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Abstract

While recent breakthroughs in discovery of peptide antibiotics and other Peptidic Natural Products 

(PNPs) raised the challenge of developing new algorithms for their dereplication, de novo 
sequencing and identification, the computational technologies for PNP discovery are still in 

infancy. We review recent advances in genome mining, peptidogenomics, and spectral networks 

that are now enabling the high-throughput discovery of new PNPs.

1 Introduction

The golden age of antibiotics, that started in the 1940s. was followed by a decline in the 

pace of antibiotics discovery in the 1990s. However, natural products are again in the center 

of attention as exemplified by the recent discovery of teixobactin [1, 2]. Depending on their 

building blocks, natural products are classified into a variety of chemical classes that include 

Peptidic Natural Products (PNPs), the focus of this review. PNPs are of great biomedical 

importance since they were optimized by evolution for chemical defense and 

communication. Starting from penicillin, PNPs have an unparalleled track record in 

pharmacology: many antibiotics, antiviral and antitumor agents, immunosuppressors, and 

toxins are PNPs.

While recent breakthroughs in PNP discovery [1, 3, 4] raised the challenge of developing 

new algorithms for dereplication, de novo sequencing and identification of PNPs, the 

computational technologies for high-throughput PNP discovery are still in infancy. The 

traditional process of PNP discovery is to elucidate structure of the compound by chemical 

assays (such as Nuclear Magnetic Resonance) and association of the chemical compound to 

its biosynthetic gene cluster by genome manipulations. This process is long, laborious, and 

requires large amounts of highly purified material. Moreover, rather than discovering novel 

PNPs, it often rediscovers known PNPs resulting in wasted efforts.

Recently, mass spectrometry (MS) has become a cheap, fast and reliable substitute for the 

traditional PNP discovery techniques [5, 6]. However, compared to traditional applications 

of MS in proteomics, application of MS for PNP discovery face additional computational 

challenges that are now addressed through genome mining, peptidogenomics, and spectral 
networks:
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• Genome mining. Sequencing many bacterial and fungi genomes in the last 

decade opened an era of genome mining for PNP discovery. Genome mining 

refers to using information about the biosynthetic genes (responsible for 

synthesizing a PNP) to infer information about the PNP itself. Discovery of the 

NRP coelichelin in Streptomyces coelicolor was one of the first successes of 

genome mining [7, 8] that was followed by characterization of many PNPs from 

sequenced genomes.

• Peptidogenomics. Identification mass spectra derived from PNPs is more 

difficult that traditional peptide identification in proteomics because many PNPs 

are non-linear peptides that generate complex spectra (the standard proteomics 

tools fail to identify non-linear peptides). Also, since many PNPs are not directly 

encoded in genomes, genome mining often fails to generate the database of 

putative PNPs that contains the exact amino acid sequence of a PNP 

corresponding to a given spectrum. Instead it produces a database containing an 

error-prone template that makes matching spectra against such template difficult. 

As the result, popular proteomics tools such as Sequest [9] and Mascot [10] fail 

to identify PNPs.

• Spectral networks. Bandeira et al., [11] introduced the concept of spectral 

networks (also knows as molecular networks [4]) that reveal spectra of related 

compounds (without knowing what these compounds are) using spectral 
alignment algorithms [12, 13]. Nodes in the spectral networks corresponds to 

spectra while edges connect spectral pairs, i.e., pairs of spectra that are generated 

from related peptides (e.g., peptides differing by a single mutation or a 

modification). Spectral networks enable discovery of novel variants of known 

PNPs as well as novel PNP families. Thus, since most PNPs form families of 

related compounds [4]), spectral networks are ideally suited for analyzing PNPs.

PNPs are produced by two types of biosynthetic machineries: Non-Ribosomal Peptide 

Synthesize (NRPS) [14, 15] and Post Ribosomal Peptide Synthesize (PRPS) [16, 17]. NRPS 

and PRPS synthesize Non-Ribosomal Peptides (NRPs) and Ribosomally synthesized and 

Posttranslationally modified Peptides (RiPPs). NRPs are widely distributed and 

biomedically important natural products that are not directly inscribed in genomes but 

instead are encoded by NRPSs using non-ribosomal code [18]. While RiPPs are encoded in 

the genome, the RiPP-encoding genes are often short making it difficult to annotate them 

(short genes often evade gene prediction algorithms). Moreover, RiPPs often have many 

unusual modifications making it difficult to identify them via MS (heavily modified peptides 

often evade peptide identification algorithms).

