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Abstract

Objective—To review the current state of science using big data to advance AD research and
practice. In particular, we analyzed the types of research foci addressed and corresponding
methods employed and study findings reported using big data in AD.

Method—Systematic review was conducted for articles published in PubMed from January 1,
2010 through December 31, 2015. Keywords with AD and big data analytics were used for
literature retrieval. Articles were reviewed and included if they met the eligibility criteria.

Results—Thirty-eight articles were included in this review. They can be categorized into six
research foci: diagnosing AD or mild cognitive impairment (MCI) (n=10), predicting MCI to AD
conversion (n=13), stratifying risks for AD (n=5), mining the literature for knowledge discovery
(n=4), predicting AD progression (n=2), describing clinical care for persons with AD (n=3) and
understanding the relationship between cognition and AD (n=3). The most commonly used
datasets are Alzheimer’s Disease Neuroimaging Initiative (ADNI) (n= 16), electronic health
records (EHR) (n=11), MEDLINE (n=3), and other research datasets (n=8). Logistic regression
(n=9) and support vector machine (n=8) are the most used methods for data analysis.

Conclusion—Big data are increasingly used to address AD related research questions. While
existing research datasets are frequently used, other datasets such as EHR data provide a unique,
yet under-tapped opportunity for advancing AD research.
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1. Introduction

With the silver tsunami (that is, an aging workforce) sweeping the globe, Alzheimer’s
disease (AD) is becoming an endemic due to its disproportional afflictions on older adults
who are 65 years old or older. AD is the most common type of dementia constituting 60—
80% of all dementias. As of 2013, an estimated 44.4 million people had dementia
worldwide, and this number is projected to reach 75.6 million in 2030 and 135.5 million in
2050 with most of the increase occurring in developing countries (1). In the U.S., 5.3 million
Americans had AD in 2015. Of those, 5.1 million are older adults, which will be almost
tripled to 13.8 million by 2050 (2). The exponential growth in AD prevalence will not lessen
unless medical breakthroughs to prevent or cure AD are developed in the next few decades.
As the sixth leading cause of death in the U.S., AD is the only one that cannot be prevented,
slowed, or cured. While deaths from other causes have decreased substantially in the past
few decades, deaths from AD have increased significantly (2). Dementia is also one of the
most expensive chronic diseases to the society with $604 billion expenses worldwide in
2010 (1). AD alone is estimated to cost the American society $226 million in 2015.
Moreover, AD affects the whole families and social networks. In 2014, families and friends
provided people with AD 17.9 billion hours of unpaid care which was valued at $217.7
billion in the U.S. Caregiving exerts heavy physical and emotional tolls on those caregivers
by causing new diseases or exacerbation of existing conditions which amounted to another
$9.7 billion in health care (2). Hence, it’s paramount to develop effective interventions to
prevent AD from occurrence, slow down AD progression once it occurs, and improve
quality of life and care for people and families who are affected by AD (3).

In particular, we reviewed the current state of science to generate broad themes of research
foci addressed using big data in the past 5 years inductively, analyzed the corresponding
analytical methods employed, and synthesized the study findings. Big data refer to “large
volumes of high velocity, complex, and variable data that require advanced techniques and
technologies to enable the capture, storage, distribution, management and analysis of the
information” (4). Recently, the rapid adoption of healthcare information technology has
dramatically accumulated vast amounts of heterogeneous healthcare big data. Big data
research has substantially influenced many fields in biomedical and healthcare domains,
such as cancer (5,6), diabetes (7,8) and heart failure (9). However, it’s unclear how
healthcare big data have been used in AD research. In this paper, we address three questions:

1. What research foci have been addressed using big data in AD research?
For each research focus, we further evaluated:
2. Which databases or datasets were used?

