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Abstract

The experimental evidence that a feedback exists between growth and stress in tumors poses 

challenging questions. First, the rheological properties (the “constitutive equations”) of aggregates 

of malignant cells are still a matter of debate. Secondly, the feedback law (the “growth law”) that 

relates stress and mitotic-apoptotic rate is far to be identified. We address these questions on the 

basis of a theoretical analysis of in vitro and in vivo experiments that involve the growth of tumor 

spheroids. We show that solid tumors exhibit several mechanical features of a poroelastic material, 

where the cellular component behaves like an elastic solid. When the solid component of the 

spheroid is loaded at the boundary, the cellular aggregate grows up to an asymptotic volume that 

depends on the exerted compression. Residual stress shows up when solid tumors are radially cut, 

highlighting a peculiar tensional pattern. By a novel numerical approach we correlate the 

measured opening angle and the underlying residual stress in a sphere. The features of the 

mechanobiological system can be explained in terms of a feedback of mechanics on the cell 

proliferation rate as modulated by the availability of nutrient, that is radially damped by the 

balance between diffusion and consumption. The volumetric growth profiles and the pattern of 

residual stress can be theoretically reproduced assuming a dependence of the target stress on the 

concentration of nutrient which is specific of the malignant tissue.

Introduction

After Folkman & Hochberg [1], the multicellar spheroid is a standard in vitro system used to 

evaluate the uncontrolled duplication rate of a tumor cell aggregate. A tumor spheroid is a 

cluster of cells floating in a culture medium, it is an ensemble of cells freely proliferating in 

an environment with large availability of nutrient. The malignant cells have lost the ability to 

self–regulate their own number through a normal apoptosis mechanism, regulated by the 

homeostasis with the environment; they duplicate in an uncontrolled manner, isotropically, 

producing a nearly spherical shape.

In the standard free–growth case, a plot of the diameter of the tumor vs. time typically 

exhibits an early stage of exponential growth, followed by a linear one. The transition from 

one regime to the other is mainly regulated by the availability of nutrient, that is driven by 
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diffusion through the intercellular space. In fact, when the size of the tumor Ro(t) is smaller 

than the typical diffusion length, the nutrient is everywhere available in the spheroid and the 

growth is volumetric [2]:

(1)

so that Ro ≃ et. Conversely, when the diameter of the spheroid is much larger than the 

penetration length of the nutrient, one obtains surface growth, that is

(2)

and Ro ≃ t. In a realistic intermediate regime, the concentration of nutrients decays 

exponentially with the radius [3], favoring the external proliferation vs the internal one. This 

work is motivated by a number of recent experiments that demonstrate the dependence of the 

growth rate of a tumor spheroid on the mechanical load at the boundary. Some papers report 

a reduced apoptosis, with no significant changes in proliferation [4]. According to others, the 

cell division, rather than the cell death rate, is affected by stress [5]. To disentangle the 

puzzle of the biological feedback of stress on growth, we discuss first the rheology of the 

cellular aggregate as a living material, to point out its constitutive properties. We illustrate a 

number of arguments that support the hypothesis that a solid tumor is a poroelastic material, 

where the cells and the extra-cellular matrix represent the solid elastic component. A 

mathematical model based on such an assumption is able to predict inhomogeneities that can 

not be justified by fluid-like assumptions. In the last section we address the numerical 

simulation of the growth of a murine tumor. In vivo tumors reach a larger size, they can be 

partially vascularized, they have a more complex internal composition and exhibit release of 

residual stress. We test the ability of our mathematical model comparing the observed and 

the predicted opening angle after excision.

1 Background: elementary rheology and growth theory

The simplest distinction among fluid and solid materials can be based on an elementary 

ideal experiment: under a pure shear load fluids flow, while solids do not, at the time scale of 

interest. This draconian categorization encompasses also viscoelastic materials, as they 

typically exhibit fluid-like or solid-like properties depending on the relaxation time scales. 

As an example, a "Maxwell fluid" behaves as a solid if observed at a time scale much 

smaller than its relaxation time. Analogously, a "Kelvin solid" flows like a fluid when 

observed on short enough time scales. Things become a little bit more complex when flow is 

prompted only above a yield stress, but the distinction persists when loads are neatly below 

or beyond the threshold.