Analysis of over 1000 bacterial genomes from the Joint Genome Institute (JGI) database 

revealed that 71% of them harbor a RiPP Pfam domain and 69% harbor an NRPS Pfam 

domain [3]. This and other studies [4] suggest that we only saw a tip of an iceberg with 

respect to using genome mining for PNP discovery and raise a challenge of developing new 

algorithms for PNP discovery via genome mining. Understanding how PNP biosynthetic 

machineries work is a prerequisite to genome mining and peptidogenomics that involve two 

steps; predicting candidate PNP biosynthesis gene clusters (called genotypes), and 
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connecting these genotypes to their chemical products (called chemotypes) by MS or NMR. 

However, connecting genotypes to chemotypes is non-trivial task since the rules defining 

how a genotype specifies a phenotype remain poorly understood. For example, the existing 

tools for predicting NRPs from NRPSs remain error-prone. The transition from genotype to 

phenotype becomes particularly difficult in the case of modifications involved in maturation 

of PNPs. For example coelichelin genotype was elucidated in 2000 [7], but its chemotype 

(NRP) was derived only in 2005 [8].

Below we describe PNP dereplication (section 2), PNP sequencing (section 3), and PNP 

identification via genome mining and peptidogenomics (section 4). We remark that, in 

difference from dereplication (that reveal known PNPs or their variants), PNP sequencing 

and identification reveal previously unknown PNPs. Figure 1 illustrates various approaches 

to PNP discovery.

2 Genome mining, peptidogenomics, and spectral networks

2.1 Genome mining for PNPs

RiPPs are classified into more than 20 classes of compounds (such as lanthibiotics, 

thiopeptides, cyanobactins, lasso peptides, and many others) based on structural and 

biosynthetic commonality [30]. Various software tools for RiPP genome mining have been 

reviewed in [31]. BAGEL2, a genome mining tool for bacteriocins, revealed 150 putative 

lanthipeptide gene clusters based on conserved biosynthetic, transport, and immunity 

machinery [32]. ThioFinder, a genome mining tool for thiopeptides, identified 49 bacteria as 

thiopeptide producers, and predicted 53 novel thiopeptide producing gene clusters [33]. 

Recent genome mining studies predicted 79 lasso peptides [34] and 27 new cyanobactin-

producing Anabaena strains [35]. Development of RiPP genome mining tools is tied to 

construction of databases of known RiPPs, e.g. Bactibase, a database of 177 bacteriocins 

[36], and Thiobase, a database of 39 thiopeptides. Availability of these databases for diverse 

RiPP classes speeds up development of novel machine learning techniques aimed at genome 

mining for RiPPs [33].

NRPSs are formed by an array of distinct modular sections, each of which is responsible for 

incorporation (and, if necessary, modification) of a single amino acid into the final NRP. 

Minimum of three domains are required for each NRPS module, termed adenylation domain 

(A-domain), peptidyl carrier domain (PCP-domain) and condensation domain (C-domain). 

The A-domain is responsible for picking the specific amino acids that are to be incorporated 

into the NRP. Hundreds of different A-domain specificities have been classified, each one 

recruiting a specific amino acid. This allows us to determine the sequence of the putative 

NRP by looking at the order of A-domains along the assembly line and assigning a specific 

monomer to each one. However, since ribosomal code is still poorly understood, the tools for 

defining specificities of A-domains remain error-prone.

Genome mining tools for identification of NRPS gene clusters and prediction of NRPs they 

produce include ClustScan [37], NP.searcher [38], NRPSpredictor [39], and NRPSpredictor2 

[40]. Figure 2 illustrates how NRP genome mining tools work.
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2.2 Peptidogenomics of PNPs

The three key difficulties in peptidogenomics is that (i) many PNPs are non-linear peptides, 

(ii) many PNPs (all NRPs) are not directly encoded in the genomes, and (iii) even when a 

PNP is encoded in a genome (all RiPPs), they often have many modifications making it 

difficult to identify them through standard MS/MS searches. The existing peptide 

identification tools have difficulty identifying peptides with many modifications. Also, many 

PNPs fragment poorly due multiple complex modifications. For example, spectra of RiPPs 

often feature very few peaks. As the result, conventional proteomics tools fail to identify 

PNPs.