3. What were the primary research methods and key findings?
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2. Background

The term “big data” has been frequently used in many fields, and its definition is always
evolving. The original characteristics of the “big data™ are defined as the three Vs: volume,
variety, and velocity (10). The first feature is that the volume of data is aggregating
dramatically in the past decade. For example, US healthcare system has already reached 150
exabyte (1018) in 2013 (11). Big data in healthcare will soon reach the zettabyte (1021) and
later even yottabyte (1024). The second characteristic, variety, refers the heterogeneity nature
of big data. Data can be collected from many sources, including microarray data, imaging
data, structured data (e.g., medication, diagnosis), and unstructured data (e.g., clinical notes).
The third characteristic, velocity, indicates the speed of generating data. For example, the
current sequencing techniques can produce billions of sequence data daily. Electronic health
record (EHR) systems can generate millions to billions of medical records per day. Besides
these characteristics, other three features were also considered: variability, veracity, and
value (12). Variability refers to the consistency of data over time. Veracity is vital for big
data since data are sometimes from uncontrolled environments, such as less reliable
ambulatory measurements. Value of the big data for healthcare and patient can be obtained
when the challenges of big data analytics can be addressed. Despite this new definition for
big data, there are no agreed upon definition and properties for big data in health care
research. In this review, we defined big data as complex and heterogeneous in magnitude,
which are difficult to collect and manage in traditional ways, including: 1) datasets were
collected by more than one site, such as the AD Neuroimaging Initiatives (ADNI) to
aggregate data; 2) patient data from one or more EHR systems(13) ; 3) integration of
heterogeneous data sources, such as clinical measurements, imaging data, or behavior data;
or 4) biomedical literature (i.e., MEDLINE citations) from which new information or
knowledge can be discovered for AD research.

AD is a progressive, irreversible, neurodegenerative condition that attacks the brain structure
(e.g., neurons and their milieu) and results in brain functional loss. AD cerebral
neuropathology includes B-amyloid accumulations outside neurons disrupting neuron’s
environments and tau hyperphosphorylation that destroys neurons from within. Clinical
diagnosis of AD is typically made when there are two or more domains of cognitive
impairment which isn’t attributable to other causes (e.g., infection) and is severe enough to
cause functional decline in occupational, social, instrumental, and basic activities of daily
living. AD-resulted cognitive impairment typically manifests as memory loss and impaired
executive function, visuospatial function, or language. Cognitive impairment, functional
decline, and behavioral and psychological symptoms of dementia (BPSD) are considered the
triad symptoms of AD. Definitive diagnosis of AD can only be made upon death via brain
biopsy (14). Although the accuracy of clinical diagnosis of AD is comparable to other
conditions at 80-90%, only 45% of people with AD or their caregivers were ever told of the
AD diagnosis (2).

2.1 Research Progress in AD

The past two-to-three decades have witnessed tremendous research efforts that have led to
our increased understanding of AD, which can be summarized into six broad themes;
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however, it’s important to recognize that research effort and funding for each theme vary
substantially: 1) Identifying risk factors (e.g., epolipoprotein, cardiovascular risk factors)
and testing interventions (e.g., physical activity) to diagnose AD from occurrence; 2)
Predicting MCI to AD conversion using imaging, neuropsychological data; 3) Stratifying
AD risks with associated factors; 4) discovering novel biomarkers or potential AD drugs
from diverse resources (e.g., literature) ; 5) tracking AD progression using imaging,
cerebrospinal fluid, and blood biomarkers (e.g., Pittsburg compound B); 6) addressing
caregivers and caregiving issues (e.g., caregiver burden, dealing with behavioral and
psychological symptoms of dementia); and 7) understanding the relationship between
cognition and AD (15-18).

The concerted scientific insights and technological advances have borne fruit of three
guidelines in 2011 to improve AD diagnosis (14) and identify prodromal stages of AD as
mild cognitive impairment (MCI) due to Alzheimer’s (19), and preclinical (presymptomatic)
Alzheimer’s (20) to prevent AD in 2011 (14,19,20). While clinical trials to find a cure for
AD have failed miserably at an unsurmounted failing rate of 99.6% from 2002 to 2012 (3)
(3), substantial progress has been made in non-pharamcological treatments for improving
symptoms and quality of life in people with dementia and their caregivers. However, those
findings have not been integrated into traditional health care practice and their translatability
or applicability are yet unknown.

