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Abstract

A metathesis reaction occurs when a diaryliodonium triflate is heated with an aryl iodide, resulting 

in formation of a new diaryliodonium triflate.

Graphical Abstract

Aryl iodides undergo I-arylation upon treatment with diaryliodonium triflates
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This paper describes a thermally induced, metal-free metathesis reaction between 

diaryliodonium triflates and certain aryl iodides according to Eq. 1 (Scheme 1). While 

DiMagno observed fluoride-catalyzed aryl ligand exchange between diaryliodonium species 

(Eq. 2),[1] and Koser reported oxygen ligand exchange between PhI(OH)OTf and aryl 

iodides (Eq. 3),[2] the chemistry of Eq. 1 appears to be undocumented.

By way of background, diaryliodonium species are carriers of electrophilic aryl synthons, 

hence they arylate a diversity of nucleophiles,[3] even very weak ones.[4] For that reason, 

they are of significant interest in organic chemistry.[5] On the other hand, Yamamoto has 

shown that organic iodides possess appreciable I-nucleophilicity.[6] This raises the question 

of whether diaryliodonium agents might be able to I-arylate aryl iodides; i.e., whether an 

iodonium metathesis reaction might be possible. The ability to prepare diaryliodonium 

complexes by this method would have a favorable impact in organic, materials, and 

medicinal chemistry;[3–5] however, the prognosis for the feasibility the transformation 
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seemed poor. For instance, Olofsson, detected no aryl group exchange between bis(4-

tolyl)iodonium triflate and 2,6-dimethyl-iodobenzene upon heating in DMF.[7]

In contrast with the foregoing, we found that 4-iodotoluene, 4-iodoanisole, and 1-

iodonaphthalene displace PhI from Ph2IOTf, leading to mixtures of products of mono- and 

bis-substitution. With low-melting[8] aryl iodides, the reaction may be induced by melting a 

mixture of the reactants.[9] However, incomplete consumption of Ph2IOTf was consistently 

observed under these conditions. Generally better results were obtained by operating in 1,2-

dichloroethane (DCE) solution, in which case most of the starting Ph2IOTf was consumed 

(Table 1). The solution protocol is thus the method of choice. Interestingly, such metathesis 

reactions failed in donor solvents such as (CF3)2CHOH, MeCN, DMF, or DMSO. This 

stands in contrast with DiMagno’s report that the chemistry of Eq.2 takes place in MeCN 

solution,[1] but it is consistent with Olofsson’s observation that no aryl group exchange 

between diaryliodonium triflates and aryl iodides occurs in DMF.[7] A rationale for all this 

segues from a possible mechanism for the metathesis reaction proposed herein.

As seen in Table 1, the reaction tends to afford mixtures of products. In an effort to improve 

selectivity, we examined the metathesis chemistry of mixed iodonium triflates, in which one 

of the aryl ligands is electron-poor, and the other, electron-rich.[10] Such species react with 

common nucleophiles by what appears to be an SNAr mechanism, resulting in transfer of the 

more electron-deficient aryl group[11] — at least in the absence of transition metal 

catalysts.[12] Greater aryl group transfer selectivity might obtain if such a preference were 

maintained in the context of the metathesis reaction.

The foregoing complexes did react selectively, but contrary to expectations, they 

preferentially transferred the more electron-rich group to 1-iodonaphthalene, 4-I-C6H4Me, 

4-I-C6H4OMe, and Ph-I, (Tables 2–3), indicating that the metathesis reaction is unlikely to 

proceed by an SNAr mechanism.[13] On the other hand, thienyliodonium triflate 8 
transferred the 4-MeOOCC6H4 group selectively (Table 4), leading to mixtures of products 