Many biological materials are composed by a mixture of several components: interstitial 

fluid, different species of cells, collagen fibres, and so on. For these microscopically 

heterogeneous materials the overall mechanical behavior is represented, at the macroscale, 
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by the superposition of single phase contributions, proportionally to the volume fraction 

occupied by each component. The archetypical example of a mixture is a porous elastic 

material permeated by a fluid: the stress in a poroelastic medium is the sum of the interstitial 

pressure of the fluid plus the solid stress, which is proportional to the solid volume fraction.

Fluids and solids behave in a very different manner when internal stresses arise not because 

of external loads, but as due to the inner material reorganization (growth and remodelling). 

The simplest example are thermal stresses in inhomogeneously heated materials with 

temperature-dependent density: residual stresses relax in fluids, not in solids. The 

persistence of residual stress is therefore the signature of solid-like behavior which has to be 

properly addressed in a modelling framework. In case of small strains, linearized elasticity 

applies and stress (and strains) can be superimposed. In case of large strains, as it is often the 

case with soft matter, a multiplicative decomposition of the tensor gradient of deformation 

has to be introduced.

For our purposes, we represent the motion of every material point of a continuous body as a 

smooth invertible map χ(X) with Jacobian  For a nonlinear elastic material the strain 

energy is W(F); when the body grows and residual stress is present, the strain energy 

rewrites

(3)

where G is usually called “growth tensor”.

2 Are solid tumors fluids?

While the availability of nutrients is the major factor affecting tumor growth, other external 

agents can play a role. The mechanical influence of external loading on tumor growth has 

been first demonstrated by Helmlinger et al. [4]. They designed an experimental setup in 

order to control the load applied at the boundary of tumor cell spheroids in vitro in agarose 

gels, and checked the influence of such a stressed state on the growth rate of the multicell 

spheroid. They compared the free growth of a floating multicell spheroid with the size of 

cell aggregates placed into the agarose gel. The gel is produced at a given (known) stiffness 

by suitably tuning the concentration of the solid phase. As the spheroid grows, it displaces 

the surrounding gel, which then exerts a compressive force at the surface of the tumor 

spheroid. An a priori mechanical characterization of the gel allows to calculate the pressure 

exerted by the gel on the spheroid, depending on its radius.

The main result of the experiments carried out by the group of Rakesh Jain [4] is that the 

stress field reduces the final size of the spheroids, with a decreased apoptosis and non 

significant changes in proliferation. It is therefore clear that a precise determination of the 

constitutive laws that characterize the mechanical behavior of a tumour spheroid is a pre-

requisite in order to assess a reliable stress–growth relationship.
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Early attempts in this respect assumed that a cell conglomerate behaves like a viscoelastic 

fluid, able to bear a static load because of its surface tension [6]. At equilibrium, 

measurements of the curvature radius of a loaded sample provide the surface tension of the 

“fluid”.

According to the Laplace formula, the pressure jump across a curved interface between two 

fluids is inversely proportional to the radius of the curvature. If the spheroid is loaded with 

the force F acting on a contact surface A, by continuity of the stress, the inner pressure is 

F/A and therefore

(4)

where σ is the surface tension and R1, R2 are the curvature radii of the free surface. 

According to the experiments, the surface tension of a cell aggregate ranges in 1–22⋅10−3 

Newton/meter (as a reference value, the surface tension of the water is about 72 ⋅ 10−3 

Newton/meter). Relaxation times range between 1 and 50 seconds [6].

The opposite approach is to describe a solid tumour as a viscoelastic solid. In this case, at 

equilibrium the external load should be balanced by the stress in the body, depending on the 

strain of its material points. Assuming an homogeneous deformation and using the same 

data provided by the experiments above, one can estimate the Young modulus E according to 

the following rule:

(5)

where h, h0 are the height of the loaded and unloaded sample, respectively. In this case one 

finds E ≃ 4 kPa, a typical soft–range value for living cells [7].