Kersten et al., 2011 [3] discovered many novel PNPs using a manual peptidogenomic 

approach for connecting PNPs to their biosynthetic genes and matching them against mass 

spectra. However, the manual peptidogenomics approach to PNP discovery, while useful 

[41], is somewhat limited in analyzing large spectral datasets (such as LC-MS/MS datasets 

from supernatant bacterial extracts) and complex patterns of modifications. Moreover, this 

approach relies on identifying long peptide sequence tags (4-5 amino acids) to reduce the 

search space [26]. Such long tags are often not available for multicyclic peptides such as 

lanthipeptides. Also, the manual approach does not provide estimates of statistical 

significance, a pre-requisite for analyzing large spectral datasets.

2.3 Spectral networks of PNPs

Spectral networks allow one to enlarge the set of identified PNPs (and sometimes get rid of 

incorrectly identified PNPs) by analyzing multiple spectra to simultaneously dereplicate, 

sequence, or identify related unknown peptides. The advantage of this approach (compared 

to analyzing individual spectra) is that finding peptides that simultaneously explain all 

spectra in a spectral network results in more accurate Peptide Spectrum Matches. Since most 

PNPs form families of related peptides, spectral networks can be used to reveal relationships 

between different spectra without knowing the amino acid sequences corresponding to these 

spectra.

Given a set of peptides P1, … Pm, their peptide network is a graph with nodes P1, … Pm, and 

edges connecting two peptides if they differ by a single amino acid substitution or a single 

modification. Figure 3 shows the peptide network for nine variants of tyrocidine, a well-

studied family of NRPs from Bacillus brevis [42]. For example, peptide 1 (tyrocidine B1) in 

this network (red node) is connected to four peptides differing from tyrocidine B1 by a 

single mutation or modification: tyrocidine A1 (peptide 2), tyrocidine B (peptide 5), 

tyrocidine C1 (peptide 8), and a previously unreported peptide with mass 1338.7 (peptide 9). 

However, it is not connected to peptides 3, 4, 6 and 7 since they differ from peptide 1 by 

multiple modifications. Six of these nine tyrocidines (1, 2, 3, 5, 7, 8) are contained in the 

database of putative NRPs generated by NRPSpredictor2 (without modifications) and three 

more differ from these variants by one or two modifications/mutations.

In reality, we are not given peptides P1, … Pm but only their spectra S1, … Sm. Nevertheless, 

one can approximate the peptide network by constructing the spectral network on nodes S1, 

… Sm where spectra Si and Sj are connected by an edge if they can be aligned against each 
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other using spectral alignment [13, 11, 43]. Figure 3 shows the peptide and spectral 

networks of nine tyrocidines and illustrates that the spectral network captures all edges of 

the peptide network (shared edges between peptide and spectral networks are shown by thick 

lines). While the peptide and spectral networka in Figure 3 are not identical to the peptide 

network in Figure 3(a), their shared edges usually allow one to interpret the peptides 

corresponding to the nodes of the spectral network using the spectral network dereplication 

algorithm [27].

3 PNP dereplication

PNP researchers face the challenge of maximizing the discovery of new compounds while 

minimizing the re-evaluation of already known PNPs. The process of using the information 

about the chemical structure of a previously characterized compound to identify this 

compound in an experimental sample (without having to repeat the entire isolation and 

structure-determination process) is called dereplication. In many cases, a PNP in the new 

sample is absent in the database of known PNPs, but its variant is present in this database 

(e.g., with a modification or a mutation). Identification of a PNP from its variants is called 

variable dereplication.

Many dereplication approaches are based on comparison of an experimental spectrum with 

the theoretical spectrum of a natural product. Hill and Mortishire-Smith, 2005 [19] proposed 

the bond disconnection approach for generating theoretical spectra of natural products. 

Various bond disconnection algorithms [21, 44] generate a list of bonds between heavy 

atoms in a compound and assigning them the breakage score based on the likelihood of each 

bond being disconnected. The theoretical spectrum is constructed from masses and breakage 

scores of all substructures resulting from bond disconnections.

While the bond disconnection approach works well for small molecules (less than 500Da), it 

typically fails for PNPs since the number of fragmented substructures grow exponentially 

with the PNP length. To address this shortcoming, theoretical spectra of PNPs are formed by 

disconnecting only amid bonds (rather than all bonds) [22]. For a cyclic PNP of length n, 
this approach results in a theoretical spectrum represented by n(n – 1) fragments (see Fig. 4). 

For a branch cyclic PNP with a cycle of length n and a branch of length m, it results in a 

theoretical spectrum represented by n(n – 1) + 2m fragments.

