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SUMMARY

Proteins of the signal transducer and activator of transcription (STAT) family mediate cellular 

responses to cytokines and growth factors. Aberrant regulation of the STAT3 oncogene contributes 

to tumor formation and progression in many cancers, including head and neck squamous cell 

carcinoma (HNSCC), where hyperactivation of STAT3 is implicated in both treatment resistance 

and immune escape. There are no oncogenic gain-of-function mutations in HNSCC. Rather, 

aberrant STAT3 signaling is primarily driven by upstream growth factor receptors, such as Janus 

kinase (JAK) and epidermal growth factor receptor (EGFR). Moreover, genomic silencing of 

select protein tyrosine phosphatase receptors (PTPRs), tumor suppressors that dephosphorylate 

STAT3, may lead to prolonged phosphorylation and activation of STAT3. This review will 

summarize current knowledge of the STAT3 pathway and its contribution to HNSCC growth, 

survival, and resistance to standard therapies, and discuss STAT3-targeting agents in various 

phases of clinical development.
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Introduction

Head and neck squamous cell carcinoma (HNSCC) is the sixth leading incident cancer 

worldwide with 55,000 cases in the United States and 550,000 cases globally in 2014 [1,2]. 

Despite advances in surgical and radiotherapy techniques, as well as integration of 

chemotherapy into multimodality treatment paradigms, HNSCC is frequently lethal. Five-

year overall survival (OS) is 40–60% and has increased only marginally since 1990 [3]. 

Incremental improvements in prognosis are largely attributable to changing epidemiology, 

rather than treatment per se. An increasing proportion of oropharyngeal HNSCC is caused 
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by oncogenic human papillomavirus (HPV), rather than the classic risk factors of tobacco 

and alcohol; HPV etiology is associated with improved survival after standard treatments 

[4,5]. Although two distinct causes of HNSCC exist, environmental carcinogenesis or 

transformation by HPV oncogenes, both etiologies are associated with aberrant regulation of 

the signal transducer and activator of transcription (STAT) family [6–8]. However, the 

transcription factor (TF) signatures of HPV-related HNSCC and HPV-negative HNSCC have 

been elucidated and differ in respect to the activity of several key TFs, with upregulation of 

STAT3 and NF-κB gene targets demonstrated in HPV-negative HNSCC [9].

Proteins of the STAT family mediate cellular response to cytokines, such as IL-6, and growth 

factors. In particular, STAT3 transforms human epithelial cells, thereby meeting the 

definition of an oncogene [10,11]. Aberrant regulation of STAT3 in HNSCC underlies 

malignant behaviors, contributing to growth, survival and resistance to standard therapies 

including chemoradiation and blockade of the epidermal growth factor receptor (EGFR) 

[12–16]. Aberrant tumoral STAT3 signaling is also immunosuppressive, protecting HNSCC 

cells from recognition and lysis by cytotoxic T lymphocytes [17,18]. Tumor and lymphocyte 

STAT3 signaling increases production of immunosuppressive cytokines including TGF-β1, 

VEGF, IL-6 and IL-10; this cytokine profile negatively regulates innate danger signals, 

dendritic cell maturation, and cytolysis by effector cells [17–20]. In vitro STAT3 inhibition 

reverses the immunosuppressive phenotype of HNSCC [21]. The association of STAT3 

hyperactivation with poor prognosis, resistance to standard therapies, and immune escape 

makes it a compelling target in HNSCC, particularly in HPV-negative HNSCC where 

functional studies suggest targeting this pathway may be effective [9]. As for other 

transcription factors, STAT3 historically has been considered “undruggable.” However, 

innovative and promising therapeutic strategies are in development. This review will 

summarize current knowledge of STAT3 pathway activation in HNSCC, and discuss STAT3-

targeting agents in various phases of clinical development.

STAT3 activation in HNSCC

The STAT3 transcription factor exhibits its pro-transcription effects in response to signals 

from upstream receptors including the IL-6 cytokine receptor family, growth factor receptors 

such as the receptor tyrosine kinases (RTKs) vascular endothelial growth factor receptor 

(VEGFR) and epidermal growth factor receptor (EGFR), or nonreceptor tyrosine kinases 

(NRTKs) such as Janus-activated kinases (JAK) and Src family kinases (SFK) [22–24]. Fig. 

1 depicts the activation of STAT3 and its target genes in schematic form. First, STAT3 is 

recruited to the plasma membrane upon binding of cytokines or growth factors to their 

respective cell surface receptors. STAT3 becomes activated by phosphorylation of a tyrosine 

residue within its Src homology 2 (SH2) domain (Tyr705), either by the activated RTKs 

directly, or by intracellular NRTKs. Phosphorylation of STAT3 then induces spontaneous 

dimerization of the transcription factor via a reciprocal phosphotyrosine–SH2 interaction 

between two STAT3 molecules. STAT3 can also heterodimerize with STAT1, though the 

molecular consequence of this interaction remains unknown [25]. Following STAT3:STAT3 

dimerization, phospho-STAT3 translocates to the nucleus where dimers bind to consensus 

sequences on the promoter regions of target genes with the resultant cascade of gene 
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transcription. Activated STAT3 thus upregulates the transcription of cyclin D1, survivin, and 

Bcl-xL.

