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Abstract

C-reactive protein (CRP), was recently reported to be closely associated with poor renal func-

tion in patients with acute kidney injury (AKI), but whether CRP is pathogenic or a mere bio-

marker in AKI remains largely unclear. Impaired autophagy is known to exacerbate renal

ischemia-reperfusion injury (IRI). We examined whether the pathogenic role of CRP in AKI is

associated with reduction of autophagy. We mated transgenic rabbit CRP over-expressing

mice (Tg-CRP) with two autophagy reporter mouse lines, Tg-GFP-LC3 mice (LC3) and Tg-

RFP-GFP-LC3 mice (RG-LC3) respectively to generate Tg-CRP-GFP-LC3 mice (PLC3) and

Tg-CRP-RFP-GFP-LC3 mice (PRG-LC3). AKI was induced by IRI. Compared with LC3 mice,

PLC3 mice developed more severe kidney damage after IRI. Renal tubules were isolated

from LC3 mice at baseline for primary culture. OKP cells were transiently transfected with

GFP-LC3 plasmid. CRP addition exacerbated lactate dehydrogenase release from both cell

types. Immunoblots showed lower LC-3 II/I ratios and higher levels of p62, markers of reduced

autophagy flux, in the kidneys of PLC3 mice compared to LC3 mice after IRI, and in primary

cultured renal tubules and OKP cells treated with CRP and H2O2 compared to H2O2 alone.

Immunohistochemistry showed much fewer LC-3 punctae, and electron microscopy showed

fewer autophagosomes in kidneys of PLC3 mice compared to LC3 mice after IRI. Similarly,

CRP addition reduced GFP-LC3 punctae induced by H2O2 in primary cultured proximal

tubules and in GFP-LC3 plasmid transfected OKP cells. Rapamycin, an autophagy inducer,

rescued impaired autophagy and reduced renal injury in vivo. In summary, it was suggested

that CRP be more than mere biomarker in AKI, and render the kidney more susceptible to

ischemic/oxidative injury, which is associated with down-regulating autophagy flux.
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Introduction

Acute kidney injury (AKI) is characterized by rapid loss of renal function and a myriad of sys-

temic disturbances. AKI incidence is steadily increasing over decades [1,2], and mortality [3,4]

is staggeringly high in its acute phase due to limited effective definitive therapy [5,6]. Even

among those who have apparent clinical recovery from AKI, there is still an estimated 25%

increase in risk of progression to chronic kidney disease (CKD) and a 50% increase in mortal-

ity after more than 10 years of follow-up compared to the general population [7,8]. AKI is pro-

posed to be an independent risk factor for the development of CKD and end-stage renal

disease (ESRD) [7,9]. Pathologically, AKI is characterized by tubular injury and cell death

mainly in the form of necrosis and apoptosis. Tubular epithelial cell regeneration has been

reported to determine the progression of repair in AKI, which is regulated by the balance of

cell proliferation and apoptosis [10,11]. Increased apoptosis was shown to inhibit tubular cell

regeneration and delay recovery of renal function after AKI [12,13]. Suppression of apoptosis

could promote regeneration and promote recovery from AKI [13,14].

Macroautophagy (referred to as autophagy hereafter) has been implicated with numerous

pathologies. Autophagy is an evolutionarily conserved catabolic “self-eating” process that

sequesters cytoplasmic components into vesicles called autophagosomes which then fuse with

lysosomes, to degrade and recycle unnecessary cellular components [15–17]. Autophagy is

induced in various pathological conditions and is adaptive and protective for cell survival

[18,19]. Dysregulated autophagy leads to self-killing and cell death [20–22]. Defective autop-

hagy flux was shown in various kidney diseases [23,24]. Autophagy deficiency in the proximal

tubule with conditional autophagy-related gene deletion exacerbates AKI [25,26]. Enhancing

autophagy may be a novel therapeutic approach to minimize kidney injury and slow CKD pro-

gression [25]. At the organelle level, sequestration of damaged lysosomes through autophagy is

indispensable for balanced cellular and tissue homeostasis, lysosomal biogenesis and recovery

from kidney injury [27]. Our group has recently reported that activation of autophagy is

renoprotective and mitigates progression of AKI to CKD [28].

C-reactive protein (CRP), a member of pentraxin family, has high affinity to phosphocho-

line residues, which helps with handling of necrotic [29] and apoptotic [30] cells. It also binds

to other autologous and extrinsic ligands. CRP is recognized by C1q and potently activates the

classical complement pathway following aggregation or binding to macromolecular ligands

[31]. Known as an acute-phase protein, it is found to become elevated rapidly in various

inflammatory states. It is mostly studied in cardiovascular diseases [32–34]. Clinically, serum

levels of CRP are increased in patients with AKI [11,35–39], but there have been very few stud-

ies addressing the role of CRP in kidney disease [40,11]. CRP has been shown to accelerate kid-

ney injury in AKI animal models by impairing G1/S cell cycle or unbalancing macrophage

activation and FcγR expression [11,41]. The current study explores whether and how CRP

exacerbates IRI-induced AKI by down-regulating autophagy.

