ /L 100 × 10 ⁹ /L 88 (42) <100 × 10 ⁹ /L 121 (58) ANC prior to transplant 143 (68)	< 90%	74 (35)
Time from diagnosis to transplant, months 8 (2–170) HMA and chemotherapy prior to transplant 19 (9) HMA 74 (35) Chemo 19 (9) HMA & chemo 6 (3) No HMA or chemo 106 (51) Missing 4 (2) CMML-1 vs. CMML-2 22 (25) Missing 17 (8) Blast in marrow prior to transplant 5% 5% 136 (65) >5% 56 (27) Missing 17 (8) HCT Specific CPSS 10 Low 38 (18) Intermediate-1 52 (25) Intermediate-2 63 (30) High 16 (8) Missing 40 (19) Platelet count prior to transplant 100 × 10 ⁹ /L $(100 \times 10^9/L)$ 88 (42) $< 100 \times 10^9/L$ 88 (42) $< 100 \times 10^9/L$ 121 (58) ANC prior to transplant 143 (68)	Missing	8 (4)
HMA and chemotherapy prior to transplant HMA 74 (35) Chemo 19 (9) HMA & chemo 6 (3) No HMA or chemo 106 (51) Missing 4 (2) CMML-1 vs. CMML-2 CMML-1 CMML-1 140 (67) CMML-2 52 (25) Missing 17 (8) Blast in marrow prior to transplant 5% 5% 56 (27) Missing 17 (8) HCT Specific CPSS 100 Low 38 (18) Intermediate-1 52 (25) Intermediate-2 63 (30) High 16 (8) Missing 40 (19) Platelet count prior to transplant 100 × 10 ⁹ /L 100 × 10 ⁹ /L 88 (42) <100 × 10 ⁹ /L 121 (58) ANC prior to transplant 143 (68)	Disease-related	
HMA 74 (35) Chemo 19 (9) HMA & chemo 6 (3) No HMA or chemo 106 (51) Missing 4 (2) CMML-1 vs. CMML-2 2 CMML-1 140 (67) CMML-2 52 (25) Missing 17 (8) Blast in marrow prior to transplant 5% 5% 136 (65) >5% 56 (27) Missing 17 (8) HCT Specific CPSS 100 Low 38 (18) Intermediate-1 52 (25) Intermediate-2 63 (30) High 16 (8) Missing 40 (19) Platelet count prior to transplant 100 × 10 ⁹ /L 100 × 10 ⁹ /L 88 (42) <100 × 10 ⁹ /L 121 (58) ANC prior to transplant 143 (68)	Time from diagnosis to transplant, months	8 (2–170)
Chemo 19 (9) HMA & chemo 6 (3) No HMA or chemo 106 (51) Missing 4 (2) CMML-1 vs. CMML-2 2 CMML-1 140 (67) CMML-2 52 (25) Missing 17 (8) Blast in marrow prior to transplant 5% 5% 136 (65) >5% 56 (27) Missing 17 (8) HCT Specific CPSS 17 (8) Low 38 (18) Intermediate-1 52 (25) Intermediate-2 63 (30) High 16 (8) Missing 40 (19) Platelet count prior to transplant 100 × 10 ⁹ /L $(100 \times 10^9/L)$ 88 (42) $<100 \times 10^9/L$ 121 (58) ANC prior to transplant 143 (68)	HMA and chemotherapy prior to transplant	
HMA & chemo 6 (3) No HMA or chemo 106 (51) Missing 4 (2) CMML-1 vs. CMML-2 2 CMML-1 140 (67) CMML-2 52 (25) Missing 17 (8) Blast in marrow prior to transplant 5% 5% 136 (65) >5% 56 (27) Missing 17 (8) HCT Specific CPSS 2 Low 38 (18) Intermediate-1 52 (25) Intermediate-2 63 (30) High 16 (8) Missing 40 (19) Platelet count prior to transplant 100 × 10 ⁹ /L $(100 \times 10^9/L)$ 88 (42) $<100 \times 10^9/L$ 88 (42) ANC prior to transplant 121 (58) ANC prior to transplant 143 (68)	HMA	74 (35)
No HMA or chemo 106 (51) Missing 4 (2) CMML-1 vs. CMML-2 140 (67) CMML-2 52 (25) Missing 17 (8) Blast in marrow prior to transplant 5% 5% 136 (65) > 5% 56 (27) Missing 17 (8) HCT Specific CPSS 17 (8) Low 38 (18) Intermediate-1 52 (25) Intermediate-2 63 (30) High 16 (8) Missing 40 (19) Platelet count prior to transplant 100 × 10 ⁹ /L $100 \times 10^9/L$ 88 (42) $<100 \times 10^9/L$ 121 (58) ANC prior to transplant 143 (68)	Chemo	19 (9)
Missing 4 (2) CMML-1 vs. CMML-2 140 (67) CMML-2 52 (25) Missing 17 (8) Blast in marrow prior to transplant 5% 5% 136 (65) > 5% 56 (27) Missing 17 (8) HCT Specific CPSS 177 (8) Low 38 (18) Intermediate-1 52 (25) Intermediate-2 63 (30) High 16 (8) Missing 40 (19) Platelet count prior to transplant 100 × 10 ⁹ /L $(100 \times 10^9/L)$ 88 (42) $< 100 \times 10^9/L$ 121 (58) ANC prior to transplant 143 (68)	HMA & chemo	6 (3)
CMML-1 vs. CMML-2 CMML-1 140 (67) CMML-2 52 (25) Missing 17 (8) Blast in marrow prior to transplant 5% 5% 136 (65) >5% 56 (27) Missing 17 (8) HCT Specific CPSS 17 (8) Low 38 (18) Intermediate-1 52 (25) Intermediate-2 63 (30) High 16 (8) Missing 40 (19) Platelet count prior to transplant 100 × 10 ⁹ /L $100 \times 10^{9}/L$ 88 (42) <100 × 10 ⁹ /L 121 (58) ANC prior to transplant 143 (68)	No HMA or chemo	106 (51)