Mechanisms of STAT3 hyperactivation in human cancer are incompletely understood. 

Despite near-universal STAT3 signaling activation in HNSCC, gain-of-function STAT3 

mutations have not been observed; neither have activating mutations in upstream growth 

factor receptors such as EGFR or JAK [26,27]. In general, STATs are positively regulated by 

upstream cytokine or growth factor receptors or intracellular NRTKs, and negatively 

regulated by protein tyrosine phosphatase receptors (PTPR). Thus, STAT3 can be 

constitutively activated either as a consequence of enhanced signaling from positive 

effectors, or by decreased activity of negative effectors – as observed in HNSCC and glioma 

cell lines [14,28]. Aberrant protein tyrosine phosphorylation is a hallmark of human cancer. 

Of all known protein tyrosine phosphatases, the PTPRs comprise the largest family within 

the human tyrosine phosphatome [29]. Some PTPRs, including PTPRD and PTPRT, have 

been reported to function as tumor suppressors because gene mutations or methylation 

contribute to growth and survival in preclinical models [29]. STAT3 has been reported to be 

a substrate of PTPRT in colorectal cancer models [30], and a substrate of PTPRD in 

glioblastoma cells [31]. This suggests that many members of the PTPR family may be 

involved in tumor suppression by dephosphorylating STAT3. Of significant interest, 

mutations in the PTPR gene family have been described in 31% of HNSCC tumors, 

independent of HPV status, while methylation of PTPRD or PTPRT has been observed in 

60% of the HNSCC cases within the Cancer Genome Atlas (TCGA) [31,32]. The varied 

distribution and absence of hotspot mutations suggest that these PTPRs function as tumor 

suppressors. Moreover, many mutations cluster in the catalytic phosphatase domain, 

supporting that de-phosphorylation of the STAT3 oncoprotein may be important to the 

hypothesized tumor suppressor function. Such a function was mechanistically corroborated 

in HNSCC tumor specimens, where selected PTPRT mutations correlated with in situ up-

regulation of phospho-STAT3 expression, as compared to tumors that were PTPRT wild type 

(WT) [32]. Moreover, when WT HNSCC cells were engineered to over-express WT PTPRT, 

decreased STAT3 phosphorylation was observed, whereas transfection of a PTPRT 
phosphatase domain mutation resulted in increased STAT3 phosphorylation. PTPRT 
promoter methylation has been shown to upregulate pSTAT3 expression and is associated 

with sensitivity to STAT3 inhibition in HNSCC cells [33]. Conversely, mutations in PTPRD 
lead to loss of function and subsequent hyper-phosphorylation of its substrates, including 

STAT3, and HNSCC cell lines harboring PTPRD mutations are more sensitive to STAT3 

inhibition [34]. Epigenetic or genetic silencing of PTPRs, negative regulators of the STAT3 

pathway, may therefore represent direct drivers for tumor growth in HNSCC by 

hyperactivation of STAT3. This discovery suggests that tumors harboring PTPR loss-of-

function events may be uniquely amenable to STAT3 pathway inhibitors, and PTPRD 
mutation and PTPRT promoter methylation may serve as predictive biomarkers for 

responsiveness to STAT3 blockade. PTPRD mutations found in HNSCC are summarized in 

Table 1 [34].
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STAT3 activation and resistance to standard therapeutics

In addition to serving as an oncogene in HNSCC, STAT3 also represents a key resistance 

mechanism for standard therapeutics including platinum chemotherapy and radiation. 

Radiation is a modality of therapy paramount to the local control and improved survival of 

HNSCC, either as a single-modality option in definitive doses or in the adjuvant setting, or 

in a multimodal approach with chemotherapy. The effects of tumor cell damage, facilitated 

by damage to DNA, result directly from ionization of DNA or from the action of free radical 

formation [35,36]. STAT3 has been described as a key mediator of chemoradiotherapy 

(CRT) resistance in numerous cancers, including gliomas [37–39], breast cancer [40–43], 

colorectal cancer [44,45], and prostate and cervical cancers [42], in addition to HNSCC.