Materials and methods

Clinical data of AKI patients

Based on RIFLE criteria [42], a total of 190 non-sepsis AKI patients were included from the

First Affiliated Hospital of Nanjing Medical University, Nanjing, China between November

2013 and January 2015. Patients with diabetes, cancer and CKD were excluded. The clinical

protocol was approved by the Institutional Review Board of the First Affiliated Hospital of

Nanjing Medical University (2016-SR-013). All the patient records/information were anon-

ymized and de-identified prior to analysis. Data of serum CRP, serum creatinine (SCr), BUN
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and other parameters at the time of AKI diagnosis (referred at acute phase of AKI based on

RIFLE criteria) were obtained from the hospital medical records system. Among the 190 AKI

patients, 28 had sequential blood data (S1 Table). By 14 days after AKI diagnosis regardless of

whether AKI patients recovered or not, we divided 28 patients into two groups: complete

recovery, partial recovery or no recovery based on KDIGO criteria [43]. The clinical character-

istics of these patients are shown in S1 Table.

Animal models and experiments

A transgenic mouse [44] with over-expression of rabbit-CRP driven by promoter/regulatory

region of phosphoenolpyruvate carboxykinase was kindly provided by Dr. Philip Shaul and

Dr. Chieko Mineo (University of Texas Southwestern Medical Center, Texas, USA). This

mouse line when fed normal chow has elevated baseline CRP levels [45–47]. A transgenic

reporter mouse with GFP-LC3 [48,49] was kindly gifted from Dr. Noboru Mizushima (Tokyo

Medical and Dental University, Tokyo, Japan). An enhanced GFP (eGFP)–LC3 is over-exp-

ressed by the CAG promoter (cytomegalovirus immediate-early (CMVie) enhancer and

chicken β-actin promoter) [48,50]. The second transgenic reporter mouse is double LC3
reporter mouse (RFP-LC3 and GFP-LC3) driven by CAG promoter [19] which was kindly pro-

vided by Dr. Joseph Hill (University of Texas Southwestern Medical Center, Texas, USA)

[51,19]. All mouse lines were cross-mated with WT mice 129 S1/SVlmJ (129 SV) for ~5 genera-

tions. After that, these mouse lines with a 129 SV background were cross-mated with each

other to obtain Tg-CRP-GFP-LC3 mice (PLC3), GFP-LC3 transgenic mice (LC3), Tg-CRP-RFP-
GFP-LC3 mice (PRG-LC3) and RFP-GFP-LC3 mice (RG-LC3) for surgery.

For AKI surgery, ketamine was injected intraperitoneally for anesthesia. AKI induction was

performed in 3 month-old mice by bilateral ischemia reperfusion injury (Bi-IRI) using estab-

lished methods from our laboratory [52]. After 45 minutes of bilateral ischemia, the kidneys were

reperfused and termination was conducted in 1, 2, or 7 days after IRI. For termination study, iso-

flurane was inhaled. Each experimental group, there were 4 mice at different time points.

To up-regulate autophagy activity, rapamycin (LC Laboratories, MA, USA) or bafilomycin

A1 (Sigma-Aldrich, St. Lois, MO) was prepared as previously reported [53], and both injected

at a dose of 1 mg/kg/day into PLC3 mice intraperitoneally for three days before ischemia

injury, followed by 1 day reperfusion. There were 4 mice in each group. Our animal protocol

was approved by the Institutional Animal Care and Use Committee at the University of Texas

Southwestern Medical Center, Texas, USA.

Blood and kidney samples collection from mice

Blood samples were collected two days after surgery when mice were anesthetized with isoflur-

ane for termination study, and serum was separated and stored at −80˚C until analysis. Previ-

ously published methods were used for urinary and serum biochemistry measurements [54].

For histology study, kidneys were isolated at 1, 2, and 7 days after IRI and sliced. The kidney

slices were fixed with 4% paraformaldehyde and embedded in paraffin blocks or Optimal Cut-

ting Temperature (O.C.T) compound (Sakura, CA, USA) for histology or immunohistochem-

istry studies; the remaining parts of kidneys were snap-frozen in liquid N2 and stored at −80˚C

for future studies.

Measurement of mouse serum CRP

To investigate the serum levels of both exogenous and endogenous CRP at baseline and one

day post-IRI in LC3 and PLC3 mice, ELISA assays were used to measure the transgenic (rabbit)

CRP levels with methods described previously [45,46], and the endogenous (mouse) CRP
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levels with a commercial ELISA kit (Life Diagnostics, Inc., PA, USA) according to manufactur-

er’s instruction.

Measurement of mouse serum and urine creatinine

Using previously published methods [28], serum and urine creatinine concentrations were

measured using a P/ACE MDQ Capillary Electrophoresis System and photodiode detector

(Beckman-Coulter, Fullerton, CA).