A Peptide-Spectrum Match (PSM) is a pair of a peptide and a spectrum with the same 

precursor mass (up to an error δ). In the context of PNP discovery, a PSM score is often 

defined as the number of peaks shared between a theoretical spectrum and an experimental 

spectrum (see Fig. 5). Given a spectrum, a peptide that forms a PSM with the highest score 

against this spectrum (among all peptides in a peptide database) is reported as a potential 

dereplication of the spectrum.

3.1 Dereplication via chemical databases

Development of chemical structure databases such as PubChem [45] (≈ 46 million 

compounds), ChemSpider [46] (≈ 28 million compounds), and KEGG [47] (≈ 16 thousand 
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compounds) paved the way for development of bioinformatics tools for natural product 

dereplication.

Ng et. al., [22] proposed the first algorithm for dereplication (including variable 

dereplication) of cyclic PNPs and applied it for search in the database of PNPs [48]. Ibrahim 

et. al., [23] proposed an alternative dereplication approach that is not limited to cyclic NRPs 

but extends to branch cyclic and linear peptides. However, their approach does not 

generalize to variable dereplication and does not include analysis of the statistical 

significance of identified PSMs.

It is well know in the context of traditional proteomics that PSM scores often poorly 

correlate with statistical significance of PSMs (p-values) [49]. This observation is greatly 

amplified for nonlinear peptides since scoring PSMs formed by non-linear peptides is 

currently a way more primitive than scoring PSMs formed by linear peptides (due to the lack 

of a large learning sample of PSMs formed by non-linear peptides).

Mohimani et. al., [50] developed MS-DPR algorithm for computing p-values of PSMs 

formed by arbitrary PNPs. MS-DPR addresses an important problem of deciding whether a 

given spectrum was generated by a linear, a cyclic, or a branch-cyclic peptide since it 

enables comparison of statistical significance between various peptide structures [50] (see 

Fig. 6).

3.2 Dereplication via spectral libraries

Since some natural products feature atypical fragmentation patterns [51], their experimental 

spectra have low scores against their theoretical spectra. In such cases, instead of 

dereplication via search in chemical databases, researchers search spectral libraries of 

natural products by comparing the experimental spectrum of interest against previously 

identified spectra. Development of large metabolite spectral databases such as NIST [52] 

(≈120 thousand spectra), METLIN [53] (≈55 thousand spectra), MassBank [54] (≈36 

thousand spectra), and HMDB [55] (≈1000 human metabolite spectra) enabled MS/MS 

library searches for metabolites [56, 57, 58, 20, 59, 51, 60, 61].

While dereplication via the spectral library search is more accurate than dereplication via 

search in a chemical database, the spectral libraries still contain only a fraction of 

compounds present in chemical databases (e.g., only 1607 annotated natural product spectra 

in Global Natural Products Social (GNPS) Molecular Networking dataset [62]). As the 

result, applications of spectral libraries to PNP dereplication remain limited. For example, 

Milman and Zhurkovich [63] described dereplication of toxic NRPs based a small spectral 

library of consisting of only 263 spectra.

3.3 Dereplication via spectral networks

The spectral network approach to PNP dereplication analyzes connected components of a 

spectral network. As long as there is at least one annotated spectrum in this connected 

component, its annotation can be propagated to all spectra in this connected components 

[11]. Ng et. al., [22] and Mohimani et. al., [24, 25] described variable PNP dereplication 

algorithms using spectral networks and identified many variants of previously known PNPs. 
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For example, Mohimani et. al., [24] discovered a RiPP informatipeptin and further identified 

many variants of this peptide using dereplication via spectral networks (Figure 7). Watrous 

et. al., [4], constructed spectral networks of various supernatant bacterial extracts and 

dereplicated many PNPs using manual analysis of connected components in these networks.

4 PNP sequencing

While availability of a genome enables PNP discovery via genome mining, many natural 

products are produced by difficult-to-cultivate organisms whose genomes are still unknown. 

If genome is unavailable and if dereplication of a PNP fails, de novo sequencing [22, 27, 28, 

29] remains the last resort.

While dozens of tools for de novo sequencing of linear peptides have been proposed [64, 65, 

66], techniques for de novo sequencing of non-linear peptides are still in infancy. Ng et. al., 
[22], proposed the first algorithm for sequencing of cyclic peptides that however works only 

for very well-fragmented spectra. Mohimani et al., [27] developed multiplex de novo peptide 
sequencing algorithm for the case when spectra of multiple related peptides are available. 