CMML-1 140 (67) CMML-2 52 (25) Missing 17 (8) Blast in marrow prior to transplant 5% 5% 136 (65) > 5% 56 (27) Missing 17 (8) HCT Specific CPSS 17 (8) Low 38 (18) Intermediate-1 52 (25) Intermediate-2 63 (30) High 16 (8) Missing 40 (19) Platelet count prior to transplant 100 × 10 ⁹ /L $(100 \times 10^9/L)$ 88 (42) $< 100 \times 10^9/L$ 121 (58) ANC prior to transplant 143 (68)	Missing	4 (2)
CMML-2 52 (25) Missing 17 (8) Blast in marrow prior to transplant 5% 5% 136 (65) > 5% 56 (27) Missing 17 (8) HCT Specific CPSS 100×10^{9} Low 38 (18) Intermediate-1 52 (25) Intermediate-2 63 (30) High 16 (8) Missing 40 (19) Platelet count prior to transplant 100×10^{9} /L 100×10^{9} /L 88 (42) $< 100 \times 10^{9}$ /L 121 (58) ANC prior to transplant 143 (68)	CMML-1 vs. CMML-2	
Missing 17 (8) Blast in marrow prior to transplant 136 (65) 5% 136 (65) > 5% 56 (27) Missing 17 (8) HCT Specific CPSS 17 (8) Low 38 (18) Intermediate-1 52 (25) Intermediate-2 63 (30) High 16 (8) Missing 40 (19) Platelet count prior to transplant 100 × 10 ⁹ /L $100 \times 10^9/L$ 88 (42) < 100 × 10 ⁹ /L 121 (58) ANC prior to transplant 143 (68)	CMML-1	140 (67)
Blast in marrow prior to transplant 5% 136 (65) > 5% 56 (27) Missing 17 (8) HCT Specific CPSS 100 × 10% Low 38 (18) Intermediate-1 52 (25) Intermediate-2 63 (30) High 16 (8) Missing 40 (19) Platelet count prior to transplant 100 × 10%/L $(100 \times 10^{9}/L)$ 88 (42) $< 100 \times 10^{9}/L$ 121 (58) ANC prior to transplant 143 (68)	CMML-2	52 (25)
5% 136 (65) > 5% 56 (27) Missing 17 (8) HCT Specific CPSS 100 (19) Low 38 (18) Intermediate-1 52 (25) Intermediate-2 63 (30) High 16 (8) Missing 40 (19) Platelet count prior to transplant 100 × 10 ⁹ /L $(100 \times 10^9/L)$ 88 (42) <100 × 10 ⁹ /L 121 (58) ANC prior to transplant 143 (68)	Missing	17 (8)
> 5% $56 (27)$ Missing 17 (8) HCT Specific CPSS $17 (8)$ Low $38 (18)$ Intermediate-1 $52 (25)$ Intermediate-2 $63 (30)$ High $16 (8)$ Missing $40 (19)$ Platelet count prior to transplant $100 \times 10^9/L$ $(100 \times 10^9/L)$ $88 (42)$ $< 100 \times 10^9/L$ $121 (58)$ ANC prior to transplant $1500 / uL$ $1500 / uL$ $143 (68)$	Blast in marrow prior to transplant	
Missing 17 (8) HCT Specific CPSS 38 (18) Intermediate-1 52 (25) Intermediate-2 63 (30) High 16 (8) Missing 40 (19) Platelet count prior to transplant 100 × 10 ⁹ /L $(100 \times 10^9/L)$ 88 (42) $< 100 \times 10^9/L$ 121 (58) ANC prior to transplant 143 (68)	5%	136 (65)
HCT Specific CPSS Low 38 (18) Intermediate-1 52 (25) Intermediate-2 63 (30) High 16 (8) Missing 40 (19) Platelet count prior to transplant 100 × 10 ⁹ /L 100×10^{9} /L 88 (42) < 100 × 10 ⁹ /L 121 (58) ANC prior to transplant 143 (68)	> 5%	56 (27)
Low 38 (18) Intermediate-1 52 (25) Intermediate-2 63 (30) High 16 (8) Missing 40 (19) Platelet count prior to transplant 100 × 10 ⁹ /L $100 \times 10^9/L$ 88 (42) < 100 × 10 ⁹ /L 121 (58) ANC prior to transplant 143 (68)	Missing	17 (8)
Intermediate-1 52 (25) Intermediate-2 63 (30) High 16 (8) Missing 40 (19) Platelet count prior to transplant $100 \times 10^9/L$ $(100 \times 10^9/L)$ 88 (42) $< 100 \times 10^9/L$ 121 (58) ANC prior to transplant 143 (68)	HCT Specific CPSS	
Intermediate-2 63 (30) High 16 (8) Missing 40 (19) Platelet count prior to transplant $100 \times 10^9/L$ $100 \times 10^9/L$ 88 (42) $< 100 \times 10^9/L$ 121 (58) ANC prior to transplant 1500 /uL 1500 /uL 143 (68)	Low	38 (18)
High 16 (8) Missing 40 (19) Platelet count prior to transplant $100 \times 10^9/L$ $100 \times 10^9/L$ 88 (42) $< 100 \times 10^9/L$ 121 (58) ANC prior to transplant 143 (68)	Intermediate-1	52 (25)
Missing 40 (19) Platelet count prior to transplant $100 \times 10^9/L$ 88 (42) < 100 × 10^9/L	Intermediate-2	63 (30)
Platelet count prior to transplant $100 \times 10^9/L$ 88 (42) $< 100 \times 10^9/L$ 121 (58) ANC prior to transplant 1500 /uL 1500 /uL 143 (68)	High	16 (8)
$\begin{array}{ccc} 100 \times 10^{9}/L & 88 \ (42) \\ < 100 \times 10^{9}/L & 121 \ (58) \\ \mbox{ANC prior to transplant} & \\ 1500 \ /uL & 143 \ (68) \end{array}$	Missing	40 (19)
< 100 × 10 ⁹ /L 121 (58) ANC prior to transplant 1500 /uL 143 (68)	Platelet count prior to transplant	
ANC prior to transplant 1500 /uL 143 (68)	$100 \times 10^9/L$	88 (42)
1500 /uL 143 (68)	$< 100 \times 10^9/L$	121 (58)
	ANC prior to transplant	
< 1500 /uL 54 (26)	1500 /uL	143 (68)
	< 1500 /uL	54 (26)