Mouse kidney histology, immunohistochemistry and immunoblotting

Four μm sections of paraffin embedded kidney tissues were stained with Hematoxylin and

Eosin (H&E), Periodic acid–Schiff (PAS), and Trichrome. Tissue damage was examined in a

blinded manner and scored as percentage of damaged tubules: 0, no damage; 1,<25%; 2, 25–

50%, 3, 50–75%, 4,>75% [15]. To evaluate renal fibrosis, the fibrotic area and fibrosis intensity

in Trichrome-stained kidney sections were quantified with Image J program using published

methods by an investigator blinded to the conditions [54]. To further quantify fibrillary colla-

gen accumulation in the kidney, the kidney sections were stained with Sirius Red/Fast Green

Kit (Chondrex, Inc., Redmond, WA) following the kit’s instructions [28]. Apop Tag red in situ
apoptosis detection kit (EMD Millipore, MA, USA) was used for terminal deoxynucleotidyl

transferase dUTP nick end labeling (TUNEL) assay following the manufacturer’s protocols.

Immunohistochemistry and immunoblotting were performed as previously described

[55,52,56]. The primary antibodies used in this experiment are listed below: rabbit LC3 anti-

body (Novus Biologicals, CO, USA), mouse monoclonal p62/SQSTM1 antibody (Novus Bio-

logicals, CO, USA), goat neutrophil gelatinase-associated lipocalin (NGAL) antibody (R & D,

MN, USA), mouse monoclonal anti-β-actin (Sigma Aldrich, MO, USA).

Immunoprecipitation

To test binding of Beclin 1 to Bcl-2, co-immunoprecipitation was performed using a mouse

monoclonal Bcl-2 antibody (Santa Cruz Biotechnology, CA, USA) and immunoblotted using

the mouse monoclonal Bcl-2 antibody and a mouse monoclonal Beclin 1 antibody (Santa Cruz

Biotechnology, CA, USA), respectively, as described [57,58].

Transmission electron microscopy

Kidney slices were prepared from mouse kidneys and fixed overnight with 2.5% glutaralde-

hyde and 2% paraformaldehyde in cacodylate buffer (0.1 M, pH 7.4). The ultrathin sections

were cut on an ultra cryomicrotome (Ultra Microtome Reichert Ultracut E; Leica Microsys-

tems, Wetzlar, Germany) and were visualized with Jeol 1200 EX transmission electron micro-

scope (TEM) (Jeol Ltd., Akishima, Japan) in a blind manner as described in literatures [28].

Primary culture of renal tubules

Under sterile conditions, renal proximal tubules were isolated from collagenase-digested corti-

cal fragments of LC3 mouse kidneys following previously described protocols with modification

[59]. Briefly, renal cortices were dissected visually on ice and slices were transferred to Hanks’

balanced salt solution (HBSS) with 0.1% (wt/vol) type-2 collagenase and 100 μg/ml soybean

trypsin inhibitor and digested for 45 min at 37˚C. After digestion, the supernatant was passed

through two nylon sieves (pore size 180 μm and 80 μm, Millipore, USA). The 80-μm sieve

yielded a large number of long proximal tubule (PT) fragments without substantial contamina-

tion of other nephron segments or glomeruli. The PTs present in the solution were centrifuged
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for 5 min at 4˚C and 170 g, washed, and then re-suspended into the appropriate amount of cul-

ture medium. The PT fragments were seeded into 12-well plates and left unstirred for 48 h at

37˚C and 95% air plus 5% CO2, after which the culture medium was changed for the first time.

The medium was then replaced every 2 days. After 7 days, cell cultures were confluent monolay-

ers and ready for ex vivo experiment such as H2O2, (200 μM), CRP (10 mg/ml) [11] and/or

autophagy inducer (rapamycin, 250 nM) for 24 hours. Pure CRP was purchased from Millipore

(CALBIOCHEM, Japan) and 30% hydrogen peroxide (H2O2) from Sigma-Aldrich (St. Louis,

MO, USA). Lactate dehydrogenase (LDH) Cytotoxicity Detection Kit was purchased from

TaKaRa (Takara Bio USA, Inc., Mountain View, CA, USA). The 8-hydroxydeoxyguanosine

(8-OHdG) formation is a ubiquitous marker of oxidative DNA injury. The 8-OHdG concentra-

tion in culture media was determined by ELISA (OxiSelect Oxidative DNA damage, Cell Bio-

Labs, San Diego, CA, USA) following the manufacture’s instruction to assess oxidative stress.

We also seeded PTs on coverslips under the same culture conditions for immunostaining stud-

ies. The majority of renal tubules (85–90%) was identified as proximal tubules by immunostain-

ing (S1 Fig). We conducted the ex vivo studies in at least three independent experiments.