2.2 Sources of big AD data

The importance of big data to enhance the AD research has been recognized by the AD
research community. In 2014, the Global CEO Initiative on AD (CEQi), in collaboration
with Sage Bionetworks and IBM’s DREAM project launched AD Big Data Challenge at the
White House to advance the global effort for diagnosis techniques and identify new AD
biomarkers through open source data (21). The open source data from persons with AD were
provided by the North American Alzheimer’s Disease Neuroimaging Initiative (ADNI), and
the European’s AddNeuroMed Study. The ADNI dataset is longitudinal multicenter study to
develop clinical genetic and biomedical biomarkers for AD early detection (22). The study
began in 2004 and experienced three phases ADNI1, ADNI GO, and ADNI2. Right now,
ADNI study has enrolled over 1600 subjects from cognitive normal to AD. In addition, the
AD research community began to recognize the potential of the EHR systems which have
been increasingly adopted worldwide with exponential aggregation of patient data in the
recent years. EHR is also considered a good source of big data and can provide rich real
world information for AD research with the appropriate computational methods (13). Mayo
Clinic Study of Aging (MCSA) was designed in 2008 for a prospective population-based
study of normal cognitive aging, MCI and dementia (63). Through random sampling and
criteria evaluation, 2,719 subjects were identified through a review of their medical records
from a population of Olmsted County in Minnesota of the United State. Among these,
through personally interview for 2,050 participants and telephone interview for 669
participants, 402 subject with dementia were identified. Their clinical characteristics,
including coronary heart disease, diabetes, hypertension, efc, were evaluated during the
interview. ZARAgoza DEMentia DEPression (ZARADEMP) study is cohort study for about
5,000 individuals enrolled in Zaragoza of Spain. HPC, beside containing multiple image
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modalities, also contains behavioral and genetic information. Table 1 listed the facts related
to some selected databases used for AD research in the world.

However, it’s unclear how big data have been used in AD research and what the state of the
science is currently. Hence, the purpose of this paper was to review the current state of
science using healthcare data analytics to advance AD research. In particular, we analyzed
the types of research foci addressed and corresponding methods employed and study
findings reported using big data in AD.

3. Methods

We conducted a literature search in PubMed, the most comprehensive reference database in
healthcare, from January 1, 2010 through December 31, 2015. We used the search term
“Alzheimer Disease” or “Alzheimer’s Disease” in title or abstract, and combined each of
those two terms with another search term listed under in the Data or Data Analysis category
in Table 2. We retrieved 141 articles based on the search. The title and abstract of each
article was reviewed to determine if the study met the inclusion criteria: 1) publication in
English; 2) available full-text; and 3) human subjects. Next, articles meeting the following
exclusion criteria were excluded: 1) not related to AD; 2) lacking a clinical emphasis (e.g.,
AD diagnosis, treatment, or management); 3) genome-wide association study or analysis on
microarray data; and 4) editorial, commentary, review or conference summary. At a result,
38 articles met the eligibility criteria and were included in this review.

4. Results

This section summaries synthesized findings of the reviewed articles on data analytics based
on the AD research question categories.

Analysis of the 38 articles showed that six main research foci have been addressed using big
data: diagnosing AD or MCI (n=10), predicting MCI to AD conversion (n=13), stratifying
risks for AD (n=5), mining the literature for knowledge discovery (n=4), predicting AD
progression (n=2), describing clinical care for persons with AD (n=3), and understanding the
relationship between cognition and AD (n=3). The most commonly used datasets are ADNI
(n=16), followed by EHR (n=11), MEDLINE (n=3), and other research datasets (n=8).
Logistic regression (n=9) and support vector machine (n=8) are the most used methods for
data analysis. The dataset, analytics, main findings, and future research directions for each
of the six main research foci are synthesized below.