Targeting the STAT3 pathway has been shown to abrogate EGFR inhibitor resistance in 

HNSCC. EGFR overexpression occurs in the majority of HNSCC, and is associated with 

advanced stage and reduced overall survival [46–48]. As such, EGFR is a validated 

therapeutic target. Cetuximab, a monoclonal antibody against EGFR, is U.S. Food and Drug 

Administration (FDA)-approved for the treatment of locally advanced HNSCC when 

combined with radiation, as well as for advanced disease when administered during front 

line treatment with platinum doublet chemotherapy or after platinum failure. STAT3 

upregulation and activation via both EGFR-dependent and -independent pathways 

contributes to intrinsic or acquired resistance to EGFR targeting in HNSCC and other solid 

tumors. STAT3 activation has been found in the setting of resistance to EGFR tyrosine 

kinase inhibitors (TKI) in preclinical models of gliomas and HNSCC [14,28]. Resistance to 

EGFR TKI treatment of non-small cell lung cancer was associated with elevated STAT3 

activity in tumors [49]. Combined treatment of HNSCC cell lines with an EGFR TKI and a 

STAT3 decoy molecule, an oligonucleotide designed to block STAT3 binding to DNA 

response elements, was associated with enhanced tumor effects relative to EGFR TKI alone 

[50]. Targeting STAT3 using the decoy oligonucleotide in cetuximab- or TKI-resistant cells 

sensitizes the cells to EGFR inhibitor treatment in vitro and in vivo [15]. These findings 

suggest that targeting the STAT3 pathway may enhance the antitumor effects of EGFR 

inhibitors and therefore abrogate resistance to anti-EGFR therapies.

Specific targets of the STAT3 pathway

Targeting the STAT3 pathway has been a major focus of drug development, due to its 

contribution to treatment resistance and immune escape in most epithelial malignancies 

[13,17,51,52]. Strategies for targeting STAT3 can be conceptualized according to its 

activation cascade as depicted in Fig. 1. Abrogation of oncogenic STAT3 signaling could be 

disrupted by (1) inhibition of upstream extracellular or intracellular receptors, thereby 

decreasing phosphorylation; (2) inhibition of the pSTAT3 SH2 domain, thereby blocking 

dimerization; (3) inhibition of STAT3-DNA binding, thereby preventing target gene 

transcription; and 4) inhibition of STAT3 transcription, thereby down-modulating total 

STAT3 expression. The agents described below are summarized in Table 2 with selected 

agents shown along the pathway schematic in Fig. 1.
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Blocking STAT3 activation: targeting upstream receptors

JAK kinase inhibitors

Inhibiting the phosphorylation and subsequent activation of STAT3 is a logical target for 

inhibiting the downstream transcription products of STAT3 and can be accomplished by 

small molecule inhibition of the JAK kinase. Ruxolitinib, an oral small molecule inhibitor of 

JAK1 and JAK2, is FDA-approved for the treatment of intermediate or high-risk 

myelofibrosis [53]. Tofacitinib, an inhibitor of JAK3, is FDA-approved for the treatment of 

rheumatoid arthritis and is being studied in other inflammatory diseases, including 

inflammatory bowel disease and psoriasis [54,55]. Though nonspecific JAK-STAT3 

inhibition has been mentioned to involve cytokine inflammatory activity and downstream 

transcription products of ruxolitinib [56] and efficacy studies in the tofacitinib trials have 

suggested that other pathways of inhibition may be affected [57], very little has been 

published on the effects of JAK inhibition on solid tumors. Another oral JAK1 and JAK2 

inhibitor, AZD1480, was shown to abrogate IL-6 induced STAT3 phosphorylation and also 

suppressed the growth of human solid tumor xenografts with constitutive STAT3 activity 

[58,59]. In preclinical studies, AZD1480 was shown to inhibit proliferation of eight HNSCC 

cell lines at low concentrations [60].

These drugs are not without adverse effects, and toxicity is a concern. Ruxolitinib has been 

associated with cytopenias, gastroin-testinal disturbances, peripheral neuropathy, and 

metabolic abnormalities [61,62]. However, data from a phase III trial comparing 

capecitabine plus ruxolitinib to capecitabine plus placebo indicate that ruxolitinib was well 

tolerated with very few toxicities [63]. Adverse events reported for tofacitinib include 

hepatic and renal impairment, neutropenia, and an increased incidence of infections, 

including tuberculosis [64]. Clinical trials involving AZD1480 were terminated due to 

significant neurotoxicities [65]. Still another JAK2-selective inhibitor, fedratinib, showed 

promise in a phase III placebo-controlled trial in patients with myelofibrosis where the 

primary endpoint of spleen response rate was reached [66]. Unfortunately, while early 

clinical trials of fedratinib demonstrated the drug to be well tolerated [67,68], occurrence of 

neurotoxicity also forced the discontinuation of clinical development of this drug. WP1066 

is a small molecule that blocks STAT3 activation by JAK2 signaling inhibition [69,70]. This 

molecule was studied in preclinical glioma cell models, but unfortunately exhibited poor 

efficacy and thus its development was terminated [71].