Variable	N (%)
Missing	12 (6)
Transplant-related	
Graft type	
Bone marrow	33 (16)
Peripheral blood	176 (84)
Type of donor	
HLA-identical sibling	73 (35)
Well-matched unrelated	95 (45)
Partially-matched unrelated	32 (15)
Mis-matched unrelated	4 (2)
Unrelated (matching indeterminable)	5 (2)
Donor age, median	
HLA-identical sibling	54 (27–74)
URD	34 (19–61)
D-R sex match	
M-M	96 (46)
M-F	40 (19)
F-M	50 (24)
F-F	22 (11)
Missing	1 (<1)
D-R CMV status	
+/+	47 (22)
+/	24 (11)
_/+	63 (30)
/	65 (31)
Missing	10 (5)
Year of transplant	
2001–2003	39 (19)
2004–2006	51 (24)
2007–2009	53 (25)
2010–2012	66 (32)
Conditioning regimen combination	
Myeloablative	105 (50)
RIC/NMA	99 (48)
Missing	5 (2)
Serotherapy used	
ATG alone	58 (28)
CAMPATH alone	8 (4)
No ATG or CAMPATH	132 (63)
Missing	11 (5)
GVHD prophylaxis	
66. L L	

Biol Blood Marrow Transplant. Author manuscript; available in PMC 2018 May 01.

78 (37)

CSA based

Variable	N (%)
TAC based	127 (61)
MTX alone	2 (<1)
Missing	2 (<1)
Median follow-up of survivors (range), months	51 (3–122)

Table 2

Univariate analysis for patients who received allogeneic HCT for CMML between 2001 and 2012

	Study pop	oulation (N = 209)
Outcomes	N Eval	Prob (95% CI)
Neutrophil engraftment	206	
28-day		92 (88–95)%
100-day		97 (95–99)%
Platelet recovery	207	
28-day		66 (59–72)%
100-day		86 (81–90)%
Acute GVHD	209	
100-day		36 (30–43)%
Chronic GVHD	209	
1-year		45 (38–52)%
3-year		47 (40–54)%
5-year		47 (40–54)%
Relapse	200	
1-year		46 (39–53)%
3-year		50 (43–57)%
5-year		52 (45–59)%
Treatment related mortality	200	
1-year		19 (14–25)%
3-year		23 (18-30)%
5-year		28 (21-35)%
Disease free survival	200	
1-year		35 (28–42)%
3-year		27 (21–33)%
5-year		20 (14–27)%
Overall survival	209	
1-year		50 (43–57)%
3-year		38 (31–45)%
5-year		30 (23–37)%

Author Manuscript

Multi-variate analysis for adult CMML subjects who received allogeneic HCT between 2001 and 2012¹

HCT Specific CPSS N RR 959 Low & Intermediate 1 88 1 959 Low & Intermediate 2 & High 79 1.927 1.299 Missing 42 1.571 0.976 KPS 90–100% 127 1 209 Missing 74 1.717 1.200 Missing 8 1.444 0.625 Missing 33 1 9 PB 74 1.716 0.534 Missing 74 1.716 0.533 PB 93 1 7 1 PB 93 1 7 1 PB 93 1 7 1 PB 90% vs. Missing 1 1 3 0.74 Mitermediate 2 & High vs. Missing N RR 9 9	95% CI p-value 1.299-2.858 0.0011 0.976-2.529 0.0627 1.200-2.457 0.0031 1.200-2.457 0.0031 0.625-3.336 0.394 0.371-0.917 0.0196 0.774-1.942 0.3845 0.508-2.784 0.6896 95% CI p-value	
88 1 79 1.927 42 1.571 127 1 74 1.717 8 1.444 8 1.444 176 0.584 1.1893 1.1893 1.1893 85 1 76 1.38 39 1.137		
79 1.927 42 1.571 127 1 74 1.717 8 1.444 33 1 176 0.584 176 0.584 176 0.584 176 0.584 176 0.584 176 0.584 176 0.584 176 0.584 176 0.584 1.1393 1.1393 39 1.137		
42 1.571 127 1 74 1.717 8 1.444 8 1.444 33 1 176 0.584 1.2263 1.2263 1.2263 1.2263 1.1893 85 1 76 1.38 39 1.137		
127 1 74 1.717 8 1.444 33 1 176 0.584 1.1893 1.1893 1.1893 85 1 76 1.38 39 1.137		
127 1 74 1.717 8 1.444 33 1 176 0.584 1.1893 1.1893 1.1893 85 1 76 1.38 39 1.137		
74 1.717 8 1.444 33 1 176 0.584 1.2263 1.1893 1.1893 85 1 76 1.38 39 1.137		
8 1.444 33 1 176 0.584 1.263 1.1893 1.1893 1.1893 85 1 76 1.38 39 1.137		
33 1 176 0.584 1.2263 1.2263 1.1893 1.1893 85 1 76 1.38 39 1.137		
33 1 176 0.584 1.2263 1.1893 1.1893 1.1893 85 1 76 1.38 39 1.137		
176 0.584 1.2263 1.1893 1.1893 1.1893 85 1 76 1.38 39 1.137		
1.2263 1.1893 N RR 85 1 76 1.38 39 1.137		
1.2263 1.1893 N RR 85 1 76 1.38 39 1.137		
1.1893 N RR 85 1 76 1.38 39 1.137		
N RR 85 1 76 1.38 39 1.137		Overall n-value
N RR 85 1 76 1.38 39 1.137		
85 1 76 1.38 39 1.137		
76 1.38 1 39 1.137		0.2065
39 1.137	0.965–1.972 0.0772	
KPS	0.729–1.773 0.5722	
90-100% 119 1		0.0183
<90% 74 1.607 1.156	1.156–2.234 0.0047	
Missing 7 1.297 0.562	0.562–2.997 0.5423	
Contrast		
Intermediate 2 & High vs. Missing 1.2138 0.781	0.781–1.886 0.3885	
<90% vs. Missing 1.2387 0.530	0.530–2.894 0.621	
3. TRM		Overall