4.1 Diagnosing AD or MCI

Ten out of the 38 articles focused on early detection of AD and MCI using cerebrospinal
fluid (CSF) biomarkers, cognitive and memory measurements (e.g., Mini Mental State
Examination (MMSE) scores), and imaging results (e.g., magnetic resonance imaging
(MRI), positron emission tomography (PET)) (Table 3). The most frequently used dataset is
the ADNI database (n=7). The 10 articles tested different analytical methods for analyzing
big data to construct biomarker sets that have diagnostic value for AD and/or MCI by using
serum, CSF, imaging, or physical biomarkers. Five articles used SVM with various feature
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sets to classify AD, MCI and HC. Two applied logistic regression, and others used random
forest classifier or statistic methods. They discovered novel biomarkers, imaging features,
anatomical features, other phenotypes (e.g., semantic fluency and eye movements)
associated with classification.

Van Gils et al. first identified biomarker subsets that could provide a reliable and early
detection of AD prior to any major clinical signs (23). Li et a/. found anatomic features to
discriminate AD or MCI with HC (24). Yang et al. used volumetric and shape features from
MRI scans to diagnose AD and MCI patients (25). Mangialasche et a/. applied a multivariate
data analysis technique to differentiate AD and MCI subjects from HC subjects (26).
Kohannim et a/. combined brain imaging and other biomarkers to classify ADNI subjects as
AD, MCI and NC (27). Other biomarkers to detect AD and MCI included semantic fluency
and eye movement. Clark et al. constructed random forest classifiers using latent
information in semantic fluency word lists to predict cognitive and functional decline (28).
Lagun et al. detected MCI using eye movement characteristics such as fixations, saccades,
and refixations during the visual paired comparison (VPC) task (29). Casanova et al.
introduced AD pattern similarity (AD-PS) scores, estimated by structural MRI and cognitive
test data in ADNI to conduct classification (30). A multi-model multi-task learning (M3T)
method was used to classify patients with value of AD, MCI or HC (32). A diagnostic
clinical decision support system (CDSS) for early diagnosis of AD was implemented (33).
The method performed slightly worse than benchmark method when it was applied to
publically available medical datasets.

4.2 Predicting MCI to AD conversion

Thirteen studies developed various methods to predict the conversion from MCI to AD using
MRI (n=4), electroencephalography (n=1), clinical data (n=4), and a combination of those
(n=4). The datasets used included ADNI (n=7), Zaragoza Dementia and Depression Project
(ZARADEMP), a longitudinal epidemiologic study in Spain (34) (n=1), and AddNeuroMed
study data (n=1). Other studies collected imaging data, neuropsychological and clinical data
from enrolled patients (n=5) (Table 4). Most used method is regression (n=6), followed by
SVM (n=2), Bayesian network and deep learning. Various features including imaging data,
EEG biomarkers, neuropsychological evaluation tests were found to be associated with MCI
to AD conversion.

Five studies developed different algorithms to predict MCI to AD conversion using MRI
imaging data in ADNI. Two studies demonstrated that Bayesian network accurately (0.75)
differentiated MCI converters from non-converters (35,36). Liu et al. improved the
predication of MCI to AD conversion using local linear embedding (LLE) (37). Hinrichs et
al. designed a multi-kernel learning (MKL) framework (38) and later applied Bayesian
Gaussian process logistic regression (GP-LR) models to differentiate MCI patients from HC
and AD patients (39). Deep learning techniques were applied to classify various stages of
AD progression using MRI scans from ADNI database (40). Mattila et a/. designed a
statistical model, the Disease State Index (DSI), which could accurately predict conversion
from MCI to AD (33).

Int J Med Inform. Author manuscript; available in PMC 2018 October 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Zhang et al.