Multiplex peptide sequencing starts from constructing the spectral network of all compounds 

in the mixture sample, and identifying clusters of related compounds (connected 

components in the spectral network). It further attempt to sequence all compounds in this 

connected component (see Fig. 8). In difference from PNP dereplication via spectral 

networks (when at least one spectrum in the connected component represents a known 

compound), de novo PNP sequencing works even when all nodes in the connected 

component represent unknown compounds. The advantage of spectral networks for PNP 

sequencing is that finding PNPs that simultaneously explain all spectra in a connected 

component of a spectral network results in a more accurate approach then sequencing of 

each individual spectrum.

When tandem mass spectrometry fails to sequence a PNP, one can attempt multistage (MSn) 

mass spectrometry and apply multistage de novo sequencing approach [28] (see Fig. 9).

5 PNP identification

5.1 RiPP identification

The standard MS/MS database search tools are limited with respect to identification of 

complex RiPPs with more than 2 variable modifications. This limitation makes them 

inadequate for analyzing such RiPPs as lanthipeptides that often have more than 5 variable 

modifications. Moreover, even if these tools were able to efficiently search for peptides with 

more than 2 modifications, the resulting PSMs often would not be reported as statistically 

significant since many RiPPs are poorly fragmented (due to presence of complex 

modifications). Search for multiple variable modifications often results in a high false 

discovery rate (FDR) even for microbial organisms with small proteomes [67].

As the result of these complications, computational approaches to RiPP identification did 

not keep pace with rapid progress in RiPP discovery in recent years. Cycloquest [68], a tool 

for RiPP identification, is limited to cyclic peptides with very few modifications. Also, since 
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Cycloquest does not take advantage of genome mining, it is unable to identify poorly 

fragmented peptides (e.g., lanthipeptides).

Genome mining is crucial for the success of RiPP identification efforts. The statistical 

significance (E-values) of the found PSMs deteriorates with the increase in the size of the 

protein database. For example, even well fragmented short peptides (e.g., of length 6 amino 

acids) are difficult to identify in searches against (large) human proteome yet they can be 

identified in searches against (small) viral proteome. Thus, one way to make PSMs formed 

by poorly fragmented spectra statistically significant is to reduce the effective size of the 

protein database. Fortunately, most RiPPs appear in small windows of ≈ 20 thousand 

nucleotides around biosynthetic gene clusters, and these clusters can be identified by 

searching for conserved biosynthetic enzymes. Thus, limiting the search space to this small 

region of the genome has the potential to reduce the E-values of found PSMs by orders of 

magnitude thus separating them from false PSMs.

RiPPquest [24] is a RiPP database search tool that addresses these complications and uses a 

more involved pipeline than peptide identification tools in traditional proteomics (compare 

Fig. 10(a) with Fig. 10(b)). While RiPPquest is currently limited to lanthipeptide analysis, it 

can be extended to the majority of other RiPP classes as soon as (i) it implements a 

biosynthetic rationale for transforming core into mature peptide for a specific RiPP class, 

and (ii) it implements a genome mining rational for a specific RiPPs class. Below is a brief 

description of RiPPquest pipeline:

Genome mining for RiPP biosynthetic genes—RiPPquest uses genome mining tools 

(e.g., BAGEL2 [32] and ThioFinder [33]) for identification of RiPP gene clusters. For each 

RiPP domain in the microbial genome, a window of 10,000 bp centered at this domain is 

selected to form a database of putative core RiPPs for follow up MS/MS database search. 

Since RiPPs usually appear in short ORFs (shorter than 100 aa), the analysis is further 

restricted to short ORFs in the 6-frame translation of the genome. Reducing the database 

size in RiPPquest searches is important since RiPPs are often poorly fragmented and 

identification of such poorly fragmented spectra in searches against large databases is 

problematic.

As an example, Streptomyces roseosporus NRRL 11379 genome has three lanthipeptide 

producing gene clusters, with total of 132 short ORFs, including ORFs producing 

lanthipeptides SRO-2212 and SRO3108 [3] (see Fig. 11). The database of putative core 

lanthipeptides is about 100 times smaller than the entire Streptomyces genome (≈ 9Mbp in 

length).

