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Self-determined shapes and velocities of giant
near-zero drag gas cavities
Ivan U. Vakarelski,1* Evert Klaseboer,2 Aditya Jetly,1 Mohammad M. Mansoor,1

Andres A. Aguirre-Pablo,1 Derek Y. C. Chan,3,4* Sigurdur T. Thoroddsen1

Minimizing the retarding force on a solid moving in liquid is the canonical problem in the quest for energy saving by
friction and drag reduction. For an ideal object that cannot sustain any shear stress on its surface, theory predicts that
drag force will fall to zero as its speed becomes large. However, experimental verification of this prediction has been
challenging. We report the construction of a class of self-determined streamlined structures with this free-slip surface,
made up of a teardrop-shaped giant gas cavity that completely encloses a metal sphere. This stable gas cavity is
formed around the sphere as it plunges at a sufficiently high speed into the liquid in a deep tank, provided that
the sphere is either heated initially to above the Leidenfrost temperature of the liquid or rendered superhydrophobic
in water at room temperature. These sphere-in-cavity structures have residual drag coefficients that are typically less
than 1

10= those of solid objects of the same dimensions, which indicates that they experienced very small drag forces.
The self-determined shapes of the gas cavities are shown to be consistentwith the Bernoulli equation of potential flow
appliedon the cavity surface. The cavity fall velocity is not arbitrary but is uniquely predictedby the sphere density and
cavity volume, so larger cavities have higher characteristic velocities.
INTRODUCTION
One of the fundamental topics in fluid mechanics is the motion of a
sphere in an ideal fluid that has zero viscosity and obeys the free-slip
boundary condition where the tangential stress is zero on the sphere
surface. Physically, this model only considers the effects of fluid inertia,
and the analytical solution shows that the net force on the sphere is zero.
This is because the pressure exerted by the fluid on the front half of the
sphere exactly cancels that exerted on the rear hemisphere (1). For the
same free-slip sphere moving in a Newtonian fluid with a constant vis-
cosity, the effect of viscosity becomes small at high sphere velocities.
This is quantified by a large Reynolds number,Re≡ rDSU/m≫ 1, which
compares inertial forces to viscous forces, where r is the fluid density,DS

is the sphere diameter, U is the characteristic fluid velocity, and m is the
fluid dynamic viscosity. The drag force is expressed as FD≡CD(pDS

2/4)
(rU2/2), where, for a free-slip sphere, the drag coefficient has the
limiting formCD≈ (48/Re) as Re→∞ (2–4) and thus decreases to zero
as the speed increases. This is the well-known d’Alembert paradox (5).
However, at a solid surface, the layer of fluid adjacent to it will move at
the velocity of the solid, a condition referred to as the no-slip boundary
condition that generates a boundary layer in which viscosity effects
must be considered. This then provides the resolution to the d’Alembert
paradox (5).

Although a sphere with a free-slip surface is a hypothetical model, it
represents the theoretical limit at which hydrodynamic drag can be
minimized. This notion provides the motivation to construct a surface
that obeys the free-slip or zero tangential stress condition as far as pos-
sible and to investigate how this can be used to reduce drag and dissi-
pation. The pursuit of this ideal limit can provide an important and
fundamental contribution in the quest for energy-efficient transport.
However, it is challenging to experimentally produce a free-slip surface.
Previous attempts to realize zero tangential stress surfaces for drag re-
duction include using bubble injection near the surface (6–8) and the use
of superhydrophobic surfaces (9–12) or hot surfaces above the Leiden-
frost temperature (13–15) to sustain a thin submillimeter gas layer that
envelops a solid sphere. However, the limited thickness of the gas layers
produced by these methods only resulted in a partial slip at the surface
that can be characterized by aNavier slip length (16, 17). Supercavitation
can be used to greatly reduce the drag on underwater projectiles, but this
phenomenon takes place only at extremely high flow velocities, limiting
its application to expensive supercavitating torpedo technologies (18, 19).
In recent years, partial cavitation assisted by gas infusion has shown
promising results in the quest for the development of energy-efficient,
high-speed marine vehicles (6, 7).

Here, we demonstrate how a solidmetal sphere falling in a liquid can
be completely encased in a giant stable streamlined gas cavity that elim-
inates solid-liquid contact. These sphere-in-cavity structures were cre-
ated by allowing a metal sphere of centimeter size to fall and have an
impact on the free surface of a liquid held in a deep (2-m) tank. At a
sufficiently high impact velocity, controlled by the release height above
the liquid surface, the sphere entrains a cylinder of air while entering the
liquid, which is then pinched off to form a streamlined teardrop-shaped
gas cavity. The volume of the cavity was between 5 and 15 times that of
the sphere as it travels down in the liquid. The cavity minimizes dissi-
pation or drag by shedding small gas bubbles from the tail until it
reaches the optimum size and shape and continues to travel at a con-
stant velocity U, which is independent of the impact velocity of the
sphere. This closed gas-liquid interface is a free-slip surface that cannot
sustain a shear stress.