Page 7

In addition to ADNI data, Costafreda et a/. predicted conversion from MCI to AD based on
hippocampal morphology in AddNeuroMed (41), a longitudinal multi-site study of
biomarkers for AD in the United Kingdom (42). In addition to imaging biomarkers, one
study found that the six electroencephalography biomarkers on electroencephalography
could predicte MCI to AD conversion in the Alzheimer’s Center in Netherlands (43). Two
studies used clinical tests to predict MCI to AD conversion. Pozueta ef a/. found that
combining MMSE and California Verbal Learning Test Long Delayed Total Recall can
predicate MCI to AD conversion (44). A multi-model multi-task learning (M3T) method
was also used to predict clinical variables including MMSE and AD Assessment Scale-
Cognitive Subscale (ADAS-Cog) (32).

Another four studies evaluated the predictive values of combined biomarkers and clinical
data for MCI to AD conversion. Gomar et a/. found that an episodic memory measure (i.e.,
AVLT Trial 5) and Clock Drawing test were the best predictors for MCI to AD conversion
(46). Alegret et al. reported that semantic fluency tests and neuropsychological test results
were significantly associated with the speed of conversion from MCI to AD (47). Runtti et
al. created a disease stage index (DSI) value to classify MCI to AD converters (48).

4.3 Stratifying risks for AD

Five studies stratified AD risks using different methods. The datasets used included
ZARADEMP (n= 1), National Alzheimer’s Coordinating Center database (n=1), EHR data
(n=1) Wisconsin Registry for Alzheimer’s Prevention (WRAP), a prospective longitudinal
study which began in 2001 (49) (n=1) and Ginkgo Evaluation of Memory data (n=1) (Table
5). Cox proportional hazard model were commonly used.

Gracia-Garcia et al. used multivariate regression method to analyze data from ZARADEMP
and reported that severe depression significantly increases the risk of AD (36). Li ef al.
identified a significant association between erythrocyte sedimentation rate and AD using
EHR data and VARIant Informing MEDicine (VARIMED) (50). Chang et al. created a new
measure based on stochastic gradient descent to predict potential AD onset based on familial
AD patterns (51). Rosenberg et a/. found that neuropsychiatric symptoms (e.g., depression
and anxiety) in MCI were associated with increased risk of dementia and AD (52). Last,
Yasar et al. found that diuretic, angiotensin-1 receptor blockers, and angiotensin-converting
enzyme inhibitors use was associated with reduced risk for AD (53).

4.4 Mining the literature and resources for knowledge discovery

Four studies examined the published literature for knowledge discovery in AD. The datasets
used included the MEDLINE (n=2), a combination of review papers, MEDLINE, reports
and databases (e.g., AD & Frontotemportal Dementia Mutation database, Gene Ontology
database, NCBI Gene Expression Omnibus, Disease Database) (n=1), and a combination of
MEDLINE and protein interaction data in the Online Predicted Human Interaction Database
(OPHID) (n=1) (Table 6). Most of these studies used text mining or natural language
processing techniques. Most studies focus on generate novel knowledge such as potential
biomarkers or candidate AD drugs.
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One study mined MEDLINE to generate 500 hypotheses (e.g., Tau and Amyloid-beta as
potential biomarker candidates in relation to AD), which were then evaluated by the
AlzSWAN, a comprehensive database containing expert curated AD-related hypotheses (54).
The second study discovered 25 candidate AD biomarkers from diverse resources, including
MEDLINE, AD research forums and related gene and disease databases (55). The third
study generated AD-related proteins connectivity maps using protein interaction database
and MEDLINE (56). The fourth study described a system which can identify highly relevant
(84.5% accuracy) AD-related sentences from MEDLINE (57).

4.5 Predicting AD progression

Two studies evaluated the progression of AD. The dataset used included clinical records
(n=1) and ADNI (n=1) (Table 7). The first study found that poor performance on the Trail
making Test-A significantly predicted faster cognitive decline (58). The second study
predicted cognition using clinical measurements from Mayo clinic datasets (59).

4.6 Describing clinical care for subjects with AD

Three studies evaluated the clinical care of persons with AD using EHR data. However, each
study focused on different aspects of clinical care using different methods (Table 8). The
first study showed that the AD diagnosis was associated with significant increases in
primary and secondary care resources utilization (60). The second study showed that visits
to dementia or mental health clinics increase the odds of receiving anti-dementia,
antidepressant, and antipsychotic medications (61). The last study evaluated AD as an
independent risk factor for hip fractures (62).