Transforming core RiPPs into mature RiPPs—In the case of lanthipeptides, the most 

essential modifications are dehydration of serine and threonine, and formation of the 

lanthionine and methyl-lanthionine bridges. Further a thiol elimination mechanism for 

lanthionine modifications during MS yields Cys and Dha at the position of Ser and Cys 

respectively, in the core peptide [3]. Figure 12 shows all possible modified (mature) peptides 

for a hypothetical core lanthipeptide Thr-Phe-Cys-Arg-Ser. From a mass spectrometry 

standpoint, there are eight possible products by accumulation of modifications, resulting in 
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six possible scenarios for observed mass shifts (allowing for Ser → Dha, Ser → Cys, Cys 

→ Dha and Thr → Dhb transformations). The number of possible mature peptides 

increases exponentially with the number of serines, threonines and cysteines in the core 

peptide, making it time consuming to try all possible combinations of modifications for 

every spectrum. For example, for the 22aa core peptide of the lanthipeptide SRO-2212 

(TGSQVSLLVCEYSSLSVVLCTP), there exist 1088 possible mature peptides.

Scoring RiPP spectrum matches—RiPPquest scores PSMs using an advanced scoring 

function used in de novo peptide sequencing [66]. In the brute force approach, one forms 

PSMs between each spectrum in the spectral dataset and each mature RiPP (i.e., modified 

core RiPP) if the parent masses of the spectrum and the mass of the mature RiPP are close to 

each other (within 0.5Da). Because it is time consuming to compare each spectrum against 

each possible mature RiPP (derived from a given core RiPP) for large spectral datasets, the 

spectral alignment technique is used to efficiently find modifications of the core RiPP that 

best matches the spectrum [69, 43, 12, 13].

Computing p-values of PSMs formed by RiPPs—While PSM scores are useful for 

selecting top-scoring PSMs, they are notoriously unreliable for estimating the statistical 

significance of PSMs [49]. To compute p-values of PSMs into their p-values, RiPPquest uses 

MS-DPR approach [50]. While there exist other methods for computing p-values of PSMs 

formed by linear peptides [70], MS-DPR is the only approach available today for evaluating 

p-values of PSMs formed by non-linear (e.g., cyclic) peptides.

Finding RiPP variants using spectral networks—Most classes of RiPPs form 

families of related peptides, making spectral networks helpful in RiPP analysis [4]. In 

particular, spectral networks revealed related lanthipeptides with stepwise N-terminal leader 

processing and different dehydration numbers [25] (see Fig. 7).

5.2 NRP identification

While genome mining techniques accurately identify NRPSs in the genome, accurate 

determination of specificities of adenylation domains remains difficult, especially for non-

standard amino acids that are common in NRPs. While most of NRPs go through 

modifications such as backbone macrocylization and addition of fatty acid chain, the 

existing genome mining tools fail to predict most of these modification. That is why NRP 

identification algorithms have to implement a blind MS/MS search that allows for multiple 

modifications and mutations. This is a difficult computational problem even in the case of 

linear peptides [13, 71], let alone non-linear peptides.

NRPquest uses a genome sequence and a spectral dataset as an input and includes the 

following steps (i) identifying NRPSs in the genome and using non-ribosomal code to 

construct the database of putative NRPs generated by each NRPS, (ii) matching spectra 

against the database of putative NRPs, (iii) computing statistical significance of the resulting 

PSMs and formed by NRPs and generating a list of statistically significant PSMs, (iv) 

refining and enlarging the set of identified NRPs using spectral networks (Fig. 13).
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Constructing database of putative NRPs—NRPquest uses NRPSpredictor2 [40] to 

identify NRPSs in the genome. NRPSpredictor2 predicts the set of all possible amino acids 

generated by each adenylation domain in the genome (Fig. 2). By considering all possible 

peptides formed by these amino acids (each adenylation domain contributes a single amino 

acid to the corresponding peptide), NRPquest constructs the database of all putative NRPs 

produced by the organism. NRPquest further searches the genome for methylation domain 

(PF08242), epimerization domain (TIGR01720), and side chain bond formation domain 

(cytochrome p450, PF00067) and accounts for the corresponding modification in the 

database of putative NRPs. If NRPquest finds methylation/epimerization domains, it 

enforces methylation/epimerization modifications on the corresponding residues. If 

NRPquest finds cytochrome p450, it considers side chain bond formations between any two 

arbitrary residues of the peptide, turning a linear peptide into a branch cyclic peptide. For 

each amino acid sequence in the database of putative NRPs, NRPquest considers linear, 

cyclic and branch cyclic structures representing these amino acid sequences.

Matching spectral dataset against database of putative NRPs—Each spectrum is 

matched against each putative peptide in the database of putative NRPs using a brute force 

algorithm that allows for up to two blind modifications. These blind modifications account 

for possible inaccurate adenylation specificity prediction of rare non-standard aminoacids 

(such as kynurenine from daptomycin), modifications (such as modification of homoproline 

to 4-oxo homoproline in pristinamycin), and fatty acid tails.