8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2						
85 1 76 1.485 0.762-2.895 0.2455 39 2.183 1.089-4.375 0.0277 119 1 0.0277 0.0277 119 1 2.15 0.2165 0.0861 74 2.15 1.219-3.790 0.0081 74 2.15 0.315-5.768 0.6869 7 1.348 0.315-5.768 0.6869 7 1.348 0.315-5.768 0.6869 7 1.348 0.315-5.768 0.6869 7 1.348 0.315-5.768 0.6869 7 1.348 0.369-6.887 0.5321 8 1 0.369-6.887 0.5321 7 1.321 0.369-6.887 0.5321 8 1 0.369-6.887 0.5321 8 1 0.369-6.887 0.2851 8 1 0.369-6.887 0.948 8 1 0.544-1.890 0.96556 70 1.266	HCT Specific CPSS	z	RR	95% CI	p-value	p-value
76 1.485 $0.762-2.895$ 0.2455 39 2.183 $1.089-4.375$ 0.0277 119 1 0.215 0.0277 74 2.15 $1.219-3.790$ 0.0081 74 2.15 $1.219-3.790$ 0.0081 74 2.15 $1.219-3.790$ 0.0081 74 2.15 $1.219-3.790$ 0.0081 74 2.15 $0.315-5.768$ 0.6869 7 1.348 $0.315-5.768$ 0.6869 7 1.348 $0.315-5.768$ 0.0081 7 1.348 $0.344-1.343$ 0.2568 8 1 $0.689-5.009$ 0.01929 8 1 $0.369-6.887$ 0.2331 8 1 $0.369-2.009$ 0.01929 76 1.321 $0.369-2.009$ 0.01929 8 1 $0.369-2.033$ 0.2441 8 1 $0.719-2.057$ 0.9498 79 1.0164 $0.544-1.890$ 0.96566 8	Low & Intermediate 1	85	1			0.0884
39 2.183 $1.089-4.375$ 0.0277 1191 1 2.15 $1.219-3.790$ 0.0081 74 2.15 $1.219-3.790$ 0.0081 74 2.15 $1.219-3.790$ 0.0081 74 2.15 $1.219-3.790$ 0.0081 74 2.15 $1.219-3.790$ 0.6869 75 1.344 $0.315-5.768$ 0.6869 76 1.344 $0.315-5.768$ 0.2668 85 1 $0.393-1.316$ 0.1929 76 1.321 $0.869-2.009$ 0.1929 39 0.719 $0.393-1.316$ 0.2851 76 1.321 $0.869-2.009$ 0.1929 39 0.719 $0.393-1.316$ 0.2851 76 1.321 $0.869-2.009$ 0.1929 88 1 $0.779-2.057$ 0.9418 88 1 $0.544-1.890$ 0.9656 73 1 $0.544-1.890$ 0.9656 88 1 $0.544-1.890$ 0.9656 73 1.014 $0.544-1.890$ 0.9656 73 1.014 $0.544-1.890$ 0.9656 73 1.003 $0.533-1.785$ 0.1025 86 $1.50-5.156$ 0.0006 73 $0.577-2.304$ 0.1727 8749 $0.677-2.304$ 0.478 90349 $0.211-0.665$ 0.0008	Intermediate 2 & High	76	1.485	0.762-2.895	0.2455	
119 1 74 2.15 1.219-3.790 0.0081 7 1.348 0.315-5.768 0.6869 7 1.348 0.315-5.768 0.6869 8 1.348 0.315-5.768 0.6869 1.5943 0.369-6.887 0.5321 0.5321 1.5943 0.369-6.887 0.5321 0.5321 1.5943 0.369-6.887 0.5321 0.5321 1.5943 0.369-6.887 0.5321 0.5321 1.5943 0.369-6.887 0.5321 0.5321 76 1.321 0.869-2.009 0.1929 39 0.719 0.369-1.316 0.1929 39 0.719 0.393-1.316 0.1929 88 1 0.869-2.009 0.1929 88 1 0.544-1.890 0.9656 73 1.266 0.779-2.057 0.3418 73 1.014 0.544-1.890 0.9656 73 1.014 0.544-1.890 0.9656	Missing	39	2.183	1.089-4.375	0.0277	
119 1 74 2.15 1.219-3.790 0.0081 7 2.15 1.219-3.790 0.0081 7 1.348 0.315-5.768 0.6869 7 1.348 0.315-5.768 0.6869 8 0.5803 0.344-1.343 0.2668 1.5943 0.369-6.887 0.5321 8 1 0.6803 0.344-1.343 1.5943 0.369-6.887 0.5321 85 1 0.6869-2.009 0.1929 39 0.719 0.393-1.316 0.1929 39 0.719 0.393-1.316 0.1929 39 0.719 0.393-1.316 0.1929 30 0.719 0.393-1.316 0.1929 8 1 0.869-2.009 0.0498 8 1 0.544-1.890 0.9656 70 1.2836 1.001-3.372 0.9656 8 1 0.544-1.890 0.9656 70 1.0163 0.567-2.156 0	KPS					
742.151.219-3.7900.008171.3480.315-5.7680.686971.3480.315-5.7680.68691.59430.344-1.3430.26681.59430.369-6.8870.5321851 $259-6.887$ 0.5321761.3210.369-2.0090.1929390.7190.393-1.3160.1929390.7190.393-1.3160.2851761.3210.869-2.0090.19298810.7190.393-1.3161.83691.001-3.3720.04988810.393-1.3160.3418791.2660.779-2.0570.34188810.544-1.8900.96567310.544-1.8900.96567310.544-1.8900.96567310.544-1.8900.96567310.544-1.8900.96567310.544-1.8900.96567310.544-1.8900.96567310.544-1.8900.96567310.544-1.8900.9656731.10140.544-1.8900.96567310.544-1.8900.96567310.694-7.6510.17277440.511-0.6650.00067440.511-0.6650.0008	90-100%	119	-			0.0301