In a recent study (20), we investigated the detailed dynamics of the
formation of stable streamlined gas cavities following the impact of a
heated Leidenfrost sphere on a perfluorocarbon liquid, PP1 [perfluoro-
2-methylpentane (C6F14); Flutec PP1, F2 Chemicals Ltd.]. An example
of the steady fall of a Leidenfrost sphere-in-cavity structure that
formed around a 10-mm steel sphere in this liquid is given in movie
S1.Here, we demonstrate that this sphere-in-cavity can also be formed
by dropping ametal sphere fromair into a deep tank ofwater. In Fig. 1,
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we show examples of the formation of sphere-in-cavity structures due
to the impact of a 20-mm-diameter steel sphere from air into a deep
tank of water at 21° and 95°C. The entire process is shown inmovie S2.
Tungsten carbide spheres with density of about twice that of steel were
also used. The sphere, located at the leading end or nose of the gas
cavity, was separated from the gas-liquid interface by a thin gas layer.
This gas layer can be sustained by the sphere when it is heated above
the Leidenfrost temperature (21–23) before beingdropped into the liquid
(sphere temperature TS = 400°C in 95°C water or TS = 230°C in the flu-
orocarbon liquid PP1). In 21°C water, the gas layer at the sphere can be
sustained by making the sphere surface superhydrophobic (24–26).

Fromanalyzing high-speed video recordings of the path of these cav-
ities, we can deduce that the magnitude of the drag coefficient, CD ≈
0.02, is 10 times smaller than the magnitudes of the drag coefficients
of solid teardrop-shaped plastic objects of the same dimensions made
by three-dimensional (3D) printing. Therefore, we conclude that the gas
cavity experiences near-zero drag. Because the Reynolds numbers of all
cavity fall experiments range from 104 to 105, the motion of the cavity
can be described by the potential flow of an ideal fluid in an external
Vakarelski et al., Sci. Adv. 2017;3 : e1701558 8 September 2017
body force field, the gravitational field in this case. From this analy-
sis, we can deduce the pressure inside the gas cavity. This physical
model is reminiscent of the study of Davies and Taylor (27) of the
rise velocity of a large spherical cap gas bubble in liquid.

We will first adduce experimental results to demonstrate that the
sphere-in-cavity structure is nearly neutrally buoyant and has very
small drag coefficients. In conjunction with the high Reynolds
numbers, this justifies the use of potential flow theory to relate the ob-
served shapes of the gas cavities to their velocity and show that they
can be related by the application of the Bernoulli equation. The inte-
rior pressure of the cavity can be estimated from this modeling. Final-
ly, we deduce that the velocity of the sphere-in-cavity structure that
experiences near-zero hydrodynamic drag is not arbitrary. It is com-
pletely determined by the diameter of the solid sphere and the ratio of
the sphere density to the liquid density. Because the volume of the gas
cavity is found to be proportional to the density ratio, the velocity is
then proportional to the cavity volume, or in other words, the larger
cavities will travel at higher velocities.
RESULTS
Cavity shapes and volumes
The cavity size and fall velocity were determined using high-magnification
videos. Examples of the fall of the sphere-in-cavities created by a
20-mm steel sphere are given in movie S3 for a Leidenfrost sphere in
95°C water (left video and Fig. 1E) and a superhydrophobic sphere in
room temperature, 21°C water (right video and Fig. 1D). The self-
determined teardrop-shaped gas cavities that minimized drag have
self-similar shapes that depend on the combination of sphere material
and liquid. The aspect ratio of cavity lengthL (~37 to 156mm) tomax-
imum diameterD (~11.5 to 31.8 mm) ranged from L/D ~ 3.2 for steel
spheres in PP1 to L/D ~ 5.6 for tungsten carbide spheres in 95°Cwater
(see table S1). See Fig. 1E for the definition of L and D.

The volume of the cavity was estimated by matching the video
snapshots with a three-piece algebraic fitting curve (fig. S4). As shown
in Fig. 2A, the ratio of the cavity volumeVC (VC includes the volume of
the sphere) to the volume of themetal sphereVS ≡ ðp=6ÞD3

S, whereDS

is the sphere diameter, is always just slightly smaller than the ratio of
the sphere density to the fluid density rS/r, ranging from 5 to 15.
Therefore, the sphere-in-cavity structure is nearly neutrally buoyant.
The volume of the gas cavity VC is also observed to be related to the
dimensions of the cavity by the relationVC≈ 0.46LD2 (Fig. 2B) for all
combinations of sphere and fluid properties, which suggests that they
have self-similar shapes.