A second argument supporting the assumption of solid–like constitutive equations is based 

on the spatial correlation between stress and apoptosis–mitosis in loaded ellipsoidal 

spheroids [8]. The non–homogeneous proliferation pattern can be produced only by a solid–

like material: a hydrostatic generates a pressure independent on the position in any 

symmetric geometry, while in a solid material, high stress concentrates around the tips.

Furthermore, the work by Netti et al. [9] support the view that tumors behave as solid-like 

materials. In their study, stress-relaxation experiments of various tumor types in confined 

compression were performed and at the end of the experiment all tumors equilibrated in a 

constant, non-zero stress, typical of viscoelastic solids.

Finally, evidence of residual stress in murine and human tumors is reported by 

Stylianopoulos et al [10]. They cut the tumor azimuthally and observed an opening angle, 

which is the signature of a solid like behavior. Residual stress is likely produced by an 

inhomogeneous duplication rate of the cells as well as by mechanical interactions between 
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the cells and extracellular matrix components, particularly collagen and hyaluronic acid, that 

strain the tumor microenvironment. Only solids can contain residual stress, due to the 

evolution of their relaxed configuration produced by incompatible growth [11]: energy can 

be elastically stored in the unloaded body only if it is a solid. In particular, Stylianopoulos et 

al. observed a compressive residual stress (i.e. negative opening angle) in the kernel and a 

tensile residual stress (positive opening angle) in the outer shell of the tumor. This behaviour 

is paradoxical in terms of availability of nutrients: their concentration is larger near the 

boundary, thus favoring proliferation and eventually producing compressive stress. In a solid 

tumor in vivo, this intuitive explanation does not work and we address such a puzzle in the 

next sections.

3 Growth and stress

An evocative definition of a tumor is “a living system that has lost its self–regulating ability 

towards homeostasis”. In other words, tumor cells do not correctly detect or elaborate the 

external signals that should regulate its proliferation and apoptosis, and duplicate without 

control. When the stress state of the system is not in homeostatic mechanical equilibrium, it 

remodels (growing or resorbing matter) until the target tensional state is recovered. In this 

respect, all the genetic information that detail the shape and function of organs are encoded 

in the target stress. A suggestive mechanical interpretation of a tumor therefore naturally 

arises: a tumor is an open system (in terms of mass and energy) with a damaged inner 

mechano-biological control inducing a disregulation of tensional homeostatis, i.e. the 

feedback that normally self–regulates growth in terms of stress–modulated control does not 

properly work. In other words, tumor cells regulate production and consumption not 

according to a benefit of the whole organism but only in view of maximum invasion of 

malignant cells: the control on growth does indeed exist, also as a function of available 

nutrients, but the corresponding duplication/apoptosis strategy has a different aim.

The experiments illustrated in the section above do not only demonstrate the existence of 

residual stress in tumors, but they also show that the inhomogeneous proliferation and 

apoptosis, triggered by the differential availability of nutrients, is enhanced in a 

mechanically loaded spheroid. Their main result is that mechanical stress affects 

proliferation and apoptosis inside the spheroid in a non–homogeneous way, a correlation 

existing between strong apoptosis and high stress.

In another series of experiments, the compression of the spheroid is controlled by the 

concentration of a large molecule (Dextran) soluted in the bath [12, 5]. As Dextran 

molecules cannot enter neither the cell membrane nor the interstitial (intracellular) space, an 

imbalance of osmotic pressure at the boundary loads the cellular aggregate. It is reported 

that for larger concentrations of Dextran the diameter of the spheroid grows slower and 

reaches a plateau at smaller radius, in agreement with the results of Helmlinger et al [4]. 

While a single cell is almost incompressible with respect to the pressure due to the 

concentration of Dextran, the volume of the cell aggregate strongly depends on the osmotic 

pressure [13]. The reduction in volume in the cellular aggregate therefore mainly occurs 

because of reduction of the intercellular space, in the inner region of the spheroid.