7 1.348 0.315-5.768 0.6869 1.5943 0.344-1.343 0.2668 1.5943 0.369-6.887 0.5321 1.5943 0.369-6.887 0.5321 1.5943 0.369-6.887 0.5321 1.5943 0.369-6.887 0.5321 1.5943 0.369-6.887 0.5321 85 1 95% CI p-value 85 1 0.869-2.009 0.1929 39 0.719 0.393-1.316 0.2851 39 0.719 0.393-1.316 0.2851 39 0.719 0.393-1.316 0.9581 1.8369 1.001-3.372 0.0498 0.0498 8 1 0.369-1.316 0.3418 8 1 0.544-1.890 0.9656 73 1.266 0.779-2.057 0.3418 73 1.266 0.779-2.057 0.3418 73 1.266 0.560-5.156 0.0006 5 2.304 0.694-7.651 0.1727	%06>	74	2.15	1.219–3.790	0.0081	
0.6803 0.344-1.343 0.2668 1.5943 0.369-6.887 0.5321 1.5943 0.369-6.887 0.5321 85 1 95% CI p-value 85 1 0.393-1.316 0.1929 39 0.719 0.393-1.316 0.1929 39 0.719 0.393-1.316 0.1929 39 0.719 0.393-1.316 0.1929 39 0.719 0.393-1.316 0.2851 76 1.321 0.869-2.009 0.1929 88 1 0.544-1.890 0.9656 70 1.266 0.779-2.057 0.3418 73 1 0.544-1.890 0.9656 73 1 0.544-1.890 0.9656 73 1 0.544-1.890 0.9656 73 1 0.544-1.890 0.9656 73 1 0.544-1.890 0.9656 74 0.544-1.890 0.96656 0.10006 73 1.260-5.156	Missing	٢	1.348	0.315-5.768	0.6869	
0.6803 0.344-1.343 0.2668 1.5943 0.369-6.887 0.5321 N RR 95% CI p-value 85 1 95% CI p-value 76 1.321 0.869-2.009 0.1929 39 0.719 0.393-1.316 0.2851 39 0.719 0.393-1.316 0.2851 39 0.719 0.393-1.316 0.2851 39 0.719 0.393-1.316 0.2851 70 1.8369 1.001-3.372 0.0498 8 1 0.393-1.316 0.2851 73 1 0.393-1.316 0.3418 8 1 0.393-1.316 0.3418 73 1 0.544-1.890 0.9656 73 1 0.544-1.890 0.9656 73 1 0.544-1.890 0.9656 73 1 0.560-5.156 0.0006 73 1 0.604-7.651 0.1727 748 0.677-2.304	Contrast					
1.5943 0.369-6.887 0.5321 N RR 95% Cl p-value 85 1 0.1929 0.1929 76 1.321 0.869-2.009 0.1929 76 1.321 0.869-2.009 0.1929 76 1.321 0.869-2.009 0.1929 76 1.321 0.869-2.009 0.1929 78 1.321 0.869-2.009 0.1929 88 1 0.393-1.316 0.2851 79 1.266 0.779-2.057 0.9408 73 1 0.544-1.890 0.9656 73 1 0.544-1.890 0.9656 73 1 0.544-1.890 0.9656 73 1 0.544-1.890 0.9656 73 1 0.544-1.890 0.9656 73 1 0.544-1.890 0.9656 73 1 0.544-1.890 0.9656 73 1 0.544-1.890 0.9656 73 1 0.544-1.890 0.9656 73 1 0.544-1.890 0.9656 73 1 0.544-1.890 0.9656 73 1 0.560-5.156 0.0006 74 0.694-7	Intermediate 2 & High vs. Missing		0.6803	0.344 - 1.343	0.2668	
N RR 95% CI p-value 85 1 76 1.321 0.869-2.009 0.1929 39 0.719 0.393-1.316 0.2851 39 0.719 0.393-1.316 0.2851 1.8369 1.001-3.372 0.0498 N RR 95% CI p-value 88 1 79 1.266 0.779-2.057 0.3418 73 1 73 1 0.544-1.890 0.9656 73 1 73 1 73 1 73 1 73 1	<90% vs. Missing		1.5943	0.369–6.887	0.5321	
N RR 95% CI p-value 85 1 85 1 0.869-2.009 0.1929 76 1.321 0.869-2.009 0.1929 39 0.719 0.393-1.316 0.2851 39 0.719 0.393-1.316 0.2851 1 1.8369 1.001-3.372 0.0498 8 1 95% CI p-value 88 1 0.3418 79 1.266 0.779-2.057 0.3418 73 1 0.544-1.890 0.9656 73 1 0.544-1.890 0.9656 73 1 0.544-1.890 0.9656 73 1 0.544-1.890 0.9656 73 1 0.544-1.890 0.9656 73 1 0.544-1.890 0.9656 73 1 0.544-1.890 0.9656 73 1.260 0.6033-1.775 0.1025 7	4. Relapse					Overall
85 1 76 1.321 0.869-2.009 0.1929 39 0.719 0.393-1.316 0.2851 39 0.719 0.393-1.316 0.2851 1.8369 1.001-3.372 0.0498 N RR 95% CI p-value 88 1 95% CI p-value 79 1.266 0.779-2.057 0.3418 73 1 95% CI p-value 73 1 0.544-1.890 0.9656 73 1 0.544-1.890 0.9656 73 1 0.544-1.890 0.9656 73 1 0.544-1.890 0.9656 73 1 0.544-1.890 0.9656 73 1 0.544-1.890 0.9656 73 1 0.544-1.890 0.9656 73 1 0.544-1.890 0.9656 73	HCT Specific CPSS	z	RR	95% CI	p-value	p-value
76 1.321 0.869-2.009 0.1929 39 0.719 0.393-1.316 0.2851 1.8369 1.001-3.372 0.0498 N RR 95% CI p-value 88 1 95% CI p-value 79 1.266 0.779-2.057 0.3418 79 1.266 0.779-2.057 0.3418 73 1 0.544-1.890 0.9656 73 1 0.544-1.890 0.9656 73 1 0.544-1.890 0.9656 73 1 0.544-1.890 0.9656 73 1 0.544-1.890 0.9656 73 1 0.544-1.890 0.9656 73 1 0.544-1.890 0.9656 73 1 0.544-1.890 0.9656 73 1 0.544-1.890 0.9656 74 0.544-1.890 0.9656 0.0006 73 1 0.560-5.156 0.1027 74 0.694-7	Low & Intermediate 1	85	1			0.118