We should note that the stability of the sphere-in-cavity formation is
limited by the increase of hydrostatic pressure with depth during the
fall. As can be seen in movie S2 for the 20-mm steel spheres, the forma-
tion is still stable upon reaching the bottom of the 2-m tank for both the
Leidenfrost sphere in 95°C water and the superhydrophobic sphere in
room temperaturewater.However, if the free fall continues long enough,
the cavity will eventually collapse, as previously observed for smaller
10-mm Leidenfrost steel spheres falling in PP1 liquid (20). Here, we
limit our consideration to the steady-state fall of sphere-in-cavity for-
mation, assuming a constant ambient pressure over the length of the
cavity in our theoretical analysis.

Sphere-in-cavity drag coefficients
We use the drag coefficient to quantify the near-zero hydrodynamic
drag of the moving sphere-in-cavity. From the measured constant
Leidenfrost

95ºC water
E F
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12 cm
34 ms

17 cm

141 ms

62 cm

356 ms
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Superhydrophobic
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Fig. 1. Formation of a gas cavity around an impacting 20-mm-diameter steel
sphere. Snapshots from movie S2 showing (A and B) the formation of a gas cavity
around a hot 20-mm Leidenfrost steel sphere at sphere temperature TS = 400°C as
it enters a 2-m-tall tank containing water at 95°C and (C and D) the development
and trajectory of the sphere-in-cavity structure at the indicated depths and times
after entry. (E) A close-up of the steady-state gas cavity of length L and maximum
diameter D formed around the 20-mm Leidenfrost steel sphere at TS = 400°C in 95°C
water. (F) The steady-state gas cavity formed around a cold 20-mm superhydro-
phobic steel sphere at TS = 21°C in 21°C water.
2 of 7



SC I ENCE ADVANCES | R E S EARCH ART I C L E
free-fall velocity U of the cavity, we can deduce the drag coefficient CD

using the equation

CD ¼ 8gMeff

prD2U2
ð1Þ

where g is the gravitational acceleration. The effective mass,Meff =mS −
rVC, of the sphere-in-cavity is found by obtaining the volume of the gas
cavity VC (which includes the sphere) from snapshots of the video
frames (fig. S4) to calculate the buoyancy force that opposes the weight
of the metal sphere mS. In practice, because of the near cancellation of
the weight and the buoyancy force, the value ofMeff is sensitive to the
estimated cavity volume because the mean density of the sphere-in-
cavity, (Meff/VC), is found to be around 10 times smaller than the den-
sity of the surrounding fluid.

To demonstrate the near-zero drag coefficients of the streamlined
cavity, we conducted complementary experiments using solid projec-
tiles produced by 3D printing. The projectiles had the same streamlined
Vakarelski et al., Sci. Adv. 2017;3 : e1701558 8 September 2017
shape and dimensions (length LP, maximum diameter DP, and volume
VP) as the cavity (fig. S3) but were expected to have the usual “stick”
boundary condition of any solid surface. The projectiles were hollow,
so their mass mP could be adjusted by inserting small metallic spheres
(fig. S2). The drag on the projectile in free-fall experiments in the same
liquid was estimated using the same relation (1) as for the cavity, but the
effective mass Meff = mP − rVP can be adjusted over a wider range of
projectile mean densities by changing mP.

In Fig. 3, we show the variation of the drag coefficient CD with the
Reynolds numberRe for steel sphere-in-cavities and similar replica solid
projectiles falling in 21° or 95°C water. For the cavities, the variation of
CD with Rewas obtained by changing the steel sphere diameter of 10 to
25 mm and water viscosity m= 1.0 mPa·s at 21°C and m = 0.3 mPa·s at
95°C. The variation of the projectile CD with Re was obtained by
changing the projectile weight while using the same projectile size
DP = 25 mm and with LP/DP = 4.5 matching the L/D ≈ 4.5 ratio for
the cavities formed around steel spheres. For Reynolds numbers in
the range Re ~ 2 × 104 to 3 × 105, here, we estimated that the steel
sphere-in-cavities have drag coefficients CD ≈ 0.02 to 0.03 or close to
an order of magnitude lower than the solid projectile drag with co-
efficient CD = 0.20 ± 0.02. The marked difference in the hydrodynamic
drag of the streamlined gas cavity around a 20-mm steel sphere and the
corresponding solid projectile of approximately the same size, shape,
and effective mass in free fall in 95° or 21°C water is best demonstrated
in movie S4.