In addition to synthetically-derived compounds, naturally-occurring products inhibit STAT3 

function by various mechanisms both in vitro and in vivo. 2-Methoxystypandrone, a 

naphthoquinone isolated from roots of the herb Polygonum cuspidatum, has activity against 

STAT3 activation and blocks the STAT3 pathway upstream at JAK2 [72,73]. This compound 

is not currently under clinical investigation but offers a potential natural alternative for future 

study.

Currently, many ongoing clinical trials are studying JAK inhibitors in cancer patients. 

Ruxolitinib is being evaluated in breast cancer (in combination with trastuzumab, 

NCT02066532; preoperatively in triple negative disease, NCT02041429; in combination 

with capecitabine, NCT02120417; in combination with exemestane, NCT01594216), 
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colorectal cancer (NCT02119676), nonsmall cell lung cancer (NSCLC) (NCT02119650), 

acute myeloid leukemia (AML) (NCT02257138), and lymphoma (NCT01965119). A phase 

II trial in castrate-resistance prostate cancer was terminated due to lack of clinical response 

(NCT00638378).

IL-6 receptor inhibitors

Cytokine proteins, including interleukins, regulate cellular growth, proliferation, and 

signaling in tumor environments. IL-6, an inflammatory cytokine, has been detected in high 

concentrations in serum of patients with HNSCC and correlates with disease relapse [74]. 

IL-6 activates the JAK1 and 2 pathway through signal transduction, which leads to the 

activation of STAT3 by phosphorylation [75], thereby making the IL-6 receptor a target for 

drug development.

Tocilizumab, a humanized monoclonal antibody (mAb) to the IL-6-receptor-alpha (IL6Rα), 

is FDA-approved in the treatment of rheumatoid arthritis and juvenile idiopathic arthritis 

[76–78]. This drug has been studied in other autoimmune disorders, including ankylosing 

spondylitis and systemic lupus erythematosus [79,80] and is currently being studied in CLL 

(NCT02336048). A phase I trial in ovarian cancer has been completed, with results 

forthcoming (NCT01637532).

Another anti-IL-6 mAb, siltuximab, binds highly to IL-6, neutralizing its bioactivity [81]. It 

has been studied in various malignancies, including myelodysplastic syndrome, prostate 

cancer, and renal cell carcinoma (RCC) [82–85], and is under study in multiple myeloma 

(NCT01484275).

Other inhibitors of STAT3 phosphorylation

Flavonoids, such as quercetin, have been found to reduce inflammation [86], and this 

pathway has been exploited for its effects on the tumor microenvironment. Quercetin is 

found in fruits, vegetables, leaves, and grains and used as a supplement in many foods and 

beverages. It has been studied in several disease states, including asthma, fibromyalgia, 

metabolic syndrome, and cancer. Its antitumor effects were initially described in 2000 and 

thought to be related to immune stimulation, free radical scavenging, alterations in mitosis, 

apoptotic induction, and gene regulation [87]. Quercetin was shown to be a potent inhibitor 

of IL-6 driven STAT3 signaling in glioblastoma cell lines [88], where it also reduced 

downstream expression of cyclin D1 and MMP-2. Similar results were found in 

cholangiocarcinoma cell lines, where treatment with quercetin suppressed the JAK2/STAT3 

pathway activation with a subsequent decrease in pSTAT3 proteins [89]. Quercetin has also 

been observed to block tyrosine phosphorylation of JAK2 and STAT3 induced by IL-12 [90] 

and inhibited the proliferation of melanoma cells [91]. Oral quercetin was given daily to 

Balb/c mice with colon-25 tumors with an observed reduction in tumor size by day 20 [92]. 

Mukherjee et al. described the downregulation of IL-6-mediated STAT3 activation by 

quercetin in a NSCLC cell line [93].

Curcumin is a polyphenol derived from the plant Curcuma longa and is the main component 

of the spice turmeric. A naturally-occurring phenol with a bright yellow color, curcumin is 

used as a food coloring or additive and has been studied in diseases such as psoriasis, 
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arthritis, Alzheimer’s disease, and various malignancies [94,95]. Anti-inflammatory effects 

of curcumin were classically attributed to the suppression of NF-κB activation, thereby 

downregulating the transcription of IL-6 and other inflammatory cytokines [96]. Kim et al. 

demonstrated that curcumin suppresses the phosphorylation of upstream kinases JAK1 and 

JAK2, resulting in downstream inhibition of STAT1 and STAT3 phosphorylation and 

activation [97]. Treatment of activated T-cells with curcumin was shown to inhibit IL-12-

induced tyrosine phosphorylation of JAK2 and STAT3 [98] and inhibited STAT3 activation 

and nuclear translocation in myeloma cells [99]. This was also exhibited when curcumin was 

administered to murine glioma cell lines [100]. Curcumin decreased STAT3 phosphorylation 

in both constitutive and IL-6 induced ovarian and endometrial cells, resulting in decreased 

cell viability, which was shown to be reversible with normalization of pSTAT3 levels within 

24 h of curcumin removal [101]. In preclinical studies specifically in HNSCC cell lines, 

curcumin was shown to inhibit proliferation and invasion by the inhibition of 

phosphorylation of EGFR and its downstream molecules, including STAT3 [102]. Curcumin 

also suppressed IL-6 mediated STAT3 phosphorylation [103].