4.7 Understanding the relationship between cognition and AD

Three studies investigated the relationship between cognition and AD (Table 9). Rich data
sources such as ADNI and MCSA have given rise to analyses that combine multiple data
types. While image analysis is outside the scope for this survey, in this section, we highlight
some examples of integrated analyses of multiple modalities including image and other data
types. The MCSA data set combines image data with clinical (EHR) data allowing for
detailed analyses of vascular disease and AD pathology (68). A study on an AD cohort with
20 years of follow-up suggests that education acts as a buffer against the clinical decline in
AD (70). Such buffer, that allows an individual to maintain cognitive function despite AD
pathology is called cognitive reserve (71). Combination of image data with behavioral data
and genetic information in ADNI and in MCSA allows for assessing the change in cognitive
reserve in the presence of genetic and other biomarkers (69).

5. Discussion

Given the lack of effective treatments for persons with AD and only 45% of people with AD
were diagnosed (2) much emphasis has been placed on timely diagnosis of AD and early
identification of people who are at heightened risk for AD such as those with MCI. As a
result, 9 articles focused on diagnosing AD or MCI and 15 articles were on predicting MCI
to AD conversion using biomarkers and/or clinical data. Each analytical method seemed to
be able to diagnose AD or MCI or predict MCI to AD conversion with a high accuracy.
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Besides the obvious clinical significance, the focus on diagnosis can also be explained from
a technical perspective: diagnostic accuracy and prognosis (including progression from MCI
to AD) are key areas that are commonly recognized as the strength of data science and Big
Data analytics in general (64).

The prerequisite for Big Data analytics, and essentially any data-intensive research for that
matter, is data availability. As a result, immense effort has been devoted to the creation of
research datasets, such as ADNI, AddNeuroMed study, MCSA, and Ginkgo Evaluation of
Memory study, but these data sets still contain relatively small patient cohorts when
compared with the size of big data in general. Big Data analytics is built upon the premise
that small differences, that can only be modeled by complex techniques, can develop into
large differences over long follow-up periods. When we have longitudinal data or when we
combine multiple facets of the same cohort (e.g. image data with EHR data), these small
differences are more likely to be captured in the combined data. The above data sources may
be small in the number of patients, but they have volume (follow-up), variety (different data
modality), can support Big Data-type multi-modal analyses and thus they can be considered
Big Data. The majority of the included studies extracted their datasets from these existing
research databases, but a few studies used large cohorts such as the ZARADEMP cohort or
EHR data.

While the excitement for Big Data clinical research is still rising, somber voices pointing out
the pitfalls of Big Data are appearing (65). With Big Data methods modeling small
differences, the question of validity is of paramount importance. Rarely has any big data
research (AD or general medicine) result been tested in another population for replicating
and validating the findings. This issue is particularly relevant in the case AD research, where
studies rely on a wide variety of occasionally disparate data sources (e.g. socio-economic or
education-related data), which may not be available to the general AD research community.