Another quantitative difference between the drag force experienced
by gas cavities and solid projectiles can be observed in the variation of
their drag coefficients CD with the aspect ratio. For solid projectiles, the
drag coefficients pass through a minimum at LP/DP ~ 3, reflecting the
variation in the relative contributions toCD from the skin and formdrag
with the aspect ratio. In the same regime of aspect ratios, the drag on the
sphere-in-cavity seems to follow the opposite trend, decreasing with
L/D between ~3.2 and 5.5. This trend indicates that any increase in
the skin drag component is negligible for the cavities (see fig. S6).
Fig. 2. Cavity volume variation. (A) Dependence of the cavity-to-sphere volume
ratio VC/VS on the sphere-to-liquid density ratio rS/r. Data are for 10-mm (blue
circles), 15-mm (green triangles), and 20-mm (red squares) steel (rS = 7.7 g/cm3)
or tungsten carbide (TC) (rS = 14.9 g/cm3) spheres falling in PP1 (r = 1.7 g/cm3)
and 95°C water (r = 0.96 g/cm3). The dotted line corresponds to neutral buoyancy
of the sphere-in-cavity structure. (B) Cavity volume, as a function of (LD2), cavity di-
ameter D, and length L, for the same sphere sizes and liquid combination as in (A).
The dotted line is the best linear fit to the data that gives the relation VC ≈ 0.45 LD2.
Fig. 3. Comparison of drag coefficients of cavities and solid projectiles of the
sameshape. Comparison of the variation of the drag coefficient CD with Reynolds
number Re for (i) lower data set: gas cavity in 21°C water around superhydropho-
bic steel spheres of diameter DS = 15, 20, and 25 mm (solid red squares) and
around Leidenfrost steel spheres at TS = 400°C in 95°C water of diameter DS =
10, 15, 20, and 25 mm (solid red triangles), and (ii) upper data set: the drag on
solid replica projectiles: DP = 25 mm, LP/DP = 4.5 containing different weights in
21°C water (solid blue squares) and 95°C water (solid blue triangles). Side images
are snapshots of the falling projectile and sphere-in-cavity from movie S4. Fins on
the solid projectiles were added to ensure rectilinear free fall. Their effect on the
magnitude of the drag coefficient is estimated to be less than 10%.
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The residual drag of the sphere-in-cavity, however small, can still be
associated with a large Navier slip length at the free surface. In a recent
investigation, we used numerical simulation to quantify the relation be-
tween drag reduction and Navier slip length for the case of free-falling
Leidenfrost spheres (16). In the future, similar numerical simulations of
the present sphere-in-cavity configuration could be used to quantify the
relationship between the residual drag and the giant Navier slip.

Potential flow model for cavity shape and velocity
Under our experimental conditions, the sphere-in-cavities are in the
high–Reynolds number regime with the free-slip condition on the sur-
face of the gas cavity. The inertial contribution to the hydrodynamic
pressure in water is of the order 12 rU

2 ∼ 2000 Pa, for a typical velocity
U ~ 2m/s. Themagnitude of the gravitational pressure is rgL ~1000 Pa,
with a cavity length L~ 100mm.These two pressures are comparable in
magnitude and are bothmore than two orders ofmagnitude larger than
the Laplace pressure ~ g/D because of the surface tension effects ofwater
at g ~ 0 . 072 N/m. These estimates suggest that potential flow theory in
a gravitational field that provides the body force could adequately de-
scribe the physics of the falling cavities.

To verify this, we solved the Laplace equation∇2f ¼ 0 for the velocity
potential, where f from which the fluid velocity field u = ∇f can be
calculated. On the surface of the cavity, the pressure in the fluid is equal
to the constant pressurePC inside the cavity. Therefore, the application of
Bernoulli equation on the surface of the cavity gives the relation

P ¼ P0 � 1
2
ru2 � rgz ¼ PC ð2Þ

with position z measured from the tail of the cavity and P0 being the
reference pressure in the fluid, where u = 0 and z = 0.

Equation 2 implies that the variation of the square of the velocity
u2 on the cavity surface that is not close to the solid sphere is a
linear function of z. To check the applicability of Eq. 2, we digitized
images of a cavity to find its boundary and solved ∇2f ¼ 0 for the
velocity potential by the nonsingular boundary integral method (25)
under the condition that the normal derivative ∂f=∂n or, equivalently,
the normal component of the velocity at the interface is zero. The
results for selected sphere-liquid combinations in various liquids are
shown in Fig. 4. It is evident that along the body of the cavity, the
variation of u2 does obey the linear form given by Eq. 2.

Around the nose of the cavity, the interface must conform to a seg-
ment of the sphere of diameterDS = 2RS. The pressure variation around
a sphere in potential flow is of the form (1)

Pðr ¼ RS;qÞ � P0 ¼ 1
2
rU2½1� 9

4
sin2q� ð3Þ

where q is the angle relative to the z axis. It is clear from Fig. 4 that the
pressure variation at the front of the cavity follows Eq. 3, with the pres-
sure having the stagnation value 1

2 rU
2 at the front pole of the cavity.