Ambrosi et al. Page 5

J Elast. Author manuscript; available in PMC 2017 December 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



The large number of available data suggests that a cell aggregate behaves as a poroelastic 

material. The mathematical modelling of solid tumors as porous deformable media has been 

addressed in a number of papers [14, 15, 16]; it a suitable mechanical framework to account 

for the coupled dynamics of cells and extracellular matrix (the solid matrix) and interstitial 

fluid. The interstitial flow is typically represented by a Darcy-type equation, while the mass 

exchange among phases which allows a prediction of the growth of the mass.

In the experimental setup by Montel et al. [12, 5] the porous media theory offers a 

transparent explanation for interplay between the pressure of the fluid, the chemical 

potential of the Dextran and the stress in the solid matrix. The external load at the boundary 

is the sum of two terms: the pressure of the fluid plus the chemical potential of the Dextran. 

Observing that the diameter of the macromolecules is typically larger than the size of the 

intracellular pores, we split the fluid load into two contributions: one that balances the 

interstitial pressure, the other one loading the solid (cellular) component. Formally, we 

assume that the global balance at the boundary

(6)

splits into

(7)

(8)

where p is the pressure of the interstitial fluid, pD is the osmotic pressure contribution due to 

the concentration of Dextran, T is the Cauchy stress tensor in the cellular aggregate, I is the 

identity tensor and n is the outgoing normal (radially directed) vector. This assumption is in 

agreement with the observation that the solid stress is not affected by the interstitial fluid 

pressure [10].

On the basis of this hypothesis, the stress state in the loaded spheroid can be determined 

solving the force balance equations for the solid component only. Assuming spherical 

symmetry, the tensor gradient of deformation and the growth tensor read

(9)

where r(R, t) is the radial coordinate of the material point that was in R at time t = 0, I is the 

identity tensor and the prime ′ denotes derivation in R. The solid component of the 

poroelastic spheroid must satisfy the force balance equation
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(10)

with boundary conditions

(11)

where ro = r(Ro, t). A simple representation of an hyperelastic compressible material is 

provided by the strain energy

(12)

If the material grows, the strain energy depends on the growth tensor too, through a classical 

multiplicative decomposition

(13)

where μ is the shear elastic modulus. First variation and pull back to the reference 

configuration yields the first Piola-Kirchhoff stress

(14)

where, explicitly,

(15)

The force balance equation (10) in material coordinates reads

(16)

or, explicitly,

(17)
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to be supplemented by boundary conditions (11) rewritten in material coordinates

(18)

or, explicitly

(19)

For constant g the force balance equation (17) with boundary conditions (19) has solution

(20)

where γ is the positive root of the third order polynomial

(21)

One may notice that f(0) = – μ < 0 while f′ is always positive, therefore the root is unique. 

Moreover f(1) = pD > 0, so that it must be 0 < γ < 1.

Remark

One could observe that poroelasticity has been advocated for the model above, but its use is 

apparently very limited: there is no interstitial fluid flow, and the porosity, the volume 

fraction of solid vs. liquid component, is not even mentioned. There is a rationale behind 

such a minimal choice. Fluid flow is so slow that it carries no contribution in the stress 

balance equation; of course, mass exchange among species is the true physical mechanism 

for the growth of the tumor mass, however here it is directly incorporated in the growth 

tensor G. Secondly, the porosity of the matrix should contribute to the stress tensor T with a 

multiplicative factor depending on the determinant of the gradient of deformation; as a 

matter of fact, we incorporate such a contribution in the compressibility of the strain energy 

function (12). The numerical results to be illustrated in the next sections will confirm that 

good predictions can be obtained even with such a simple constitutive law, thus confirming 

that the theory weakly depends on the specific constitutive equation for the strain energy 

density of the solid matrix. The crucial ingredient of the model is the multiphase split of the 

load at the boundary into a fluid and a solid component (9).