39 0.719 0.393-1.316 0.2851 1.8369 1.001-3.372 0.0498 N RR 95% CI p-value 88 1 0.779-2.057 0.3418 79 1.266 0.779-2.057 0.9656 79 1.2166 0.779-2.057 0.9656 73 1 0.544-1.890 0.9656 73 1 0.544-1.890 0.9656 73 1 0.544-1.890 0.9656 73 1 0.544-1.890 0.9656 73 1 0.544-1.890 0.9656 73 1 0.544-1.890 0.9656 73 1 0.544-1.890 0.9656 73 1 0.544-1.890 0.9656 73 1 0.544-1.890 0.9165 73 1 0.563-1.785 0.1006 5 2.304 0.694-7.651 0.1727 6.3749 0.211-0.065 0.0008 0.9478	Intermediate 2 & High	76	1.321	0.869–2.009	0.1929	
1.8369 1.001–3.372 0.0498 N RR 95% CI p-value 88 1 95% CI p-value 79 1.266 0.779–2.057 0.3418 73 1 0.544–1.890 0.9656 73 1 0.544–1.890 0.9656 73 1 0.544–1.890 0.9656 73 1 0.544–1.890 0.9656 73 1 0.544–1.890 0.9656 73 1 0.544–1.890 0.9656 73 1 0.544–1.890 0.9656 73 1 0.544–1.890 0.9656 73 1 0.544–1.890 0.9656 73 1 0.544–1.890 0.9656 73 1 0.544–1.890 0.9656 73 1 0.544–1.890 0.9656 73 1 0.544–1.890 0.9656 73 1 0.544–1.890 0.9656 73 1 0.544–1.890 0.9165 73 1 0.694–7.651 0.1727 74 0.314–0.665 0.0008 0.3749 0.211–0.665 0.0008	Missing	39	0.719	0.393-1.316	0.2851	
1.8369 1.001-3.372 0.0498 N RR 95% CI p-value 88 1 95% CI 0.3418 79 1.266 0.779-2.057 0.3418 73 1 0.544-1.890 0.9656 73 1 0.544-1.890 0.9656 73 1 0.544-1.890 0.9656 73 1 0.544-1.890 0.9656 73 1 0.544-1.890 0.9656 73 1 0.544-1.890 0.9656 73 1 0.544-1.890 0.9656 73 1 0.544-1.890 0.9656 73 1 0.544-1.890 0.9656 73 1 0.544-1.890 0.9656 73 1 0.544-1.890 0.9656 73 1 0.633-1.785 0.8165 74 0.694-7.651 0.1727 7478 0.3749 0.211-0.665 0.0008	Contrast					
N RR 95% CI p-value 88 1 95% CI p-value 88 1 0.779-2.057 0.3418 79 1.266 0.779-2.057 0.3418 72 1.014 0.544-1.890 0.9656 73 1 0.544-1.890 0.9656 73 1 0.544-1.890 0.9656 73 1 0.544-1.890 0.9656 73 1 0.544-1.890 0.9656 73 1 0.544-1.890 0.9656 73 1 0.544-1.890 0.9656 73 1 0.544-1.890 0.9656 73 1 0.633-1.785 0.8165 5 2.304 0.694-7.651 0.1727 6.3749 0.211-0.665 0.0008 0.0008	Intermediate 2 & High vs. Missing		1.8369	1.001–3.372	0.0498	
N RR 95% CI p-value 88 1	5. Acute GVHD					Overall
 88 1 79 1.266 0.779-2.057 0.3418 42 1.014 0.544-1.890 0.9656 73 1 73 1 73 1 5 1.063 0.633-1.785 0.8165 65 2.836 1.560-5.156 0.0006 5 2.304 0.694-7.651 0.1727 1.2483 0.677-2.304 0.478 0.3749 0.211-0.665 0.0008 	HCT Specific CPSS	z	RR	95% CI	p-value	p-value
79 1.266 0.779-2.057 0.3418 42 1.014 0.544-1.890 0.9656 73 1 0.544-1.890 0.9656 95 1.063 0.633-1.785 0.8165 36 2.836 1.560-5.156 0.0006 5 2.304 0.694-7.651 0.1727 1.2483 0.677-2.304 0.478 0.3749 0.211-0.665 0.0008	Low & Intermediate 1	88	1			0.592
42 1.014 0.544-1.890 0.9656 73 1	Intermediate 2 & High	79	1.266	0.779–2.057	0.3418	
73 1 95 1.063 0.633-1.785 0.8165 36 2.836 1.560-5.156 0.0006 5 2.304 0.694-7.651 0.1727 1.2483 0.677-2.304 0.478 0.3749 0.211-0.665 0.0008	Missing	42	1.014	0.544 - 1.890	0.9656	
73 1 95 1.063 0.633-1.785 0.8165 36 2.836 1.560-5.156 0.0006 5 2.304 0.694-7.651 0.1727 1.2483 0.677-2.304 0.478 0.3749 0.211-0.665 0.0008	Donor					
95 1.063 0.633-1.785 36 2.836 1.560-5.156 5 2.304 0.694-7.651 1.2483 0.677-2.304 0.3749 0.211-0.665	HLA identical sibling	73	-			0.0017
36 2.836 1.560-5.156 5 2.304 0.694-7.651 1.2483 0.677-2.304 0.3749 0.211-0.665	Well-matched URD	95	1.063	0.633-1.785	0.8165	
5 2.304 0.694–7.651 1.2483 0.677–2.304 0.3749 0.211–0.665	Partially-matched URD or MM URD	36	2.836	1.560–5.156	0.0006	
1.2483 0.677–2.304 0.3749 0.211–0.665	Missing (URD)	S	2.304	0.694–7.651	0.1727	
1.2483 0.677–2.304 0.3749 0.211–0.665	Contrast					
0.3749 $0.211-0.665$	Intermediate 2 & High vs. Missing		1.2483	0.677-2.304	0.478	
	Well-matched URD vs. Partially-matched or MM URD		0.3749	0.211 - 0.665	0.0008	