Cell culture

One type of opossum kidney cell line (OKP, a proximal tubule cell line with PTH receptor)

was a kind gift from Dr. Judith Cole (University of Memphis). LDH and 8-OHdG concentra-

tion in culture media was determined by ELISA kits following the manufacture’s instruction to

assess oxidative stress. The GFP-LC3 fusion plasmid was kindly provided by Dr. Mizushima

N. OKP cells were maintained in high glucose DMEM medium as described [56,60]. Both pri-

mary cultured renal tubular cells and OKP cells were treated with H2O2 and/or CRP in the

presence or absence of rapamycin for 24 hours. Cell lysates were prepared [61,56] and sub-

jected to immunoblotting. Cell culture media were harvested for measurement of LDH release

as a cell injury marker following the protocol we previously described [28]. The GFP-LC3

fusion plasmid was transiently transfected into OKP cells using Lipofectamine 2000 (Invitro-

gen, CA, USA). One day after transfection, cells were treated with H2O2, CRP and/or autop-

hagy modulators. One day after treatment, cells were fixed, stained with Syto61 (1:200, Life

technologies, OR, USA) and rhodamine-phalloidin (1:100, Cytoskeleton, CO, USA), and

underwent confocal fluorescent microscopy. Then images of immunoblotting and immunos-

taining were used for semi-quantitative analysis according to established protocols [28]. We

conducted the in vitro studies in at least three independent experiments.

Statistical analyses

Data are expressed as means ± SD from at least 4 independent experiments. Statistical analysis

was performed using unpaired t-test or one-way analysis of variance (ANOVA) followed by

post hoc Newman-Keuls test when applicable. In addition, linear regression was used for corre-

lation studies between the serum CRP levels and other parameters. All statistical analyses were

performed with Prism software (Prism 5.01, GraphPad software). When the P value was�

0.05, the difference was considered statistically significant.

Results

Serum levels of CRP are correlated with the severity of renal impairment

in patients with AKI

Based on the blood data from 190 AKI patients, serum CRP levels at acute phase were corre-

lated positively with SCr and BUN (Fig 1A and 1B). Due to availability of patients’ laboratory
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data, only 28 AKI patients were enrolled to further analyze the correlation of serum CRP at

acute phase with renal outcome at 14 days after AKI diagnosis. Serum CRP levels at acute

phase were also positively correlated with SCr at 14 days (Fig 1C). We then divided 28 patients

into 2 groups: complete recovery (n = 18), and without recovery including partial recovery

(n = 7) and no recovery (n = 3) following published definition criteria [43]. Serum CRP levels

at acute phase were found to be statistically different between these two groups (Fig 1D), indi-

cating that relatively low serum CRP at acute phase of AKI predicts better renal recovery. At

14 days after AKI diagnosis, serum CRP levels was significantly reduced along with a decline

in SCr and BUN during renal recovery (Fig 1E–1G), further supporting that serum CRP levels

are associated with the severity of kidney injury.

Serum levels of rabbit CRP and mouse CRP before and after AKI

Consistent with published data [44], serum levels of rabbit CRP were undetectable (<1 μg/

mL) in LC3 mice and were 9–21 μg/mL in PLC3 mice at baseline. After IRI, both PLC3 and

LC3 mice had significantly higher levels of endogenous (mouse) CRP detected by ELISA assay,

compared to their own Sham group (S2A Fig). Furthermore, higher serum levels of mouse

CRP were found in PLC3 mice than LC3 mice after IRI (S2A Fig), and the more elevation of

CRP was also detected in kidney lysates of PLC3 mice than in LC3 post-AKI (S2B Fig), suggest-

ing that PLC3 mice might have more kidney injury post IRI compared to LC3 mice. However,

serum levels of transgenic (rabbit) CRP were not increased in PLC3 mice after IRI compared

with Sham group (data not shown).

Fig 1. Correlation between serum CRP levels and other parameters. (A-B) Correlation between serum CRP levels and SCr/BUN levels in 190 AKI

patients at acute phase of AKI. (C) Correlation between serum CRP levels at acute phase and SCr levels at 14 days after AKI diagnosis in 28 AKI patients. (D)

Comparison of Serum CRP levels at acute phase between complete recovery patients and partial or no recovery patients. (E-G) Serum Levels of CRP, Cr,

and BUN in AKI patients at acute phase and 14 days. Results are means ± SD from 28 AKI patients, and statistical significance was assessed by unpaired

Student t-test. *: P<0.05. ***: P<0.001 between groups.

https://doi.org/10.1371/journal.pone.0181848.g001
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Mice with high CRP develop more severe acute kidney injury induced by

IRI

One day after IRI induction, PLC3 mice developed more severe AKI as evidenced by higher

SCr and BUN levels than LC3 mice (Fig 2A). The expression of NGAL, a kidney injury marker

[62], was higher in kidney lysates of PLC3 than LC3 mice (Fig 2C). PLC3 mice developed more

severe tubular damage, identified by more tubular necrosis and casts in histologic sections at

Day 1 and Day 2 post-IRI compared with LC3 mice (Fig 2B, and S3A and S3B Fig). More tubu-

lointerstitial fibrosis was found in Trichrome-stained kidney sections (Fig 3A), quantitative

analysis of Sirius red stain (Fig 3B), and SMA expression was higher (Fig 3C) at Day 7 post-IRI

in PLC3 mice than LC3 mice, suggesting that CRP mice are more susceptible to develop renal