4 Mechanobiological feedback and equilibrium

In the general case, a growth law for G is to be supplemented to close the differential 

equation (17-19). We consider first the case of growth controlled by a mechanical feedback 

only. If nutrients are largely available everywhere, the growth in time is expected to depend 

on the stress only. In finite elasticity, the growth must depend on an invariant measure of the 
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stress. A thermodynamically consistent choice is to adopt the dependence on the Eshelby 

stress [17]. To minimize the calculations, while preserving the essential biophysical features, 

we chose here to measure the stress in terms of the second Piola-Kirchhoff tensor S, which 

reads

(22)

The mitotic rate of single tumor cells is known to be inhibited by compression [4], and 

promoted by tension [18], and a very simple growth law that can account for such a behavior 

is

(23)

where 1/τ is the mitotic rate in absence of external stimuli, κμ is a threshold stress and the 

last term in brackets accounts for apoptosis, the natural cellular death rate. We highlight that 

the assumption of an isotropic growth tensor allows to set a functional dependence on the 

trace of S. For a general anisotropic growth a more complex dependence on the principal 

stresses would be needed, guided by thermo-mechanical requirements.

Consider the unloaded case first: –pD = 0 and at time t = 0 the solid component has g = 1. As 

S = 0 the evolution in time of G is autonomous and independent of the radial position, so 

that g(t) is constant in space and its evolution in time initially follows the well known 

exponential growth in size of the cell aggregate up to a saturation dictated by the value of α. 

The solid component of the poroelastic spheroid is therefore relaxed, exactly as a sponge in 

the deep ocean, where the interstitial pressure balances the head of the water.

If Dextran is present, the extra pressure compresses the cellular phase and triggers the 

mechanobiological feedback via equations (23). The growth g(t) is given by the solution of 

the first order ordinary differential equation

(24)

Equation (24) has two equilibrium points: g = 0, always unstable, and

(25)

which is always stable (for the fixed r(R; t) of (20)). The mathematical model therefore 

predicts the following scenario, corresponding to the observed dynamics. For null osmotic 

pressure, the system grows exponentially, then it tends to saturation. For sufficiently large 
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osmotic pressure the stable equilibrium depends on the applied pressure pD. After derivation 

of equations (21) and (25) we get

(26)

The solution of equation (24) explains the plateau in growth vs time reported for loaded 

spheroids at different Dextran concentrations, but it does not account for the radial density 

inhomogeneities observed in excised aggregates. Remaining in a purely mechanical setting, 

an explanation for such a discrepancy between theory and experiments could be provided by 

the possible onset of an instability for the equilibrium solution (24) of the coupled problem. 

This question is addressed in the appendix, where we study the stability of the solution of 

the nonlinear system (17) and (23) with boundary conditions (19) in order to explain the 

emergence of inhomogeneity. The result of the analysis is that the small perturbations are 

always damped in time, so that a purely mechanical framework cannot account for the 

observed dependency of growth on the radial coordinate. The biophysics of the system needs 

therefore to be enriched: in the next section we show that the kinetics of nutrients can trigger 

dependence of the asymptotic state on the radial coordinate.

5 Dynamics of the nutrient and inhomogeneity of growth

In an avascular tumor, nutrients are provided to malignant cells by diffusion through the 

boundary of the spheroid. The balance between diffusion and uptake is fast with respect to 

the growth times (one hour vs. days) and obeys a linear reaction–diffusion equation:

(27)

with boundary conditions

(28)

where the decay length λ is on the order of 100-200 micrometers and c0 is the external 

(constant) concentration. We remind that the boundary value problems refers to the 

avascular phase of tumor growth. At later stages, neovascularization can be triggered after 

the diffusion-limited radius is reached. In such a case, a distributed nutrient supply from the 

tumor vascular network should also be taken into consideration.

During the avascular growth phase, the concentration profile can be calculated by direct 

integration of the equation in spatial coordinates [3], yielding an exponential decay of the 

concentration of nutrient going from the boundary to the center of the spheroid:
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(29)

To account for the combined action of stress and nutrient pattern, we propose to rephrase 

equation (24) to the following growth law

(30)

According to equation (30), the proliferation of the malignant cells is enhanced by the 

availability of nutrient, as it is usually assumed in mathematical models that do not 

specifically account for mechanics. In the same way as in equation (23), it is expected that 

the system reaches an equilibrium when the term in brackets vanishes: a plateau in size is 

observed for large enough times. The novelty of this growth law is that the equilibrium does 

not correspond to an homogeneous growth tensor gI, but it depends on the radial position 

through the concentration of nutrient, thus originating an inhomogeneous residual stress. 