Since there is still no large dataset of PSMs formed by cyclic peptides (for learning 

fragmentation propensities like in [64]), previous studies of cyclic peptides [22, 68] used a 

somewhat primitive scoring based on the “shared peak” count. NRPquest scores cyclic 

PSMs using an approach from [68] (Fig. 5) and, to be consistent with the cyclic case, uses 

the same “shared peak count” approach for linear NRPs.

Computing p-values of PSMs formed by NRPS—NRPquest calculates statistical 

significance (p-value) of each PSM using MS-DPR algorithm [50] that works for linear, 

cyclic, and branch-cyclic peptides. It further reports PSMs with p-values below a threshold.

Refining and enlarging the set of identified NRPs using spectral networks—
NRPquest constructs a spectral network [11] to refine and enlarge the set of identified PSMs. 

Most NRPs form families of related peptides, and spectral networks reveal relationships 

between different spectra without knowing the amino acid sequences corresponding to these 

spectra. Thus, an individual PSM deemed statistically insignificant may become reliable in 

the context of multiple related PSMs (and vice versa).

After constructing the spectral network, its connected components (that correspond to 

families of related peptides) are extracted and the multitag algorithm from [27] is used for 

identification of all peptides represented by spectra forming this connected component. It 

further takes advantage of the fact that some spectra in the network have been already 

annotated by NRPquest. Initializing the spectral network with these reliable PSMs provides 

the initial tags for the multitag algorithm and makes the approach from [27] more accurate 

(Fig. 8). Moreover, peptide propagation through spectral network [11, 22] allows one to 
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identify peptide with many modifications (e.g., more than 2) that NRPquest missed during 

blind searches of individual spectra (since blind searches with more than two modifications 

become prohibitively time-consuming).
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Figure 1. 
Three computational approaches to PNP discovery. The dereplication approach [19, 20, 21, 

22, 23] relies on chemical databases and/or spectral libraries of known PNPs, and it can only 

discover known PNPs or their variants. The identification approach [24, 25, 26] uses genome 

mining and peptidogenomics to links PNP genotypes to their chemotypes. Sequencing 

approach [22, 27, 28, 29] is the last resort for discovering novel PNPs when no genomic 

information is available (or genome mining efforts fail) and when chemical database does 

not include a PNP of interest. Spectral networks [11] are crucial for the success of all these 

approaches.
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Figure 2. 
(a) Pipeline for predicting NRPs based on NRPS analysis (e.g. NRPSpredictor2 [40]). 

Adenylation domains are shown in red, condensation domains shown in blue, peptidyl 

carrier protein domains in green, methylation domains in yellow, and thioester domains in 

purple. (b) Extracting signature sequences (non-ribosomal code) from adenylation domains. 

The non-ribosomal code postulates that certain amino acids (shown in yellow) in each 

adenylation domains define a single amino acid in the NRP loaded by this domain. Four 

shown adenylation domains define 10-aa long signatures DAWTIAAICK, DLTKVGHIGK, 

DVGEIGSIDK, and DAWMFAAVLK corresponding to amino acids Phe, Asp, Orn, and Val, 

respectively. The shown 10-aa long signatures is a simplified representation of teh non-

ribosomal code, e.g., NRPSpredictor2 uses longer signatures to accurately predict amino 

acids for each adenylation domain. Only a short segment of the adenylation domains (amino 

acids 234-337) is shown.
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Figure 3. 
The peptide network (a) and the spectral network (b) of tyrocidines. The multitag algorithm 

[24] for starts from a node with a known annotation in the spectral network, and propagates 

annotations from known to unknown peptides through the edges in the network.
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Figure 4. 
(a) Generating theoretical spectrum of a cyclic (tyrocidine) and (b) branch cyclic 

(daptomycin) peptides. Only four out of 9 · 10 = 90 (9 · 10 +4 · 2= 98) peaks in tyrocidine 

(daptomycin) are shown.
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Figure 5. 
Illustration of PSM scoring for a cyclic peptide (the shared peak count is 3).
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Figure 6. 
Deciding whether a peptide that produced a spectrum is linear, cyclic or branch cyclic. 