Biol Blood Marrow Transplant. Author manuscript; available in PMC 2018 May 01.

Liu et al.

Author Manuscript

Author Manuscript

Author Manuscript

Well-matched URD vs. Missing (URD) Partially-matched or MM URD vs. Missing (URD)		0.4614 1.2308	0.140–1.516 0.2024 0.361–4.198 0.7401	0.2024 0.7401	
6. Chronic GVHD					Overall
HCT Specific CPSS	z	RR	95% CI	p-value	p-value
Low & Intermediate 1	88	1			0.9131
Intermediate 2 & High	<i>6L</i>	1.087	0.681-1.734	0.7263	
Missing	42	1.107	0.623 - 1.967	0.7289	
Contrast					
Intermediate 2 & High vs. Missing		0.9819	0.535-1.802	0.953	
7. OS after relapse ²					Overall
HCT Specific CPSS	z	RR	95% CI	p-value	p-value
Low & Intermediate 1	46	1			0.0262
Intermediate 2 & High	4	1.993	1.199–3.311	0.0078	
Missing	14	1.737	0.836–3.608	0.1389	

⁷The majority of the patients achieved neutrophil engraftment by day 28 and platelet recovery by day 100 (Table 2), therefore multi-variate analysis was not performed for them.

List of abbreviations: disease free survival (DFS), overall survival (OS), transplant related mortality (TRM), non-relapse mortality (NRM), bone marrow (BM), myeloablative (MAC), second primary malignancy (SPM), lactate dehydrogenase (LDH), red blood cell (RBC), peripheral blood (PB)

²Overall survival was compared with relapse instead of using the left-truncated model, so analysis was performed starting at the time of relapse and non-relapse patients were excluded in this model.