Using numerical simulations, in the next sections we are able to show that the predicted 

residual stress is in agreement with the reported opening angles from cutting experiments.

6 Numerical simulations

Numerical integration of equations (17) and (30) with boundary conditions (19) and initial 

conditions

(31)

is performed using a finite difference scheme with centered discretization in space and a 

fourth order Runge-Kutta scheme in time. The parameters used in the numerical simulations 

are τ = 2.5 days, κ =2.9 kPa, α = 3.7, λ = 250 μm and μ = 10 kPa. The initial radius is 100 

μm, the final simulation time is tf = 25 days and the boundary condition of (27) is c0 = 1.

The volume of the spheroid initially grows very rapidly for all values of pD. At large times, 

for null or small values of osmotic pressure the slope of the curve becomes very small, and it 

becomes horizontal for large pD (Figure 1).

As expected, the non-uniform pattern of nutrients triggers a weak inhomogeneity in growth. 

While the predicted growth pattern cannot be directly compared with data, it is indirectly 

supported by the residual stress that it produces by the relation (3). The radial and hoop 

component of the residual stress are plotted in Figures 2 and 3 versus the radial coordinate at 

equilibrium.

As expected, the radial stress vanishes on the boundary of the spheroid, while it is internally 

compressive. Conversely, the hoop stress changes sign, being compressive in the core and 
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tensional in the outer layer. Such a residual stress distribution is stable against both 

circumferential and azimuthal perturbations of the tumour boundary, as investigated in [19].

Data on residual stress of in vitro tumor spheroids are not available, probably because they 

are too soft and do not reach a size such that a mechanical manipulation and a precise cut 

can be operated. However the pattern reported in Figure 2 and Figure 3 is in qualitative 

agreement with experiments on (much bigger) human tumors implanted in mice [10]. 

Stylianopoulos et al. observe that cells at the periphery of the spheroid are restricted by the 

surrounding tissue and thus, during radial tumor growth they develop tensile circumferential 

forces. Surrounding tissues in vivo would then produce on the tumor a compressive 

hydrostatic pressure increasing with the tumour growth. Furthermore, Figures 3 and 4 depict 

that the magnitude of stress - either compressive or tensile - increases as the osmotic 

pressure exerted on the cells, pD, decreases. This is explained by the fact that for low 

osmotic pressures the tumor becomes larger in size and the stresses increase.

If the external pressure is removed, the radius quickly grows and reaches the same value of 

the free-growth case (Figure 4), in agreement with the experimental results [12].

6.1 Stress release in a cut spheroid

A quantitative comparison among observed and predicted residual stress can be obtained on 

the basis of the opening angle of cut specimens. To this aim, tumor spheroids have been 

grown in mice and then they have been cut along their azimuthal plane for about 80% of 

their diameter. The spheroids then partially relax their residual stress: the cut surface opens 

up at the periphery while the inner region swells (see figure 5). Figure 6 depicts the cutting 

experiments for breast and pancreatic tumors implanted in nude mice, also reporting the 

tumor opening length and the maximum residual stresses within the tumor specimens.

The observed behavior, which is in qualitative agreement with our predictions in the stress 

pattern in small, in vitro, spheroids, can be quantitatively compared with opening angles data 

on the basis of a three dimensional numerical simulation only. As a matter of fact, an axial 

cut of a ring preserves the cylindrical symmetry of the problem [20], while an azimuthal cut 

of a sphere breaks it.

Numerical simulations are obtained using a finite element code that solves the equation of 

finite elasticity on a spherical wedge. The computation reproduces the physical observations: 

the spheroid grows under spherical symmetry which is eventually broken by the cut. We 

therefore use the growth tensor computed under radial symmetry assumption and we 

evaluate the opening angle that it produces.

