
LETTER TO THE EDITOR

The BIF Domain in Plant bHLH Proteins Is an ACT-Like Domain OPEN

Basic helix-loop-helix (bHLH) proteins, are

important regulatorsofeukaryotic transcrip-

tion and are particularly numerous in plants,

playing roles in development and environ-

mental responses (Pires and Dolan, 2010;

Feller et al., 2011). Members of this family

of transcription factors are generally char-

acterized by the presence of the HLH

signature motif required for homo- or he-

terodimer formation, and dimerization is

essential for DNA binding when the HLH

is accompanied by the adjacent basic re-

gion. Frequently, bHLH proteins harbor other

conserved motifs that participate in protein-

protein interactions central for their regulatory

function.

Cui et al. (2016) recently reported the in

planta interactions of the Arabidopsis thali-

ana bHLH factor DYT1 (DYSFUNCTIONAL

TAPETUM1) with three other related mem-

bers, bHLH010, bHLH089, and bHLH091,

and the roles the three bHLH factors played

in promoting the nuclear localization ofDYT1

and transcriptional activation by DYT1 on

target genes. DYT1 had been previously de-

scribedasessential formale fertility in Arabi-

dopsis by regulating key genes for anther

andpollendevelopment (Zhangetal., 2006).

In addition to the bHLH domain necessary

for DNA binding, DYT1 and bHLH010/089/

091 share a domain conserved in topology,

which Cui et al. named the BIF domain for

bHLH protein interaction and function. The

BIF domain is required for the dimerization,

in vivo function, and transcriptional activ-

ity of DYT1. The authors proposed that

this plant-specific domain is also pres-

ent in 59/158 Arabidopsis bHLH proteins

(Cui et al., 2016).

In this letter, we want to clarify that this

purported novel BIF domain was previously

described in studies ofmaize (Zeamays) and

Arabidopsis bHLHproteins andwas referred

to as the ACT-like domain (Anantharaman

et al., 2001; Feller et al., 2006; Kong et al.,

2012) (Figure 1). The ACT-like domain in the

maize bHLH transcription factor R (RED1) is

important for the regulation of anthocyanin

biosynthesis and behaves as a switch that

permitsdistinctconfigurationsofa regulatory

complex to be tethered to different anthocy-

anin pathway gene promoters (Feller et al.,

2006; Kong et al., 2012). The ACT-like do-

main mediates homodimerization and is es-

sential for the transcriptional activity of R,

similar to what was reported by Cui et al.

for the DYT1 BIF domain. Using sequence-

structure homology recognition analyses,

ACT-like domains were identified over a de-

cadeago in;30%ofall theArabidopsisbHLH

transcription factors, includingDYT1, but not in

bHLH010/089/091 (Feller et al., 2006). Our in-

ability to detect ACT-like domains in bHLH

group II (to which bHLH010/089/091 belong)

back then could have been a consequence

of a significantly smaller structure database

or limitations in the algorithm used. Below,

we provide a brief historical perspective of

ACT and ACT-like domains and how se-

quence/structural diversity can result in the

misclassification of related motifs.

TheACTdomainwasoriginally recognized

by iterative BLAST searches seeded with

the amino acid sequence of the small

subunit of the acetolactate synthase and

named after the three enzymes in which

it was initially found, aspartate kinase-

chorismatemutase-TyrA (prephenatedehy-

drogenase) (Aravind andKoonin, 1999). The

original suggestion that the ACT domain

corresponded to a binding domain for reg-

ulatory small molecules was subsequently

confirmed by a number of functional and

structural studies (Chipman and Shaanan,

2001; Curien et al., 2008). ACT domains are

widely present in amino acid biosynthetic

enzymeswhere they participate in allosteric

regulation often involving the formation of

homodimers.Theyaregenerally60to80amino

acids long and adopt a babbab secondary

structure, although significant variants in this

topological arrangement have been described

(Curien et al., 2008). Amino acid sequence

identities between ACT domains are very

low, possibly because of the variety of

ligands to which they can bind. For exam-

ple, despite adopting similar babbab folds,

the ACT domains in threonine deaminase

(TD) and 3-phosphoglycerate dehydroge-

nase have no recognizable amino acid

sequence similarity, resulting in Chipman

and Shaanan (2001) suggesting the use

of “ACT-like” to describe the structurally

related domain in TD. Some proteins in-

volved in the regulation of amino acid bio-

synthesis contain an ACT-like domain with

the babbab fold (named RAM for regulator

of amino acid metabolism), which may dif-

fer from ACT domains in the ligand binding

region (Ettema et al., 2002). Besides their

presence in bHLH factors, ACT-like do-

mains have been found in additional pro-

teins in Arabidopsis and other plants, for

example, as part of the ACR (ACT domain

repeats) protein family (Hsieh and Good-

man, 2002; Liu, 2006; Sung et al., 2011).

More recently, four tandem ACT domains

were identified in the human Cellular Argi-

nine Sensor for mTORC1 (CASTOR) pro-

teins and shown to participate in arginine

sensing (Chantranupong et al., 2016;

Saxton et al., 2016). To date, the protein

family database (Pfam PF01842, http://

pfam.xfam.org/family/ACT) shows 15,117

sequences containing ACT domains from

4123 species with 133 different domain ar-

chitectures and 159 diverse structures. The

ACT-like domains in plant bHLH proteins,

including those in R and DYT1, show

a bbabba topology (Feller et al., 2006; Cui

et al., 2016) (Figure 1), compared with

the more characteristic babbab topology

ofACTdomains(Curienetal.,2008).However,

three independent studies conducted on the

crystal structure of arginine-boundCASTOR1

proposed somewhat different ACT domain

topologies (babbab,bbabba, and other var-

iants) (Gai et al., 2016; Saxton et al., 2016; Xia

et al., 2016), suggesting some flexibility in the

structure of the domain.

It is clear from these studies that the BIF

domain is an ACT-like domain. While ulti-

mately it is just semantics whether this

domain is named BIF or ACT-like, we feel

that it is important for the research com-

munity to be aware that they correspond

to the same structural motif with diverse

functions.
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Figure 1. Sequence and Structure Comparison of Maize R (represented by ZmLc) and AtDYT1.

(A) Alignment of amino acids 525 to 610 of ZmLc (R family member) and amino acids 122 to 207 of

AtDYT1 was created by the ClustalW Sequence Alignment Program v1.83 (http://www.genome.jp/

tools/clustalw/) and displayed with Expasy Boxshade (http://embnet.vital-it.ch/software/BOX_form.

html). Highly conserved amino acids are indicated with black or purple boxes, while gray boxes indicate

less conserved ones. Orange-colored amino acids indicate the beginning and end of the structure in

(B). The secondary structure was analyzed with the Predictprotein secondary structure prediction

program (www.predictprotein.org); blue arrows indicate b-sheets and green cylinders a-helices.

(B) The 3D structures of the protein sequences depicted in (A) for ZmLc (left) and AtDYT1 (right) were

predicted using the Phyre2 Protein Homology/Analogy Recognition Engine V2.0, followed by in-depth

analysis of model quality using Phyre Investigator (Kelley et al., 2015). For both proteins, the library

entry d1u8sa2, which corresponds to the ACT-like superfamily ferredoxin-like fold of the glycine-

cleavage system transcriptional repressor, was used by Phyre2 to model the 3D structures. Phyre2 was

used to perform conservation analyses of each amino acid; those shown in red correspond to high and

those in blue to low conservation with respect to d1u8sa2. The dashed line at the bottom of both

structures represents regions with undetermined conformation.
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