For a sphere, theminimumpressure occurs at the equator, q = p/2, and
has a value of ð� 5

8 rU
2Þ, whereas the minimum pressure at the cavity

surface, from the simulations of the experiment, is around (−0.2rU2),
which is less than one-third the magnitude of the minimum around a
sphere.

At the tail of the cavity, z = 0, we see from Fig. 4 that P≈ 0.1rU2 for
all four cases. Thus, we see from Eq. 2 that this is the pressure PC inside
the gas cavity relative to P0.
Vakarelski et al., Sci. Adv. 2017;3 : e1701558 8 September 2017
DISCUSSION
We have created a class of objects consisting of a giant gas cavity with a
surface that surrounds a moving solid sphere but cannot sustain shear
stresses. The cavity adopts a self-determined shape to minimize drag
and dissipation. These sphere-in-cavity structures were formed by
dropping Leidenfrost or superhydrophobic metallic spheres from air
into a deep tank of liquid—hot and cold water as well as perfluorocar-
bonPP1 liquid.At an appropriate range of impact speeds, the columnof
air entrained by the sphere as it entered the liquid eventually pinched off
and formed a teardrop-shaped gas cavity that completely enclosed the
sphere and prevented contact between the solid and the liquid. As it falls
in the liquid, this compound sphere-in-cavity structure adjusted its
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Fig. 4. Pressure variation on the cavity surface. Variation of the hydrodynamic
pressure, ru2/2 (symbols), obtained from potential flow and the gravitational, rgz
(solid line), components of the pressure on the surface of the gas cavity around
20-mm-diameter heated metal spheres in the Leidenfrost state (see Eq. 2) and the
pressure around a sphere (dashed line) (see Eq. 3) for the systems: (A) steel sphere in
95°C water, (B) tungsten carbide sphere in 95°C water, (C) steel sphere in fluoro-
carbon PP1 liquid, and (D) tungsten carbide sphere in fluorocarbon PP1 liquid.
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shape and volume by shedding small bubbles from the tail to minimize
dissipation and drag to attain a constant fall velocity corresponding to
Reynolds number in the range Re ~ 104 to 105 and with a residual drag
coefficientCD≈ 0.02, which is only 1

10= that of a streamlined solid pro-
jectile of the same dimensions. From the steady shape and volume of the
cavity, we see that the geometry of the self-similar cavity and its steady
velocity can be predicted by potential flow theory including gravity.

The physical mechanism of drag reduction by these giant gas cav-
ities, which are 5 to 15 times the volume of the solid sphere, is funda-
mentally different from the existing drag reduction strategies, which are
based on the creation of a submillimeter thin stable gas layer on solid
surfaces to modify the hydrodynamic boundary condition from a no-
slip to a partial slip. By using a large cavity, we essentially achieve the
ideal case of a drag-free sphere-in-cavity structure.

However, the key observation is that although the sphere-in-cavity
structure experiences near-zero hydrodynamic drag, its velocity U can-
not be arbitrary because it must assume the value that generates a pres-
sure profile that can balance the spatial variation of the gravitational
potential. That is, the pressure variation must obey the Bernoulli equa-
tion (Eq. 2) on the cavity surface. The pressure variation at the nose of
the cavity where its surface is separated from the solid sphere by a thin
gas film follows the classic result of a free-slip sphere in potential flow
from the stagnation value of 12 rU

2 at the front pole. The variation of the
pressure on the cavity surface, as required by the Bernoulli equation in
Fig. 4, only tracks this classical result for a sphere (dotted curve in Fig. 4)
near the nose of the cavity.When the cavity surface is no longer close to
the sphere, the pressure must assume a constant value, and the hydro-
dynamic pressure 1

2 rU
2 then transits sharply to the linear form in z as

required by Eq. 2 to balance the gravitational pressure. The value of the
internal pressure of the bubble can be found by extrapolating the linear
part of the pressure curve to z = 0, giving an intercept value of PC≈
0. 1rU2 for the internal pressure of the cavity, relative to the reference
valueP0 (see Fig. 4 and Eq. 2). At the tip of the cavity tail, the streamlines
should converge in a cusp, but because of the large curvature around the
tail, surface tension will break it up into an irregular shape. In the simu-
lations, we extrapolated the cavity shape to a stagnation point at z = 0,
where pressure must then again attain the stagnation value of 12 rU

2.
We now use a scaling argument to derive a simple relation be-

tween the velocity U and the properties of the sphere and the fluid.
For a gas cavity of length L, the Bernoulli equation holds only over
the portion ~[L − RS] of the cavity surface that is not close to the solid
sphere. Over this length, the pressure drop would balance the change in
gravitational pressure, so we expect the scaling 1