A third issue concerns translation of the research findings into practice. The nature of a
research database is different from that of real-world data, such as EHR data in its
completeness and cohort representation. For example, the research database, such as ADNI,
has complete data in all research oriented variables, while EHRs are mainly used for
documenting clinical care for persons with AD and not for research. The fragmentation of
patient care is reflected in the incompleteness of EHR data (66) which stands in sharp
contrast with the completeness of data in research databases. In addition, cohort
representation in research databases is often not reflective of the realworld patients due to
the restricted eligibility rules on recruiting patients (31, 67). While the current developed
models in research data may miss confounding factors which can only detected in unselected
patients in research databases. Thus, using a well-established research dataset such as the
ADNI provides an ideal milieu for addressing a targeted research focus, it’s unclear if and to
what extent the results created under an “ideal” situation will hold out for real life patient
data such as those captured in EHR for routine clinical visits. Replicating those findings in
real life could be especially challenging if certain data are not clinically collected (e.g., CSF
biomarkers) and collecting those data places individuals at high risk for adverse events (e.g.,
infection) or at a cost that might not be clinically justifiable. These issues may hinder the
translation and application of the computational methods and research findings into practice.
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Although Big Data has long passed its infancy in the field of general data science, the
current state of AD resembles the early stages of Big Data research. The key prerequisite of
large, multi-site data repositories such as ADNI has been created. Many studies have
generated promising findings on either the performance of the computation methods or the
novel biomarkers and confounders. However, this promise is unfulfilled yet. Several factors,
including external validation of the findings and questions surrounding the applicability of
findings from “ideal” research data to real-world data hinder the translation of these findings
into practice. While many data elements (such as imaging data for health patients, genetic
data, and detailed socioeconomic data) will likely remain in the research domain for the near
future, exploring the secondly use of EHR data to overcome many of these hindrances
appears the logical next step.

The implications of our findings include: 1) address each of the six identified research foci
with more studies and especially using EHR data; 2) replicate findings from each foci in
different data resources, feature selections, and analytics; 3) validate the findings from
studies using research datasets with EHR data; and 4) focus on the clinical outcomes.
Findings from our review suggest that big data should play a much bigger role in AD
research, especially in areas where subject recruitment and retention are major issues or the
time it takes for clinical research results to be generated, e.g., studies involving minorities,
epidemiological studies, translation of research findings into practice which average 17
years. The use of EHR could drastically improve the extent, volume, and findings of
clinically relevant issues in AD and health care efficiency and outcomes in AD.

The strength of this review includes being the first to analyze the current science of big data,
and clinically-relevant research in AD using the most recent studies. One limitation of this
review is the difficulty to compare performances of the methods due to studies’ variability of
data sources and variables selection. We only limited our search to the most recent 5 years
and are unable to include all historical details in the field of big data in AD research.
Moreover, it’s possible that we could have missed some research area foci due to our
literature search criteria. We intentionally excluded the literature on bioinformatics such as
genome-wide studies and non-clinically related papers.

6. Conclusion

Healthcare data analysis in AD research has driven six research foci using a variety of data
sources and data analytics. While the emerging findings are promising, the heterogeneity of
study methods hinders the translation and application of the research findings into practice.
Future research is needed to generate new hypotheses and replicate existing findings, and
fully explore the potentials of EHR data for guiding clinical research and practice.
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Summary points
What was already known on the topic

. Alzheimer’s disease (AD) is the most common type of dementia constituting
60-80% of all dementias.

. AD is the only disease that cannot be prevented, slowed, or cured.

What this study added to our knowledge

. Big data research in AD is growing in the recent years

. Big data research in AD mainly address the six research foci: AD or MCI
diagnosis, prediction of MCI to AD conversion, stratification of AD risks,
knowledge discovery from literature, prediction of AD progression, and
description of clinical care for persons with AD.

. Majority of big data research in AD used the existing research databases,
including Alzheimer’s Disease Neuroimaging Initiative database and
AddNeuroMed study.

. EHR provides big data resource to potentially support AD clinical research.
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Highlights

Big data are important to advance research in Alzheimer’s disease (AD) due
to the difficulties in recruitment and retention of patients in clinical research
and the durations and costs associated with traditional clinical research.

We analyzed 38 studies to derive 7 research foci inductively, including
diagnosing AD or mild cognitive impairment (MCI), predicting MCI to AD
conversion, stratifying risks for AD, mining the literature for knowledge
discovery, predicting AD progression, describing clinical care for persons
with AD, and understanding the relationship between cognition and AD.

The datasets used for AD research include Alzheimer’s Disease
Neuroimaging Initiative (ADNI), electronic health records (EHR),
MEDLINE, and other research datasets.

Data analytics methods cover a wide range including data mining, machine
learning, natural language processing (NLP), text mining and statistical
analysis.

Big data in AD research is still in its early stage and more efforts should
integrate real world big data to advance AD research and practice.
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