Curcumin is being actively studied in various malignancies, including colorectal cancer 

(NCT01490996, NCT01859858), breast cancer (NCT01740323, NCT01975363), chronic 

lymphocytic leukemia (CLL) (NCT02100423), and prostate cancer (NCT01917890, 

NCT02064673, and NCT02095717). Studies are also evaluating the cancer prevention 

abilities of curcumin in familial adenomatous polyposis (NCT00927485, NCT00641147). 

Quercetin is being studied in prostate and pancreatic cancers (NCT01912820 and 

NCT01879878, respectively).

Blocking STAT3 dimerization: SH2 domain inhibition

Small molecule inhibitors

Inhibiting the SH2 domain of the STAT3 transcription factor blocks the two major steps 

required for the formation of STAT3 dimers: first, recruitment of the molecule to the plasma 

membrane for phosphorylation of Tyr705 by activated RTKs or non-receptor kinases, and 

second, the subsequent dimerization of two activated STAT3 molecules. Thereby dimer 

translocation to the nucleus is prevented, and transcription of target genes does not occur. 

Several small molecules targeting the SH2 domain have been described, and many are in 

various phases of development.

STA-21, a small molecule antibiotic discovered through computational methods and a 

virtual library of the SH2 domain, hinders dimerization of STAT3 and downregulates 

expression of STAT3 target genes in human carcinoma cells with constitutive STAT3 

phosphorylation [104]. Despite its pathway inhibitory activity, there is no biochemical 

evidence to support its binding to the SH2 domain. STA-21 has been studied in patients with 

psoriasis, where Miyoshi et al. reported clinical improvement in psoriatic skin lesions after 

topical use of this molecule [105].

Direct dephosphorylation of p-STAT3 by protein tyrosine phosphatases, which includes 

members of the SH2-domain containing tyrosine phosphatase family (SHP-1 and SHP-2), is 

another mechanism that leads to downregulation of STAT3 transcription products. SHP-1, 
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the loss of which has been shown to enhance JAK3/STAT3 signaling in various non-

Hodgkin lymphomas [106,107], represents another target in STAT3 modulation. The novel 

small molecule SC-2001 was shown to inhibit the transcriptional activities of STAT3 by 

enhancing SH-1 activity in hepatocellular carcinoma (HCC) cells [108]. This molecule has 

also been studied in combination with sorafenib, a multikinase inhibitor approved for 

treatment of unresectable HCC, advanced RCC, and thyroid cancer, where it was shown to 

overcome sorafenib resistance through the SH-1 pathway in HCC cell lines [109].

OPB-51602 is an oral small molecule that has high affinity for the STAT3 SH2 domain with 

resulting interference in STAT3 activity in numerous in vitro and in vivo models (Otsuka 

Pharmaceutical Co., Ltd., unpublished data). A phase I study in advanced solid tumors 

showed partial responses in two patients with NSCLC who previously were treated with 

EGFR TKIs [110]. However, a second phase I study in patients with hematologic 

malignancies demonstrated significant toxicity at doses where clinical responses were 

observed, and lower doses required a more difficult dosing schedule and no responses were 

observed, thus further clinical development of OPB-51602 was terminated [111]. A clinical 

trial to determine safety and tolerability in nasopharyngeal carcinoma patients 

(NCT02058017) was subsequently terminated.

OPB-31121 has also been shown to have a high affinity for the SH2 domain of STAT3 [112]. 

Preclinical studies show promise of this drug in hematologic malignancies [113], and phase I 

studies have been conducted in patients with advanced solid tumors [114] and hematologic 

malignancies (NCT10129509). Due to an unfavorable pharmacokinetic profile and no 

objective observed responses, clinical development was halted. Prior to termination of the 

development of OPB-31121, a phase I/II trial in patient with progressive HCC was 

completed with results not yet available (NCT01406574).

Pyrimethamine is an anti-parasitic drug used for both the treatment and prevention of 

malaria. This drug was identified as a STAT3 inhibitor through a chemical library screen and 

shown to reduce pSTAT3 levels in a human autosomal dominant polycystic kidney disease 

(ADPKD) cell line [115]. A phase I/II clinical trial is currently studying pyrimethamine for 

safety and dose-finding in relapsed chronic lymphocytic leukemia/small lymphocytic 

lymphoma (CLL/SLL) patients (NCT01066663).