2 rU
2 ∼ rg½L� RS� or

U2 ~ 2RS[(L/RS)− 1].We cannow express the ratio (L/RS) in terms of the
density ratio between the sphere and the fluid, (rS/r), using two empir-
ical results for the cavity volume VC. From Fig. 2A, VC ¼ VS ðrS=rÞ ¼
ðp=6ÞD3

SðrS=rÞ ≈ 0:5D3
SðrS=rÞ; fromFig. 2B,VC= 0.46LD

2≈ 0. 5LD2;
and on eliminating VC, (L/RS) ≈ 2(DS/D)

2 (rS/r). Furthermore, from
table S1 (A to C), we see that (DS/D)

2 ~ 2. By combining these results,
we can see in Fig. 5 that for a given sphere diameterDS and a sphere-to-
fluid density ratio rS/r, the velocity of the sphere-in-cavity structure is
quite accurately represented by the relation

U2 ≈ 3:3 ðgDSÞ½ðrS=rÞ � 1� ≈ 3:3 ðgDSÞ½ðVC=VSÞ � 1� ð4Þ

with the empirical value of the slope determined by a best-fit criterion. Be-
cause the cavity volume is also proportional to the density ratio, we con-
clude that the cavity velocity increases with cavity dimensions (Fig. 3), that
Vakarelski et al., Sci. Adv. 2017;3 : e1701558 8 September 2017
is, the larger is the cavity, the higher is its velocity. Equation 4 also ensures
that the fall velocity U = 0 when rS = r. The relation in Eq. 4 can thus be
used to predict the velocity of any cavity generated by any nonwetting
sphere free-falling in a liquid system.

We point out that the sphere-in-cavity shape is direction-dependent
because the hydrostatic pressure gradient has a sign and a rising hollow
sphere can never support this type of cavity shape. A sphere pulled ra-
pidly upward would produce a cavity shape similar to a rising bubble
(27). The cavity behind spheres moving rapidly in the horizontal direc-
tion will presumably generate more complicated asymmetric cavity
shapes. One can envision spheres that can release or absorb gas from
the cavity for speed control.

Finally, the shape and volume of the gas cavity and its velocity are
constrained by the following factors. The radius of curvature of the nose
of the cavity is determined by the radius of the solid sphere. From the
movies presented in the Supplementary Materials, we see that during
the transient stage of cavity formation, excess gas volumes are shed as
bubbles at the tail of the cavity to attain a volume and shape as well as a
fall velocity whereby the potential flow pressure distribution along its
surface matches the linear gravitational pressure. Consequently, the a
priori prediction of the optimal dimensions of a gas cavity and sphere
size combination is a free boundary problem in potential flow theory in
which the shape of the boundary is the solution to be sought. We defer
this mathematical optimization problem to a future study.
MATERIALS AND METHODS
Spheres and liquids
The metal spheres are made of either steel (density, 7700 kg/m3; diam-
eter, 10, 15, 20, and 25mm) or tungsten carbide (density, 14,900 kg/m3;
diameter, 10, 15, and 20 mm). The liquids are water at 21°C (density,
998 kg/m3; viscosity, 1 mPa·s), water at 95°C (density, 961 kg/m3;
viscosity, 0.3 mPa·s), and the fluorocarbon PP1 (density, 1716 kg/m3;
viscosity, 0.8 mPa·s), which is mostly composed of perfluoro-2-methyl-
pentane (C6F14).

Experimental design and protocol
Experiments were conducted in a customized liquid tank with a height
of 2 m and cross-sectional dimensions of 20 cm × 20 cm (fig. S1). An
ρ
Fig. 5. Dependence of cavity velocity on sphere size and density ratio. Var-
iation of the sphere-in-cavity velocity U with sphere diameter DS and the sphere-
to-fluid density ratio rS/r. The dotted line is a linear best fit to the data that resulted
in Eq. 4.
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electric heater was installed at the bottom of the tank that allowed the
water in the tank to be heated up to 100°C.

A precondition for the formation of a stable streamlined cavity is
that the impacting sphere should have a nonwetting surface. Thus, for
experiments in 95°C water, the steel or tungsten carbide spheres were
heated to about 400°C to produce a Leidenfrost state with nonwetting
impact (14). For experiments in PP1, the sphereswere heated to 230°C
to produce a Leidenfrost state (20). In the case of the steel spheres in
21°C water, the nonwetting mode was achieved by modifying the
sphere surface with a commercial superhydrophobic coating agent
(Glaco Mirror Coat Zero, Soft99 Co.) (25).

Stable streamlined cavities only formedwhen the superhydrophobic
or Leidenfrost sphere was released from a height ranging from 40 to
90 cm above the liquid surface, depending on the sphere size and den-
sity. However, we have not undertaken a detailedmapping of the sphere
wake mode to the impact height as was done for the case of impact into
PP1 liquid (20) but only adjusted the impact height for each type of
sphere to ensure the creation of stable streamlined sphere-in-cavity for-
mations. If the sphere-in-cavity can form, its final steady velocity does
not depend on the initial impact velocity (20). Table S1 contains the
release height used for each type of sphere to produce stable cavities.