	Patien ts	Medi an age	Conditioni ng	Cell source	DF S/ PFS %	Sos Sos	TRM/NR M %	Relapse %	Median follow up, months	Factors predictive of OS
Zang et al (2000) ¹⁰	21	47	MAC: 21 RIC: 0	BM: 21 PB: 0	25 (3 yrs)	39 (3 yrs)	34	23	Unknown	Patients transplanted early (< 12 months from diagnosis) had better survival.
Kroger et al (2002) ¹¹	50	4	MAC: 50 RIC:0	BM: 40 PB: 9	18 (5 yrs)	21 (5 yrs)	52	49	40 (range, 11 to 110)	No correlation
Mittal et al (2004) ¹²	×	51	MAC: 4 RIC: 4	BM: 4 PB: 4	37 (2 yrs)	47 (2 yrs)	13	63	17.5	Number too small
Kerbauy et al (2005) ¹³	43	48	MAC: 41 RIC: 2	BM: 23 PB: 20	41 (4 years)	41 (4 years)	34	23 (4 years)	69 (range, 7 to 171)	MDAPS not correlative. Higher comorbidity scores associated with worse OS
Elliot et al (2006) ¹⁴	17	50	MAC:16 RIC: 1	BM: 8 PB: 7	18 (3 yrs)	18 (3 yrs)	41	41	34.5	No correlation
Laport et al (2008) ¹⁵	Г	59	MAC: 0 RIC: 7	Unknown, likely PB	43 (3 yrs)	43 (3 yrs)	32 (3 years)	57	47 (range, 6 to 89)	Number too small
Krishnamur thy et al (2010) ¹⁴	18	54	MAC:1 RIC 17	BM: 18 PB: 36		31% (3 yrs)	22	44	40 (range, 1 to 59)	None
Eissa et al (2011) ²³	85	51	MAC: 58 RIC: 27	BM: 32 PB: 53	40 (10 yrs)	42 (5 years)	35 (10 years)	27 (10 yrs)	62 (range, 6 to 229)	MDAPS not correlative. Mortality negatively correlated with pre-HCT hematocrit and increased high-risk cytogenetics, higher HCT comorbidity index, and increased age
Lim et al (2013) ²⁴	٢	43	MAC: 3 RIC: 7	BM: 2 PB: 7	51 (5 years)	42% (5 years)	14	29 (5 years)	47.5 (range, 4.6 to 98.8)	Number too small
Park et al (2013) ²⁵	73	53	MAC: 30 RIC: 43	BM: 27 PB: 46	29 (3 years)	42 (2 years) 32 (3 years)	36 (3 years)	29 (3 years)	23 (range, 1–145)	Palpable SPM, transplant performed prior to 2004 correlated with poorer OS

Author Manuscript

Author Manuscript

Author Manuscript

Author Manuscript

Table 4

	Patien ts	Medi an age	Conditioni ng	Cell source	DF S/ PFS	0S %	TRM/NR M %	Relapse %	Median follow up, months	Factors predictive of OS
(2014) ²⁶	57	56	MAC:28 RIC: 29	BM: 3 PB: 54	40 (6 years)	27 (6 years)	39 (6 years)	35 (6 years)	15.3 (range, 0.6 to 154)	In multivariate analysis, age 50yo, non-sibling donor, and lymphocyte count > 2.9 × 10 ⁹ /L were associated with worse OS and PFS. Bone marrow blasts pre- transplant were associated with higher risk of relapse.
Sanchez et al (2014) ²⁷	28	60	MAC: 16 (T-cell depleted) RIC: 12	BM: 2 PB: 23 Cord: 3	74 (3 years)	71 (3 years)	7 (1 year)	13 (1 year)	39.6 (range, 3 to 35)	
Symeonidis et al (2015) ¹⁷	513	53	MAC: 249 (52%) RIC: 226 (48%)	BM: 119 (23%) PB: 394 (77%)	27% (4 years)	33% (4 years)	31% (1 year) 41% (4 years)	32 (4 years)		Patients transplanted in CR had lower probability for non- relapse death and longer survival.
Kongtim et al (2016) ¹⁸	83	57	MAC: 64 (77%)	BM: 35 (42%) PB: 48 (58%)	34% (3 years)	CMML-1/2: 36% (3 years) CMML/A ML: 32% (3 years)	25% (day 100) 31% (1 year)	33% (3 years)	48	Use of HMA therapy was associated with lower relapse at 3 years (22% compared in 35%, p=0.03) and higher PFS at 3 years (43% compared to 27%, p=0.04)

(OS), transplant related mortality (TRM), nonrelapsed mortality (NRM), MDAPS (MD Anderson Prognostic Score)

Liu et al.

Author Manuscript

Author Manuscript

Author Manuscript

Table 5

Prognostic scoring systems in CMML patients

	Patients	External Validation	Variables final scori	included in ng system
MD Anderson prognostic score5	213	No	1	Hemoglobin < 12g/dL
			2	Circulating immature myeloid cells
			3	Absolute lymphocyte count > 2.5×10^9 /l
			4	Bone marrow blasts 10%
Dusseldorf score ^{6,29}	288	No	1	Bone marrow blasts 5%
			2	LDH > 200 u/l
			3	Hemoglobin 9g/dL
			4	Platelets 100×10^{9} /l
Spanish cytogenetic risk stratification system ³⁰	414	No	1	Low risk: normal karyotype or loss of Y chromosome as single anomaly
			2	High risk: presence of trisomy 8 or abnormalities of chromoson 7, or complex karyotype
			3	Intermediate risk: all other abnormalities
CMML-specific prognostic	578	Yes	1	CMML FAB type
scoring system ⁸			2	CMML WHO type
			3	CMML-specific cytogenetics *
			4	RBC transfusion dependence
Mayo prognostic model ³¹	226	Yes	1	Absolute monocyte count > $10 \times 10^9/1$
			2	Presence of circulating blasts
			3	Hemoglobin < 10g/dL
			4	Platelet count $< 100 \times 10^{9}$ /l

*CMML-specific cytogenetic risk classification: low, normal and isolated –Y; intermediate, other abnormalities; and high, trisomy 8, complex karyotype (3 abnormalities), and abnormalities of chromosome 7

Table 6

Causes of death, according to HCT Specific CPSS

Cause of death	Low / Intermediate-1	Intermediate-2 / High
Primary disease	21 (46)	23 (41)
Graft failure	0	2 (4)
GVHD	5 (11)	13 (23)
Infection	3 (7)	7 (13)
IPn/ARDS	3 (7)	0
Organ failure	4 (9)	8 (14)
Secondary malignancy	3 (7)	0
Other cause	3 (7)	2 (4)
Unknown	3 (7)	1 (2)
Missing	1 (2)	0