9 and 4, but only traces of 10. In light of precedent,[11] Coenen, who also observed 

preferential expulsion of 2-iodothiophene in SNAr reactions of mixed 2-thienyliodonium 

salts,[14] ascribed this selectivity to the electron-rich character of the thienyl group. In the 

present case, such an explanation would be untenable, given the results of Tables 2–3. A 

more satisfactory rationale for aryl group transfer selectivity in iodonium metathesis 

emerged from a computational estimate of the fractional positive charge on the I-atom of 

various aryl iodides (Table 5). Halides at the top of the list exhibit a smaller (+)-charge on 

the I-atom, and may thus be expected to be better I-nucleophiles than those at the bottom of 

the table, for which, increased I-(+)-charge translates into greater nucleofugality. A 

diaryliodonium triflate based on an aryl iodide with a greater extent of (+)-charge on the I-

atom is likely to be destabilized relative to one centered on a less I-positive iodide, because 

the I-atom must acquire additional (+)-character in the hypervalent state.[17] Such an 

accumulation of (+)-charge on an already positive I-atom is surely energetically unfavorable. 

Therefore, iodonium metathesis occurs so that the extent of (+)-charge on the hypervalent I-

atom decreases; i.e., so that a more I-nucleophilic iodide displaces a less I-nucleophilic one. 

Table 5 seems to rationalize the formation of mixtures in reactions of Ph2IOTf with 4-I-

C6H4Me, 4-I-C6H4OMe, and 1-iodonaphthalene, given the similar charges on the I-atom of 
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nucleophiles and nucleofuge (PhI). The selective transfer of the 4-MeOOCC6H4 group from 

5 is consistent with the greater extent of (+)-charge on the I-atom of 2-iodothiophene (better 

nucleofuge) relative to methyl 4-iodobenzoate. Finally, the fact that no metathesis occurred 

between Ph2IOTf and 5-iodouridine triacetate[18–19] or 4-Br-C6H4-I may be ascribed to the 

unfavorable change in (+)-charge on the hypervalent I-atom that would be incurred during 

the reaction.[20] On the basis of the foregoing, a possible mechanism for the iodonium 

metathesis reaction may be ventured as outlined in Scheme 2. Reversible dissociation of 

starting complex 11 and addition of a nucleophilic aryl iodide to iodonium ion 12 yields 13. 

The latter would form only in polar, nonnucleophilic media such as DCE: donor solvents 

(DMF, MeCN, etc.), surely more nucleophilic than aryl iodides, would outcompete Ar3I for 

12, thus retarding / suppressing metathesis. Kinetically faster expulsion of the more 

nucleofugal aryl iodide from 13, perhaps via transition state 14,[7] leads to iodonium ion 15, 

which then combines with TfO− to give the final 16.

In summary, iodonium metathesis reactions are feasible. This engenders numerous 

opportunities that are actively being researched. Pertinent results will be disclosed in due 

time.
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Scheme 1. 
Iodonium metathesis reactions.
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Scheme 2. 
Mechanistic hypothesis for the iodonium metathesis reaction.

Kasahara et al. Page 6

Angew Chem Int Ed Engl. Author manuscript; available in PMC 2017 September 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kasahara et al. Page 7

Table 1

Solution metathesis reactions of Ph2IOTf.

entry Ar’ time (h) ratio 3:4:1[b] yield[c]

a 4-Me-C6H4 24 9.8:28.5:1.0 48

b 4-MeO-C6H4 25 27.3:23.1:1.0 78

c 1-naphthyl 26 2.0:1.0:0.0 14

[a]
Conditions: 0.2 M solution of Ph2IOTf in (CH2Cl)2, 5 equiv aryl iodide, thick-walled glass tube sealed with a Teflon screwcap and immersed in 

an oil bath kept at 120–125 °C.

[b]
Molar ratios calculated by integration of 1H NMR spectra.

[c]
Percent yield after silica gel column chromatography (gradient 10% → 40% acetone-CH2Cl2) to remove nonpolar byproducts. The stated value 

is the sum of the yields of individual compounds present in the product mixture. A comparison of 1H NMR spectra of crude and purified reaction 
mixtures indicated that insignificant changes in the ratio of iodonium triflate products had occurred upon chromatography.