Fig 2. CRP exacerbates acute kidney injury in vivo. (A) SCr and BUN of PLC3 mice and LC3 mice prior to and post-IRI. (B) Representative PAS stain of

kidney sections at Day 1 and Day 2 after IRI. Tissue damage was scored by the percentage of damaged tubule. (C) NGAL protein levels in the kidney

lysates of PLC3 mice and LC3 mice prior and post-IRI. Data are expressed as means ± SD of at least 4 mice from each group and statistical significance

was assessed by one-way ANOVA followed by Newman-Keuls test. *: P<0.05, **: P<0.01, ***: P<0.0001 between two groups.

https://doi.org/10.1371/journal.pone.0181848.g002
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fibrosis after ischemic injury. Interestingly note that PLC3 mice had a little renal fibrosis and

very mild elevation of systemic blood pressure compared to LC3 mice at baseline (S4 Fig). Cur-

rently we still do not know whether slight increase in interstitial fibrosis was due to endothelial

injury or mild increase in systemic blood pressure in PLC3 mice. We anticipate that old PLC3
mice may have spontaneous hypertension and interstitial fibrosis.

CRP enhances oxidative cell injury ex vivo and in vitro

To directly examine whether CRP exacerbates oxidative injury, we isolated renal tubules from

LC3 mice. Enriched proximal tubular epithelial cells were cultured, and treated directly with

H2O2 and/or CRP. H2O2 increased LDH (a cell injury marker) and 8-OHdG (an oxidative

marker) release from primary cultured renal proximal tubular epithelial cells, which was exac-

erbated by CRP treatment compared with vehicle treatment (Fig 4A and 4B). CRP treatment

Fig 3. CRP induces more fibrosis Day 7 post-IRI. (A) Representative Trichrome stain of kidney sections at Day 7 after IRI. Interstitial fibrosis was

scored following published protocol. (C) SMA protein levels in the kidney lysates of PLC3 mice and LC3 mice prior and post-IRI by western blotting.

Data are expressed as means ± SD of at least 4 mice from each group and statistical significance was assessed by one-way ANOVA followed by

Newman-Keuls test. *: P<0.05, **: P<0.01 between two groups.

https://doi.org/10.1371/journal.pone.0181848.g003
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Fig 4. CRP treatment exacerbates oxidative stress ex vivo and in vitro. Primary cultured cells (A-C) and OKP cells (D-F) were treated with or without

CRP in the presence of H2O2 (200 μM for 24 hours) or vehicle (PBS). (A, D) LDH release in primary cultured tubular cells or OKP cells with or without CRP

treatment at baseline and oxidative stress. (B, E) 8-OHdG release from primary cultured tubular cells or OKP cells with or without CRP treatment at baseline

and oxidative stress. (C, F) NGAL protein expression in the primary cultured tubular cells or OKP cells with or without CRP treatment at prior and post

oxidative stress. Data are expressed as means ± SD of at least 3 independent experiments for each group and statistical significance was assessed by one-

way ANOVA followed by Newman-Keuls test. *: P<0.05, **: P<0.01, ***: P<0.0001 between two groups.

https://doi.org/10.1371/journal.pone.0181848.g004
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also increased NGAL expression in the cell lysates after H2O2 incubation compared to vehicle

treatment (Fig 4C). Furthermore, CRP treatment elevated LDH and 8- OHdG release from

OKP cells after H2O2 incubation (Fig 4D and 4E) and induced a robust increase in NGAL (Fig

4F) compared with vehicle treatment. Those ex vivo and in vitro experiments provided further

evidences to support our notion that CRP exacerbates oxidative injury.

CRP impairs autophagy flux

Since autophagy dysfunction worsens kidney injury in various AKI models [26,28], we determined

two classical autophagy markers—microtubule-associated protein 1A/1B-light chain 3 (LC3) and

p62 [63] to examine autophagy flux in the kidney, cultured proximal tubules and OKP cells. LC3-I,

a cytosolic form of LC3, is conjugated to phosphatidylethanolamine to form LC3-phosphatidy-

lethanolamine conjugate (LC3-II), which is recruited to autophagosomal membranes during

autophagy process. Autophagosomes fuse with lysosomes to form autolysosomes, and intra-autop-

hagosomal components including LC3-II are degraded by lysosomal hydrolases [26,28,63]. Thus,

detecting LC3II/I ratio by immunoblotting or examining autophagosomes by immunofluores-

cence have become a reliable method for monitoring autophagy-related processes. We found

lower ratios of LC3 II/I and higher levels of p62 in the kidney lysates at baseline and after AKI in