Plastic projectiles used in the free-fall experiments to estimate the
drag on solid surface streamlined bodies were produced using 3Dprint-
ing. The projectiles are hollow so that their weight could be adjusted by
inserting smaller metallic spheres to modify their mass. We designed a
range of projectile shapes that matched the dimensions of the sphere
streamlined cavity produced by the steel and tungsten carbide spheres.
Figures S2 and S3provide illustrations of these projectiles and the design
details that match the cavity shape.

The fall of the sphere-in-cavity or of the plastic projectile in the
liquid tank was recorded using a high-speed video camera (Photron
FASTCAM SA5) with a typical filming frame rate of 2000 fps. The
falling velocities were determined by image processing of the video
clips (fig. S5). Higher-magnification snapshots of the sphere-in-
cavities were used to estimate the cavity volume by piecewise fitting
functions for each axisymmetric cavity shape. The nose of the cav-
ity is represented by an arc of a circle of diameter DS. A parabolic
curve is used to fit the cavity shape between the tail and the widest
part of the cavity with widthD. An elliptical curve is used to join the
parabolic tail portion to the spherical nose portion, which ensures
continuity of the value and the slope of the three-piece fitting function
(see fig. S4). A MATLAB image processing code was also used to dig-
itize the cavity shape that is used as input to a fully desingularized ax-
isymmetric boundary element method code (28) used to calculate the
potential flow pressure profiles. This pressure calculation took less
than 1 s to complete. Provided the images are clear and sharp, the
two methods of extracting the cavity shape and estimating the cavity
volume agree. Complete experimental details can be found in the Sup-
plementary Materials.
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movie S3. Close-up of sphere-in-cavity for 20-mm steel sphere in 21° and 95°C water.
movie S4. Comparison of solid projectiles and sphere-in-cavity free fall.
Reference (29)
REFERENCES AND NOTES
1. H. Lamb, Hydrodynamics (Dover Publications, 1932).
2. V. G. Levich, Bubble motion at high Reynolds numbers. Zh. Eksp. Teoret. Fiz. 19, 18–24

(1949).
3. D. W. Moore, The boundary layer on a spherical gas bubble. J. Fluid Mech. 16, 161–176

(1963).
4. B. K. C. Chan, R. G. H. Prince, Distillation studies—Viscous drag on a gas bubble rising in a

liquid. AIChE J. 11, 176–192 (1965).
5. G. K. Batchelor, An Introduction to Fluid Dynamics (Cambridge Univ. Press, 1967).
6. S. L. Ceccio, Friction drag reduction of external flows with bubble and gas injection. Annu.

Rev. Fluid Mech. 42, 183–203 (2010).
7. K. A. Lay, R. Yakushiji, S. A. Mäkiharju, M. Perlin, S. L. Ceccio, Partial cavity drag reduction

at high Reynolds numbers. J. Ship Res. 54, 109–119 (2010).
8. R. A. Verschoof, R. C. A. van der Veen, C. Sun, D. Lohse, Bubble drag reduction requires

large bubbles. Phys. Rev. Lett. 117, 104502 (2016).
9. J. P. Rothstein, Slip on superhydrophobic surfaces. Annu. Rev. Fluid Mech. 42, 89–109

(2010).
10. G. McHale, M. I. Newton, N. J. Shirtcliffe, Immersed superhydrophobic surfaces: Gas

exchange, slip and drag reduction properties. Soft Matter 6, 714–719 (2010).
11. J. C. Brennan, N. R. Geraldi, R. H. Morris, D. J. Fairhurst, G. McHale, M. I. Newton, Flexible

conformable hydrophobized surfaces for turbulent flow drag reduction. Sci. Rep. 5, 10267
(2015).

12. S. Srinivasan, J. A. Kleingartner, J. B. Gilbert, R. E. Cohen, A. J. B. Milne, G. H. McKinley,
Sustainable drag reduction in turbulent Taylor-Couette flows by depositing sprayable
superhydrophobic surfaces. Phys. Rev. Lett. 114, 014501 (2015).

13. I. U. Vakarelski, J. O. Marston, D. Y. C. Chan, S. T. Thoroddsen, Drag reduction by
Leidenfrost vapor layers. Phys. Rev. Lett. 106, 214501 (2011).

14. I. U. Vakarelski, D. Y. C. Chan, S. T. Thoroddsen, Leidenfrost vapour layer moderation of
the drag crisis and trajectories of superhydrophobic and hydrophilic spheres falling in
water. Soft Matter 10, 5662–5668 (2014).