Angew Chem Int Ed Engl. Author manuscript; available in PMC 2017 September 08.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kasahara et al. Page 8

Table 2

Metathesis reactions of iodonium triflate 5.

entry Ar’ time ratio 6:4:5:(other)[b] yield[c]

a Ph 15 h 13.9[d]:1.0:(−)[e] 51

b 4-MeC6H4 15 h 6.0:35.7:1.0:(−)[e] 59

c 4-MeOC6H4 15 h 2.3:2.2:1.0:(−)[f] 80

d 1-naphthyl 24 h 6.6:1.8:1.0:(−)[e] 35

[a], [b], [c]
Same as for Table 1.

[d]
Compounds 7 and 4 are identical in this case.

[e]
Other products — if at all detectable — were present in insignificant amounts.

[f]
A trace amount of Ph2IOTf, too small to be measured accurately and perhaps arising as per ref. 1, was apparent by 1H-NMR and MS.
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Table 3

Metathesis reactions of iodonium triflates 7.

entry Ar Ar’ ratio 6:4:7:(other)[b] yield[c]

a[d] Ph Ph 12.9[e]:1.0:(−)[f] 65

b[d] “ 4-MeC6H4 1.0:1.3:0.0:(−)[f] 73

c[d] “ 4-MeOC6H4 60.1:35.1:1.0:(−)[f] 76

d[d] “ 1-naphthyl 33.3:5.9:1.0:(−)[f] 59

e[d] 4-MeOC6H4 Ph 11.5:8.2:1.0:(1.0)[g] 60

f[d] “ 4-MeC6H4 1.3:1.0:0.0:(−)[f] 79

g[d] “ 4-MeOC6H4 6.9[e]:1.0:(−)[f] 89

h[d] “ 1-naphthyl 8.4:1.2:1.2:(1.0+0.6)[h] 64

i[d] mesityl 4-MeC6H4 1.0:7.0:0.0:(−)[f] 26

j[d] “ 4-MeOC6H4 1.0:13.0:0.0:(−)[f] 37

k[d] “ 1-naphthyl 1.0:8.4:8.4:(−)[i] 27

[a], [b], [c]
: same as in Table 1.

[d]
Reaction time: 12 h.

[e]
Compounds 7 and 4 are identical in this case.

[f]
Other products — if at all detectable — were present in insignificant amounts.

[g]
This other product was bis-(4-anisyl)iodonium triflate (1H-NMR, MS), perhaps arising as per ref. 1.

[h]
The major other product was 1-naphthyl-4-nitrophenyl-iodonium triflate; the minor other product was bis-(4-anisyl)iodonium triflate (1H-NMR, 

MS).

[i]
A trace amount of 1-naphthyl-4-nitrophenyl-iodonium triflate, too small to be measured accurately, was apparent by 1H-NMR and MS.
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Table 4

Metathesis reactions of thienyliodonium triflate 8.

entry Ar’ ratio 9:10:4:8:(other)[b] yield[c]

a[d] Ph 1.0:trace:15.1:0.0:(−)[e] 40

b[d] 4-MeC6H4 1.0:trace:7.0:0.0:(−)[e] 66

c[d] 4-MeOC6H4 1.3:trace:1.0:trace:(−)[e] 91

d[d] 1-naphthyl 1.0:trace:4.1:trace:(−)[e] 38

[a], [b], [c]
: same as in Table 1.

[d]
reaction time: 12h.

[e]
Other products — if at all detectable — were present in insignificant amounts.
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Table 5

Calculated charge on the I-atom of various aryl iodides.

substance charge on the I-atom[a]

4-iodotoluene + 0.068

iodobenzene + 0.068

1-iodonaphthalene + 0.070

4-iodoanisole + 0.071

4-bromo-1-iodobenzene + 0.088

methyl 4-iodobenzoate + 0.093

2-chloro-5-iodopyridine + 0.120

4-nitro-1-iodobenzene + 0.120

5-iodo-1-methyluracil + 0.162

2-iodothiophene + 0.166

[a]
Geometric mean (ref. 15) of values (units of electron charge, e) calculated by MNDO, MNDO-d, AM1 and PM3 after geometry optimization 

(ref. 16).
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