PLC3 mice compared with LC3 mice (Fig 5A). Immunostaining showed that PLC3 mice had less

induced GFP-LC3 punctae than LC3 mice (Fig 5B), indicating fewer autophagosomes in mice with

high CRP. To examine if decreased GFP-LC3 punctae are due to more GFP-LC3 trapping in auto-

lysosomes (GFP fluorescence is quenched in acidic environments), we used double LC3 reporter

mice which red RFP-LC3 signal that is not bleached in autolysosomes. We found that both RFP-

LC3 punctae and GFP-LC3 punctae were less in PRG-LC3 mice compared with RG-LC3 mice after

AKI (Fig 5C), indicating that CRP blunted autophagy activation by IRI which was confirmed by

electron microscopic images (Fig 5D). Furthermore, decreased ratios of LC3 II/I and increased lev-

els of p62 were also found in cell lysates of both cultured proximal tubular cells ex vivo and OKP

cells in vitro (Fig 6A and 6B). Fewer punctae of LC3 were found in primary cultured proximal

tubular cells from LC3 mice and OKP cells transiently transfected with GFP-LC3 after H2O2 treat-

ment compared with vehicle treatment (Fig 6C and 6D), indicating that CRP suppresses H2O2-

induced autophagy flux.

CRP induces Beclin 1 binding to anti-apoptotic Bcl-2

Dissociation of Bcl-2 and Beclin 1 is an important mechanism for activating autophagy under

nutrient deprivation [57,64]. In contrast, nutrient excess increases Bcl-2 binding to Beclin 1

and inhibits autophagy. To define the molecular mechanism by which CRP down-regulates

autophagy, we performed co-IP to semi-quantitatively measure Bcl-2 and Beclin 1 complexes.

PLC3 mice had more Beclin 1 bound to Bcl-2 (Fig 7A) than LC3 mice at baseline, which indi-

cated that CRP might suppress autophagy by inhibiting Beclin 1 release from Bcl-2/Beclin 1

complexes. Consistent with decreased autophagy and increased Bcl-2/Beclin 1 binding, there

was more apoptosis as shown by more TUNEL positive cells (Fig 7B) in the kidney of PLC3
mice compared to LC3 mice. Rapamycin also helped Beclin 1 escape from Bcl-2/Beclin 1 com-

plexes to induce autophagy (Fig 7C), and ameliorated apoptotic cell death documented by

lower TUNEL positive cells in PLC3 mice after AKI (Fig 7B).

Rapamycin rescues CRP-reduced autophagy and ameliorates AKI in

PLC3 mice

To gain direct evidence to support the in vivo effect of autophagy on CRP-associated severe

kidney injury in IRI model, we pre-treated mice with rapamycin to upregulate or with
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Fig 5. CRP impairs autophagy in vivo. (A) LC3 II/I and p62 levels in PLC3 mice and LC3 mice prior and post-IRI by

immunoblotting. (B) GFP-LC3 punctae in PLC3 mice and LC3 mice prior and post-IRI by immunohistochemistry. (C)

RFP-LC3 and GFP-LC3 punctae in RG-LC3 mice and PRG-LC3 mice prior and post-IRI by immunohistochemistry. (D)

Representative TEM for autophagosomes and autolysosomes in the kidneys. Data are expressed as means ± SD of at least

4 mice from each group and statistical significance was assessed by one-way ANOVA followed by Newman-Keuls test. *:

P<0.05, **: P<0.01, ***: P<0.0001 between two groups. A: autophagy; AL: autolysosome; and L: Lysosome.

https://doi.org/10.1371/journal.pone.0181848.g005
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bafilomycin A1 (Baf A1) to downregulate autophagy flux. Interestingly and importantly, rapa-

mycin improved tubular damage, better preserved renal function and decreased NGAL expres-

sion in the kidney of AKI mice; whereas Baf A1 had opposite effect (Fig 8A–8C, and S5 Fig),

Fig 6. CRP suppresses autophagy ex vivo and in vitro. (A) LC3 II/I and p62 levels in primary cultured tubular cells with or without CRP treatment at

baseline and oxidative stress by immunoblotting. (B) LC3 II/I and p62 levels in OKP cells with or without CRP treatment by immunoblotting. (C) GFP-LC3

punctae in primary cultured tubular cells by immunohistochemistry. (D) GFP-LC3 punctae in OKP cells by immunohistochemistry. Data are expressed as

means ± SD of at least 3 independent experiments for each group and statistical significance was assessed by one-way ANOVA followed by Newman-

Keuls test. *: P<0.05, **: P<0.01, ***: P<0.0001 between two groups.

https://doi.org/10.1371/journal.pone.0181848.g006
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further indicating that CRP-worsened kidney dysfunction and histological alteration in IRI

model is associated with down-regulation of autophagy in the kidney. Rapamycin attenuated

CRP-induced down-regulation of autophagy as evidenced by an increased LC3 II/I ratio and

reduced p62 levels in the kidney, cultured proximal tubules and OKP cells (Fig 8C–8E). Fur-

thermore, rescued autophagy activity by rapamycin was able to overwrite CRP-promoted cell

injury induced by H2O2 (Fig 8D and 8E).