The 3D numerical problem is based on FEniCS [21]. The computational domain is 

discretized with quadratic tetrahedral elements, with an average diameter of 10 μm. Since 

we expect near to singular stresses around the edge of the cut, the mesh is gradually refined 

nearby this edge to one twentieth of the original size. The mesh contains roughly 28 143 

elements and it has been produced by Gmsh [22]. The non-linear variational problem is 

discretized with quadratic isoparametric finite elements, and the final problem has 137 949 

degrees of freedom. The solver for non-linear problem is based on a modified Newton’s 
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method specifically designed for variational inequalities, and implemented in the PETSc 

framework [23]. The solver can deal with inequality constraints, as we have on the cut 

boundary surface to avoid self-contact during the swelling. The solver for the linear system 

is MUMPS [24].

The simulation is performed in two steps: first, we apply a homogeneous growth tensor 

obtained by averaging the target one, while keeping the cut sealed; then, we release the cut 

and we enforce the final growth tensor. This strategy facilitates the convergence of the non-

linear solver, which performs 40 iterations at most. A relative error below 1% on the opening 

angle is observed when the mesh is uniformly refined, certificating the numerical 

convergence.

Boundary conditions, reported in Figure 7, apply as follows: the outer boundary is stress-

free, the cut surface is enforced to have non-negative displacement in the normal direction to 

avoid self-contact, and on the internal, intact, portion of the boundary symmetry arguments 

yield null normal displacement and while the other components of the displacement must 

have null derivative with respect to the normal direction. In Figure 8 the deformed 

configuration obtained after a vertical cut of 80% of the diameter is shown.

The parameters used in the numerical simulations are τ = 2.5 days, κ = 33.35, α = 37, λ = 

2.5 mm, μ = 27.0 kPa and pD = 5.0 kPa. The initial radius is 100 μm, the simulation ends at t 
= 50 days and the boundary condition of (27) is c0 = 1. In the numerical experiment the 

tumor opens with an angle of 11.70°, corresponding to 1.41mm of opening length. The final 

volume is 169.84 mm3. The inner-most part of the cut, for about 20% of the diameter, is in 

self-contact, certificating that this portion of the tumor tends to swell outward after the cut. It 

is to be remarked that the diffusion length assumed here is larger than the one used for small 

in vitro spheroids.

These results are in agreement with the ex-vivo experiments: the opening length, the final 

volume and the hoop stress are very close to the reported ones for the MiaPaCa2 tumor 

number 4 (see Figure 6) [10].

In order to investigate the relationship between the heterogeneity in the growth tensor and 

the opening angle, we have performed a numerical experiment where the difference between 

the growth at the center and the boundary of the tumor is stepwise increased from zero to a 

value of 20. Table 1 summarizes the result of the simulation. As expected from the theory, a 

uniform growth yields no residual stress and the tumor does not open after the cut (first 

column of the table). On the other hand, the greater the difference in growth between the 

center and the boundary, the larger the opening length and consequently the opening angle 

(from the second column of the table). The volume is mostly affected by the average value 

of the growth over the entire domain, and not by the heterogeneity. The numerical 

experiment also shows that the angle linearly increases with the difference in growth of 

about 8° every 10 units per mm of growth.
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Final remarks

The growth of a tumor spheroid can be controlled using mechanical stress: when an osmotic 

pressure is applied at the boundary, the radius of the aggregate grows in time until it reaches 

an equilibrium volume which inversely depends on the load. The size control is fully 

reversible: when traction is released, the cellular matrix relaxes and returns the original 

growth curve. The observation that the intercellular space forms a pore-like structure, that 

macromolecules cannot enter, suggests to represent mechanically the cellular aggregate as a 

poroelastic material [25]. The evidence of a residual stress leads to the assumption that the 

solid phase is hyperelastic: the large compliance of the cell aggregate is due to the squeezing 

of the intracellular fluid and the corresponding reduction of the intracellular space, while the 

single cells are much stiffer [13]. Boundary conditions are split accordingly: the osmotic 

pressure generated by the Dextran solution of the surrounding fluid loads the solid phase 

only.

The exponential decay in the pattern of nutrients makes the proliferation process of a 

sufficiently large loaded spheroid inhomogeneous and the generated residual stress depends 

on the radial position: it is compressive near the center and tensional at the periphery [10]. 