Given a spectrum, MS-DPR considers various structure assumptions for a peptide that 

generated the spectrum (e.g. linear, or cyclic, or branch cyclic), and derives a p-value for 

each such assumption. If one of the structures results in a small p-value (e.g. linear structure 

with p-value of 0.0001 in Figure above), that structure is accepted as the most likely 

structure for a given spectrum. Note that even though the linear peptide in this example has 

the lowest score, it is the most statistically significant among the three structures.
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Figure 7. 
Spectral network analysis leads to variable dereplication of RiPP informatipeptin (shown in 

orange) into 3 variant PNP. Ser → Dha and Thr → Dhb conversions in this lanthibiotics are 

shown in green and blue, respectively.
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Figure 8. 
The multitag algorithm from [27] for peptide sequencing attempts to sequence all spectra in 

a spectral network in a coordinated fashion.
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Figure 9. 
Illustration of an algorithm for peptide sequencing by multistage mass spectrometry. For 

each candidate peptide, multistage peptide sequencing algorithm scores how well each 

subpeptide is explained by MSn data.
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Figure 10. 
(a) Standard proteomic database search tools (e.g., Sequest [9]) are based on digesting the 

proteins by an enzyme, and collecting tandem spectra of the resulting peptides. Each 

spectrum is matched against theoretical spectra of all peptides in a protein database (with 

mass equal to the the precursor mass of the spectrum) and PSMs with highest scores/lowest 

p-values are reported. (b) RiPPquest pipeline starts with genome mining for RiPP 

biosynthetic gene clusters. Genome mining identifies short windows where genes encoding 

RiPPs are located. Short ORFs are identified in the six frame translation of the selected 

windows, and putative core RiPPs are selected from these ORFs. Various combinations of 

modifications are applied to core RiPPs, and the resulting mature RiPPs are scored against 

the spectral dataset by analyzing all possible PSMs using spectral alignment. Spectral 

network analysis helps in discovery of novel variants of RiPPs with various modifications.
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Figure 11. 
(A) Lanthipeptide producing gene clusters in the genomes of (A) Streptomyces roseosporous 
11379 and (B) Streptomyces viridochromogenes DSM 40736. The figure shows all Pfam 

domain discovered in a window of 10,000 bps centered at each lanthipeptide biosyntetic 

gene cluster. Among Streptomyces roseosporous 11379 clusters, the cluster at location 

5263238-5273238 produces the lanthipeptide SRO-2212, and the cluster at location 

4496083-4506083 produces the lanthipeptide SRO-3108 [3]. Among Streptomyces 
viridochromogenes DSM 40736 clusters, the cluster at location 8176050-8186050 produces 

informatipeptin. Lanthipeptide modification enzymes are shown in blue, protein kinases in 

green, peptidases in yellow, ABC transporter and membrane in red, regulators in light blue, 

and precursor peptides in black. Fragments with sequence similarity to known lanthipeptides 

are shown for each cluster, and known chemotypes are shown in bold.
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Figure 12. 
(A) All possible mature peptides for a hypothetic core peptide Thr-Phe-Cys-Arg-Ser. 

Possible modification are dehydration of Serine and Threonine, and formation of lanthionine 

and methyllanthionine bridges between Cysteine with Dha and Dhb, respectively. (B) All 

possible mass spectrometry products (peptide modifications during mass spectrometry) for 

the eight possible modified peptides shown in (A). When the core peptide amino acid is 

serine, mass spectrometry analysis can reveal a mass shift corresponding to cysteine 

(103.00Da), serine (87.03Da) or Dha (69.02Da). When the core peptide amino acid is 

threonine, the analysis can reveal a mass shift corresponding to threonine (101.04Da) or Dhb 

(83.03Da). When the core peptide amino acid is cysteine, the analysis can reveal a mass shift 

corresponding to cysteine (103.00Da) or Dha (69.02Da). A combination of modifications is 

feasible if the number of Cys → Dha modifications equal the number of Ser → Cys 
modifications. For a peptide with one Cysteine, one Serine and one Threonine this can give 

up to twelve possible combinations. However, only six out of these twelve combinations are 

feasible.

Mohimani and Pevzner Page 26

Nat Prod Rep. Author manuscript; available in PMC 2017 September 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 13. 
NRPquest pipeline starts with with mining the microbial genome for putative NRPs using 

NRPSpredictor2 [40] and Antismash [72]. Two blind modifications are added to each NRP 

and all possible structures (linear/cyclic/branch-cyclic) are considered. PSMs are formed 

between each spectrum and each putative modified NRP with feasible mass difference. 

PSMs are scored, and significant PSMs are further analysed by spectral networks. PSMs are 

rescored based on how well other nodes in their spectral network cluster (connected 

component) are explained [27].
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