15. D. Saranadhi, D. Chen, J. A. Kleingartner, S. Srinivasan, R. E. Cohen, G. H. McKinley,
Sustained drag reduction in a turbulent flow using a low-temperature Leidenfrost
surface. Sci. Adv. 2, e1600686 (2016).

16. I. U. Vakarelski, J. D. Berry, D. Y. C. Chan, S. T. Thoroddsen, Leidenfrost vapor layers reduce
drag without the crisis in high viscosity liquids. Phys. Rev. Lett. 117, 114503 (2016).

17. A. Busse, N. D. Sandham, G. McHale, M. I. Newton, Change in drag, apparent slip and
optimum air layer thickness for laminar flow over an idealised superhydrophobic surface.
J. Fluid Mech. 727, 488–508 (2013).

18. E. Alyanak, R. Grandhi, R. Penmetsa, Optimum design of a supercavitating torpedo
considering overall size, shape, and structural configuration. Int. J. Solids Struct. 43,
642–657 (2006).

19. D. Yang, Y. L. Xiong, X. F. Guo, Drag reduction of a rapid vehicle in supercavitating flow.
Int. J. Nav. Arch. Ocean 9, 35–44 (2017).

20. M. M. Mansoor, I. U. Vakarelski, J. O. Marston, T. T. Truscott, S. T. Thoroddsen, Stable–
streamlined and helical cavities following the impact of Leidenfrost spheres. J. Fluid Mech.
823, 716–754 (2017).

21. J. G. Leidenfrost, De Aquae Communis Nonnullis Qualitatibus Tractatus (Ovenius, 1756).
22. J. O. Marston, I. U. Vakarelski, S. T. Thoroddsen, Cavity formation by the impact of

Leidenfrost spheres. J. Fluid Mech. 699, 465–488 (2012).

23. D. Quéré, Leidenfrost dynamics. Annu. Rev. Fluid Mech. 45, 197–215 (2013).

24. C. Duez, C. Ybert, C. Clanet, L. Bocquet, Making a splash with water repellency. Nat. Phys.
3, 180–183 (2007).

25. I. U. Vakarelski, N. A. Patankar, J. O. Marston, D. Y. C. Chan, S. T. Thoroddsen, Stabilization
of Leidenfrost vapour layer by textured superhydrophobic surfaces. Nature 489,
274–277 (2012).

26. M. M. Mansoor, J. O. Marston, I. U. Vakarelski, S. T. Thoroddsen, Water entry without
surface seal: Extended cavity formation. J. Fluid Mech. 743, 295–326 (2014).
6 of 7

http://advances.sciencemag.org/cgi/content/full/3/9/e1701558/DC1
http://advances.sciencemag.org/cgi/content/full/3/9/e1701558/DC1


SC I ENCE ADVANCES | R E S EARCH ART I C L E
27. R. M. Davies, G. I. Taylor, The mechanics of large bubbles rising through extended liquids
and through liquids in tubes. Proc. R. Soc. A 200, 375–390 (1950).

28. Q. Sun, E. Klaseboer, B. C. Khoo, D. Y. C. Chan, A robust and non-singular formulation of the
boundary integral method for the potential problem. Eng. Anal. Bound. Elem. 43, 117–123 (2014).

29. E. Achenbach, Experiments on the flow past spheres at high Reynolds numbers. J. Fluid
Mech. 54, 565–575 (1972).

Acknowledgments
Funding: This work was supported by the King Abdullah University of Science and
Technology. D.Y.C.C. was supported by the Australian Research Council through Discovery
Project grant no. DP170100376. Author contributions: I.U.V. conceived the research and
designed the experiments. I.U.V., A.J., M.M.M., and A.A.A.-P. carried out the experiments.
S.T.T. supervised the project, developed the image processing, and discussed the theoretical
approach. E.K. and D.Y.C.C. undertook the theoretical interpretation and calculations.
Vakarelski et al., Sci. Adv. 2017;3 : e1701558 8 September 2017
D.Y.C.C. and I.U.V. wrote the manuscript with comments from all co-authors. Competing
interests: The authors declare that they have no competing interests. Data and materials
availability: All data needed to evaluate the conclusions in the paper are present in the paper
and/or the Supplementary Materials. Additional data related to this paper may be requested
from the authors.

Submitted 11 May 2017
Accepted 8 August 2017
Published 8 September 2017
10.1126/sciadv.1701558

Citation: I. U. Vakarelski, E. Klaseboer, A. Jetly, M. M. Mansoor, A. A. Aguirre-Pablo,
D. Y. C. Chan, S. T. Thoroddsen, Self-determined shapes and velocities of giant near-zero
drag gas cavities. Sci. Adv. 3, e1701558 (2017).
7 of 7