This feature is paradoxical when compared with the usual scenario: large availability of 

nutrients at the periphery of the spheroid is expected to favour the proliferation and, 

therefore, emergence of compressive residual stress. The dynamics of tumor growth is 

apparently different: tumor cells duplicate (or control their apoptosis) on the basis of the 

available nutrients, but their target stress modulates so as to produce compression in regions 

with small concentration of nutrients. In other words, the reported radial distribution of 

residual stress can be explained only admitting that in the inner regions, where the 

concentration of nutrients is very small, malignant cells slow down their apoptotic rate, in 

agreement with the observations of Helmlinger et al [4].

After a standard multiplicative decomposition of the tensor gradient of deformation to 

account for growth, we introduce a simple law of biomechanical feedback, and we are 

eventually able to explain the observed dynamics. On the basis of such a conjecture, we 

were able to reproduce growth profiles of tumor spheroids for different values of the applied 

load and the open angles of mice bearing breast tumors. Particularly for the second result, 

the solid phase of mice bearing tumors apart from cells consists also of the extra-cellular 

matrix, which can contribute to the development of residual stress. Here the mechanical 

contribution of all components of the tumor are resumed in the solid phase, and the growth 

tensor G accounts also for the possible tensional contribution due to the elongation of the 

collagen fibres.

Our mechanobiological model explains the observed smaller asymptotic volume as a 

function of increasing osmotic load on the basis of a stress-growth coupling. At later stages, 

not covered by the present model, when the radial inhomogeneity is fully developed, the 

solid (cellular) component of the spheroid undergoes a stress per volume fraction larger than 

a threshold that takes it into the plastic regime [26]; then cells start flowing centripetally, 

producing an internalization of the cells from the periphery to the center of the tumor [27, 

28].
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Figure 1. 
Volume of a spheroid vs. time for different values of the osmotic pressure.
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Figure 2. 
Radial residual stress versus the radial position at final time for different values of the 

osmotic pressure.
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Figure 3. 
Hoop residual stress versus the radial coordinate at final time for different values of the 

osmotic pressure.
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Figure 4. 
Radius of the spheroid vs. time for pD = 0 (blue line) and pD = 2000 Pa (green line). After 

12 days the external pressure is removed and the system returns the curve corresponding to 

the unloaded state.
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Figure 5. 
An intact, residually stressed spheroid (left) is cut along an azimuthal plane for 80 % of its 

diameter. The outer region opens up while the inner one swells (right), thus distribution of 

residual stress that goes from compressive to tensile along the radial coordinate.
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Figure 6. 
Tables with experimental measures (top) of cutting experiments (bottom) for MCFlOCAla 

breast tumor cells (left) and for MiaPaCa2 pancreatic tumor cells (right) implanted 

orthotopicallv in the mammary fat pad of nude mice.
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Figure 7. 
Computational domain and boundary conditions for the 3d numerical experiment of the 

opening angle. The “symmetry” label indicates that the surface is fixed in the normal 

direction. The vertical cut is 80% of the diameter deep.
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Figure 8. 
Current configuration of an unloaded grown sphere with initial radius of 100 μm. The sphere 

is azimuthally cut at the final time. The parameters in the simulation are: τ = 2.5 days, κ = 

33.35, α = 37, λ = 2.5 mm, μ = 27.0kPa and pD = 5.0kPa. The domain of the numerical 

simulation is a quarter of a sphere. For the sake of graphical clarity of the opening angle, the 

spherical wedge is combined with its symmetric counterpart. The body is unloaded but not 

stress free: the color map represents the trace of the Cauchv stress tensor. The lowest part of 

the cut is partially resew by the swelling.
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Table 1

Numerical result of a stepwise increase of the difference in growth between the center and the boundary of the 

tumor. The growth function g(R) is linear in the radial component.

g(R = 0) 45.0 44.0 43.0 42.0 41.0 40.0

g(R = R0) 45.0 48.0 51.0 54.0 57.0 60.0

opening length [mm] 0.0 0.540 1.12 1.70 2.30 2.92

opening angle [deg] 0.0 3.43 6.94 10.5 14.2 18.0

volume [mm3] 94.7 94.8 95.0 95.4 95.9 96.6
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