Discussion

Consistent with previous clinical data [11], we found that AKI patients had increased levels of

serum CRP during acute phase regardless of etiology. Elevated serum CRP levels were posi-

tively correlated with the levels of SCr and BUN at acute phase and with SCr at 14 days after

AKI diagnosis. These clinical observations indicate a close link between CRP and AKI. A larger

and long-term longitudinal study is required to confirm our findings. Emerging evidence

showed that CRP is not only a biomarker, but also a contributor to AKI, because CRP was

reported to promote AKI by enhancing inflammation, shifting the balance of macrophage acti-

vation and FcγR expression towards a detrimental portfolio[41], or impairing G1/S-dependent

tubular epithelial cell regeneration [11]. Therefore, CRP is not only a biomarker, but also a

pathogenic intermediate for AKI. Our results confirm the pathogenic model. We found that

PLC3 mice developed more severe AKI compared with LC3 mice, which is consistent with

Fig 7. CRP induces apoptosis and suppresses autophagy. (A) Binding of Beclin 1 to Bcl-2 by co-IP in LC3 mice and PLC3 mice post-IRI. (B) Number of

TUNEL positive cells in LC3 mice, PLC3 mice and PLC3 mice with rapamycin injection post-IRI. Data are expressed as means ± SD of 4 mice from each

group and statistical significance was assessed by one-way ANOVA followed by Newman-Keuls test. *: P<0.05, **: P<0.01 between two groups. (C) Binding

of Beclin 1 and Bcl-2 by co-IP in PLC3 mice post-IRI with or without rapamycin injection before surgery. KL: whole kidney lysates.

https://doi.org/10.1371/journal.pone.0181848.g007
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Fig 8. Autophagy modulators alter autophagic flux and severity of kidney injury in IRI model. (A) Rapamycin reduces SCr in

PLC3 mice post-IRI. (B) Representative PAS stain of kidney sections of PLC3 mice with Baf A1 or rapamycin (rapa) or vehicle (Veh)

injection at first day post IRI. Tubular damage was scored by the percentage of damaged tubule. (C) Rapamycin injection rescues

autophagy flux and reduces NGAL expression in PLC3 mice post-IRI. Data expressed as means ± SD of 4 mice from each group and

statistical significance was assessed by one-way ANOVA followed by Newman-Keuls test. *: P<0.05, **: P<0.01 between two groups

CRP and autophagy in AKI
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published findings in various animal models including obstructive nephropathy [65], diabetic

kidney disease [40] and ischemia-induced kidney injury [41]. We showed PLC3 mice had

more apoptotic cells than LC3 mice post IRI, but whether other types of cell death including

programmed necrosis can be induced by combinational effect of CRP and H2O2 is elusive. In

addition, we will further illustrate whether H2O2 induces endoplasmic reticulum stress and

consequently modulates autophagy and whether CRP blunts this upregulation and exacerbates

H2O2-induced cytotoxicity.

Autophagy is an evolutionarily conserved catabolic process for terminal degradation or recy-

cling of cytoplasmic components and serves a defense mechanism to protect and maintain nor-

mal function of cells [66–68]. Defective autophagy has been reported to render the kidney

vulnerable to ischemic injury and nephrotoxicity [23,69,15,70]. Restoration of autophagy was

shown to be renoprotective [28]. In the present study, we first found that PLC3 mice developed

more severe IRI-induced AKI with down-regulated autophagic flux compared with LC3 mice.

Ex vivo and in vitro data further confirmed that CRP impaired autophagy. Apoptosis plays a

role in the pathogenesis of AKI [12]. The autophagy/apoptosis toggle switch is regulated by Bcl-

2/Beclin-1 complex [71,64]. Bcl-2 not only functions as an anti-apoptotic protein, but also as an

anti-autophagic protein via its inhibitory interaction with Beclin 1. In the absence of Bcl-2 bind-

ing, Beclin 1 induces excessive autophagy. But, when Bcl-2 binds to Beclin 1, autophagy activity

is inhibited. So the Bcl-2/Beclin1 complex can be regarded as a brake on controlling autophagy

activity [64]. Here, we found that autophagy was suppressed and switched to apoptosis in PLC3
mice after AKI, possibly because there was more Bcl-2/Beclin1 complex formation. Taken

together, our data indicate that CRP exacerbates AKI by down-regulating autophagy and acti-

vating apoptosis.

To explore whether autophagy deficiency induced by CRP is involved in AKI development,

we applied rapamycin, a well-known autophagy inducer in vivo, ex vivo and in vitro to test

whether it could ameliorate kidney injury. Interestingly, pretreatment of rapamycin for three

days significantly reduced SCr and BUN, and attenuated histologic renal tubular damage one

day after IRI. Rapamycin treatment, autophagy inducer could restore impaired autophagy

induced by CRP in vivo, ex vivo and in vitro. But bafilomycin A1, autophagy suppressor exerts

opposite action and worsened IRI-induced kidney injury in CRP overexpression mice. These

indicate that autophagy inducer can attenuate kidney damage in the presence of high CRP,

heralding it as a promising therapy for AKI patients with significantly elevated serum levels of

CRP.