Peptide mimetics

Several peptidomimetic inhibitors targeting the SH2 domain of STAT3 have been derived 

from sequences in the SH2 domain. The SH2 protein sequences around phosphotyrosine 705 

(Pro-pTyr705-Leu-Lys-Thr-Lys) participate directly in STAT3 dimerization, and these 

sequences served as the starting point [116,117]. ISS-610, a tripeptide mimic, and its 

interaction with the SH2 domain of STAT3 was combined with structural information from 

X-ray crystallography of STAT3, leading to the development of an analogue peptidomimetic, 

S3I-M2001 [117–119]. This compound also exhibited inhibition of STAT3 phosphorylation 

in NIH 3T3/v-Src and MDA-435-MB cells and tumor growth in human breast tumor 

xenografts.
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Golotimod (SCV-07; γ-D-glutamyl-L-tryptophan) is a novel immunomodulating peptide 

that inhibits STAT3 signaling and was found to modulate the duration and severity of oral 

mucositis in animal models that received radiation or a combination of radiation and 

cisplatin [120]. A subsequent phase 2 trial suggested this drug also favorably attenuated the 

course of mucositis in patients with HNSCC [121].

Phosphopeptide prodrug

Phosphopeptide prodrugs derived from gp130 Tyr904 represent another class of compounds 

targeting the SH2 domain of STAT3. These prodrugs were found to be potent inhibitors of 

STAT3 phosphorylation in several cancer cell lines [122]. Intratumoral injection of PM 73G 

in an orthotopic xenografts significantly inhibited tumor growth, tumor vascularization, and 

VEGF expression [123,124]. This suggests that selective inhibition of STAT3 leads to 

impaired VEGF signaling and inhibition of tumor angiogenesis.

Natural products

Cryptotanshinone, a natural product in the tanshinone class (compounds isolated from Salvia 
miltiorrhiza, an herb used in traditional Chinese medicine [125]), has been identified as a 

potent STAT3 inhibitor [126]. Because cryptotanshinone rapidly inhibits the phosphorylation 

of STAT3 Tyr705 in a human prostate cancer cell line while phosphorylation of JAK2 was 

inhibited in a protracted manner, a JAK2-independent mechanism is hypothesized. 

Furthermore, cryptotanshinone and STAT3 co-localized in the cytoplasm and the formation 

of STAT3 dimers was suppressed, providing evidence that the binding site is SH2. The agent 

also decreased expression of target genes cyclin D1, survivin, and Bcl-xL, with similar 

results found in glioma cell lines [127]. While this compound has not been formally studied 

in a clinical trial context, its use in traditional Chinese medicine makes it attractive for 

clinical development.

Inhibition of STAT3-DNA binding

Metal complexes and small molecules

Novel platinum compounds, CPA-1 and CPA-7, are considered analogs of cisplatin and 

preferentially interfere with STAT3 and disrupt its ability to bind to DNA [61]. This was 

shown to occur in vitro, in mouse fibroblast cells, and in various cell lines including breast, 

prostate, melanoma, and colon tumor cells. The most potent compound, CPA-7, also induced 

tumor regression in a murine colon cancer model. This molecule was also active in murine 

glioma models, inhibiting STAT3 activity and tumor growth and downregulating IL-1β, a 

pro-inflammatory cytokine [128]. However, Assi et al. showed that CPA-7 elicited effects on 

peripheral glioma cell lines but not intracranial cells, suggesting that this molecule is unable 

to penetrate the central nervous system [71] and that further drug development is not 

warranted.

STX-0119, an N-[2-(1,3,4-oxadiazolyl)]-4-quinolinecarboxa mide derivative, selectively 

blocked DNA binding activity of STAT3, suggesting the mechanism of binding to either the 

SH2 or DNA binding domains [129]. This molecule suppressed the expression of various 

STAT3 target proteins, including c-myc, cyclin D1, and Bcl-xL and the growth of many 
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cancer cell lines [130]. An oral agent, STX-0119 was found to abrogate the growth of a 

lymphoma xenograft model, suppressing levels of c-myc, Ki-67, and pSTAT3 within the 

tumors. These studies were also extended to glioblastoma multiforme stem-like cells (GBM-

SC) derived from patient with recurrent GBM tumors where again target gene expression of 

STAT3 was strongly inhibited [131].

A curcumin analogue, FLLL32, was developed with special biochemical properties for more 

specificity for STAT3 [132]. This compound decreased STAT3 binding to DNA and cell 

proliferation in canine and human osteosarcoma cells with decreased levels of both total and 

pSTAT3. FLLL32 also downregulated pSTAT3 in head and neck squamous cell cancer lines, 

inducing a potent anti-tumor effect and increased the proportion of apoptotic cells [133].