There was more interstitial fibrosis and higher expression of SMA in the kidneys of PLC3
mice 7 days after IRI compared with LC3 mice. The mechanisms of higher renal fibrosis in

PLC3 mice may be multifactorial. One is that PLC3 mice had more severe kidney damage dur-

ing the acute phase compared with LC3 mice, which should lead to more renal fibrosis. Sec-

ondly, as demonstrated by us and others [28,72], defective autophagy is associated with

abnormal fibrosis; CRP-induced down-regulated autophagy might be another potential mech-

anism of enhanced fibrosis observed in PLC3 mice. More work with administration of CRP

post AKI is needed to confirm if CRP promotes renal fibrosis.

In conclusion, the pathogenic role of CRP in cardiovascular diseases has been well estab-

lished, but its effects on renal injury are relatively understudied. Our human study showed

for A ~ C. Rapamycin treatment for 24 hours rescues autophagy flux and CRP/H2O2-induced cytotoxicity ex vivo (D) or in vitro (E). Data

are expressed as means ± SD of at least 3 independent experiments for each group and statistical significance was assessed by one-

way ANOVA followed by Newman-Keuls test for D and E. *: P<0.05, **: P<0.01 vs. CRP group; #: P<0.05, ##: P<0.01, ###: P<0.0001 vs.

CRP + H2O2 group; $: P<0.05, $ $: P<0.05 vs. CRP + rapamycin group; θ: P<0.05, θθ: P<0.01 vs. CRP + rapamycin + H2O2 group.

https://doi.org/10.1371/journal.pone.0181848.g008
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that elevated serum CRP levels were correlated positively with renal function both at acute

phase of AKI and 14 days of acute phase. Moreover, our animal study showed that CRP gene

overexpression in mice suppresses autophagy and renders the kidney more susceptible to

ischemic injury. The enhancement of kidney injury by CRP is associated with down-regulation

of autophagic flux, which may be a therapeutic target for AKI patients. The long-term effects

of CRP on tubulointerstitial fibrosis and AKI progression to CKD merits further investigation.

Supporting information

S1 Table. Clinical characteristics of AKI patients.

(DOCX)

S1 Fig. Identification of cell type of the primary cultured renal tubular epithelial cells. Pri-

mary cultured renal tubular epithelial cells on coverslips were stained with rabbit AQP-1 anti-

body (Millipore, MA, USA) to identify renal proximal tubules (red) (A), rabbit NCC antibody

(kind gift from Dr. Alicia A. Mc Donough) to identify renal distal tubules (red) (B), goat THP

antibody (Santa Cruz, CA, USA) to identify Henle’s loops (red) (C) and rabbit calbindin D28k

antibody (Swant, Switzerland) predominantly to identify distal renal tubules (red) (D) respec-

tively. Phalloidin was stained blue and LC3-GFP puncta was shown as green (A-D). Overall,

more than 85% of the cells were AQP-1 positive, which is a marker of proximal renal tubules.

Scale bar = 100 μm.

(TIF)

S2 Fig. Serum and kidney CRP levels detected by ELISA and western blotting respectively.

(A) Mouse serum CRP levels were found increased by ELISA in both LC3 and PLC3 mice after

IRI-AKI compared to Sham group respectively. PLC3 mice had even higher mouse CRP levels

after IRI compared with LC3 mice. �: P<0.05, ��: P<0.01. (B) Western blotting analysis

detected similar results in kidney tissues with serum data by ELISA. It also showed that PLC3
mice had higher CRP expression in the kidney lysates at baseline compared with LC3 mice,

which might be due to primary antibody’s non-specific binding to both mouse and rabbit

CRP. Data are expressed as means ± SD of at least 4 mice from each group and statistical sig-

nificance was assessed by one-way ANOVA followed by Newman-Keuls test. �: P<0.05, ��:

P<0.01, ���: P<0.0001 between two groups.

(TIF)

S3 Fig. Kidney histology in mice of IRI-induced AKI. (A) Representative H & E stain of the

kidney sections. Scale bar = 500 μm. (B) Representative PAS stain of kidney sections. Scale

bar = 250 μm.

(TIF)

S4 Fig. Systolic blood pressure in LC3 and PLC3 mice. Blood pressure was measured by tail-

cuff method in wake condition with MC4000 Multichannel System (Hatteras Instruments,

Cary, North Carolina). Data are expressed as means ± SD of at least 4 mice from each group

and statistical significance was assessed by unpaired Student t-test. �: P<0.05 between two

groups.

(TIF)

S5 Fig. Kidney histology in mice of IRI-induced AKI. Representative H & E (upper panel,

scale bar = 100 μm) stains and PAS (bottom panel, scale bar = 250 μm) stains on kidney sec-

tions of PLC3 mice pre-treated with bafilomycin A1, vehicle or rapamycin for 3 days followed

by IRI for 24 hours.

(TIF)
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