STAT3 oligonucleotides

Transcription factor decoys consist of nucleotide sequences derived from conserved genomic 

regulatory elements that are recognized and bound by the transcription factor being targeted. 

Decoys elicit their biological effects by competitively inhibiting binding of the endogenous 

transcription factor to corresponding cis elements in genomic DNA, thus preventing 

expression of target genes. Various oligonucleotide molecules have been developed and 

studied. Antisense oligonucleotides (ASOs) are short sequences of nucleotides developed to 

alter downstream protein expression [134]. STAT3 oligonucleotide decoy was derived from 

the conserved hSIE genomic element found in the c-fos gene promoter, and was comprised 

of a 15-bp duplex oligonucleotide with free ends and phosphorothioate modifications of the 

three 5′ and 3′ nucleotides. It binds specifically to pSTAT3 and blocks its binding to DNA, 

resulting in inhibition of transcription and potentially tumor cell proliferation [135].

Studies in preclinical models of many human cancers have demonstrated antitumor efficacy 

of this STAT3 decoy [136–141]. A phase 0 clinical trial of 30 HNSCC patients undergoing 

surgical resection demonstrated significant downregulation of STAT3 target gene expression 

in the tumors that received the intratumoral injection of decoy compared with saline controls 

[135]. The “parent” STAT3 decoy oligonucleotide used in the phase 0 trial is limited by 

relatively rapid thermal and enzymatic degradation upon systemic administration, thereby 

limiting broad clinical translation. The parent STAT3 decoy has been modified by adding 

carbon spacers on both ends creating a cyclic STAT3 decoy, which is resistant to thermal 

degradation and is stable in serum for up to 12 h.

Further investigation demonstrated antitumor efficacy in HNSCC xenograft models with 

intravenous administration [135,142]. Toxicology studies demonstrated no evidence of organ 

hematopoietic toxicity, and tumor growth inhibition was accompanied by downregulation of 

STAT3 target gene expression in the tumors [142,143]. Currently, the cyclic STAT3 decoy is 

being developed for a proposed phase I clinical trial and will be a first-in human model.

Decreasing total STAT3 expression

A final target in the STAT3 pathway is the quantitative reduction in STAT3 expression by 

inhibition of mRNA. ISIS 481464 (AZD9150) is a synthetic ASO that is complementary to 

mRNA for STAT3 and demonstrated antiproliferative effects in various xenograft models 
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resulting in reduction of STAT3 mRNA and protein in preclinical monkey and mouse 

models [144]. In a first-in-human phase I trial in patients with advanced cancers, this ASO 

was well-tolerated and shown to have anti-tumor activity in patients with lymphoma [145]; a 

dose-expansion phase II trial in lymphoma is ongoing (NCT01563302). Other active clinical 

trials studying ISIS 481464 (AZD9150) include phase II studies in patients with malignant 

ascites (NCT02417753) and metastatic HNSCC (monotherapy or in combination with 

MEDI4736, NCT02499328). A phase I trial in patients with advanced or metastatic HCC 

has been completed; results are not yet reported (NCT01839604).

Conclusions

The STAT3 pathway involves complex interactions between cell surface receptors, cytokine 

signaling, and non-receptor tyrosine kinases, and ultimately directs aberrant protein 

synthesis, growth, and survival. Although hyperactivation of the STAT3 transcription factor 

is a hallmark of HNSCC, oncogenic mutations are not described. Rather, aberrant signaling 

is associated with activation by upstream growth factor receptors and a loss of function of 

selective PTPRs that de-phosphorylate pSTAT3. Due to the association of STAT3 with 

oncogenic behavior and resistance to standard therapeutics in HNSCC, it remains a 

compelling target. Identification of predictive biomarkers for STAT3 dependence is 

essential, as STAT3-targeting drugs can be associated with hematologic toxicity, in some 

cases leading to early termination of trials. Balancing toxicity with benefit remains a 

challenge, especially in the recurrent/metastatic setting, where palliation of symptoms is of 

utmost importance. Predictive biomarkers for STAT3 dependence could lead to clinical 

responses to lower doses of STAT3-targeting drugs, thereby also leading to lower treatment-

related toxicities. Although no direct STAT3 inhibitor has reached FDA approval, due to 

inherent challenges in targeting transcription factors, the field is poised for breakthroughs. 

Promising targets include STAT3 mRNA translation, upstream cell surface receptors, the 

SH2 domain of STAT3, and binding of the STAT3 dimer to DNA. Ongoing, early phase 

clinical trials may lead to efficacy studies in HNSCC and other malignancies, ultimately 

filling a major gap in our therapeutic arsenal against human cancer.
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Fig. 1. 
Schematic of the STAT3 pathway and therapeutic targets. (1) Cytokines and growth factors, 

such as IL-6 and EGF, bind to receptors to activate phosphorylation and cell signaling. 

Curcumin inhibits cell surface signaling, (2) STAT3 molecules are activated by 

phosphorylation of a tyrosine residue by activated RTKs, such as EGFR, or intracellular 

NRTKs like JAK or Src. Inactivation by dephosphorylation occurs by PTPRs. Targeted 

therapies, including the JAK1/2 inhibitor ruxolitinib, inhibit these pathways. (3) 

Spontaneous dimerization of two phosphorylated STAT3 molecules occurs via the reciprocal 

phosphotyrosine-SH2 interactions, and the homodimer translocates to the nucleus. 

Golotimod, an immunomodulating peptide, inhibits homodimerization of STAT3 molecules 

in the cytoplasm. (4) pSTAT3 homodimer binds to consensus sequences on the promotor 

regions of target genes. STAT3 decoy molecules are under development to target this step in 

the STAT3 transcription pathway. (5) The resultant transcripts are translated into pro-

proliferative, pro-survival oncogenic proteins. (6) AZD9150 is an antisense oligonucleotide 

that inhibits the translation of STAT3 mRNA.
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Table 1

PTPRD gene mutations identified in HNSCC.

Mutation Location on gene

D50E Immunoglobulin (Ig) Extracellular domain

T111N Ig

Q196H Second Ig-like domain of the receptor protein tyrosine phosphatase (IG2)

K204E IG2

P249L IG2

L308P IG2

S384R Fibronectin type 3 domain (FN3)

L503I FN3

E529Q FN3

T820P FN3

L1014M FN3

L1036P FN3

T1100M Transmembrane region

L1147F Transmembrane region

S1247T Transmembrane region

V1270L Transmembrane region

P1311T Transmembrane region

K1502M Catalytic domain
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Table 2

Therapeutic agents targeting STAT3.

Drug (company) Target Type Phase of development, human 
cancer

HNSCC development

Inhibition of upstream receptors

Ruxolitinib (Incyte Pharmaceuticals, 
Novartis)

JAK 1/2 Small molecule I/II/III (FDA-approved myelofibrosis) Phase I (afatinib 
combination)

Tofacitinib (Pfizer) JAK 3 Small molecule (FDA-approved RA) –

AZD1480 (AstraZeneca) JAK 1/2 Small molecule I (terminated) –

Fedratinib (Sanofi) JAK 2 Small molecule I/II/III –

Tocilizumab (Genentech) JAK 3, IL6R Monoclonal antibody I/II (FDA-approved RA, juvenile 
idiopathic arthritis)

–

Curcumin JAK 1/2, IL6 Natural compound I/II Phase 0 (biomarker)

Quercetin JAK 2, IL-6 Natural compound I/II –

Inhibition of STAT3 Domain

STA-21 Small molecule (Phase I/II in psoriasis) –

WP1066 Small molecule I (brain cancer) –

OPB-51602 (Otsuka Pharmaceutical) Small molecule I Phase I 
(nasopharyngeal 
carcinoma; 
terminated)

OPB-31121 (Otsuka) Small molecule I/II –

Pyrimethamine Small molecule I/II (CLL/SLL) –

Golotimod (SCV-07; SciClone 
Pharmaceuticals)

Peptide mimetic II Phase II (attenuating 
oral mucositis)

Inhibition of STAT3-DNA Binding

STAT3 decoy molecule Oligonucleotide Phase 0 (intratumoral 
injection)

Cyclic STAT3 decoy Oligonucleotide –

Inhibition of STAT3 Transcription

AZD9150 (AstraZeneca); previously 
known as ISIS 481464 (Isis 
Pharmaceuticals)

Antisense oligonucleotide I/II (Advanced cancers, lymphoma, 
HCC, malignant ascites)

Phase I/II 
(monotherapy; in 
combination with 
MEDI14736)

Oral Oncol. Author manuscript; available in PMC 2017 September 08.


	SUMMARY
	Introduction
	STAT3 activation in HNSCC
	STAT3 activation and resistance to standard therapeutics
	Specific targets of the STAT3 pathway
	Blocking STAT3 activation: targeting upstream receptors
	JAK kinase inhibitors
	IL-6 receptor inhibitors
	Other inhibitors of STAT3 phosphorylation

	Blocking STAT3 dimerization: SH2 domain inhibition
	Small molecule inhibitors
	Peptide mimetics
	Phosphopeptide prodrug
	Natural products

	Inhibition of STAT3-DNA binding
	Metal complexes and small molecules
	STAT3 oligonucleotides

	Decreasing total STAT3 expression
	Conclusions
	References
	Fig. 1
	Table 1
	Table 2

