
INTRODUCTION

Venous thromboembolism (VTE) refers to thrombosis with-
in the vein, commonly in the legs or pelvis (deep vein thrombo-
sis, DVT) and its complication, pulmonary embolism (PE), the 
condition of thrombi departing from their original generation 
site into a pulmonary artery (Hyers, 1999). It is the third lead-
ing cause of cardiovascular-related deaths, following acute 
coronary syndrome and stroke (Piazza and Goldhaber, 2010), 
with an annual incidence of 1 to 3 times per 1,000 people (Heit 
et al., 2016; Puurunen et al., 2016). Moreover, it often leads 
to long-term complications such as post-thrombotic syndrome 
and chronic thromboembolic pulmonary hypertension, which 
impose a significant burden on both patients and the health-
care systems (Ruppert et al., 2010; Bruni-Fitzgerald, 2015). 

Pathologic thrombosis or bleeding may occur whenever 
the hemostatic balance is disturbed due to various health 
conditions including surgery, trauma, malignancy, and con-
genital disorders (Previtali et al., 2011) and even following 
chronic cigarrete smoking (Park et al., 2016). In normal cir-
cumstances, hemostasis is maintained through the complex 

interactions between the vascular system (Kwon et al., 2016), 
coagulation system, fibrinolytic system (Lee et al., 2015) and 
platelets (Kim et al., 2016). Natural anticoagulants such as 
tissue factor pathway inhibitors (TFPI), protein C, protein S, 
and anti-thrombin (AT) also regulate the coagulation process. 
The fibrinolytic system plays a role by dissolving the fibrin clot 
during the healing process of an injured blood vessel (Weitz, 
1997; Chapin and Hajjar, 2015).

Anticoagulants can inhibit thrombosis by altering various 
pathways within the coagulation system or through targeting 
thrombin directly by attenuating its generation (Mega and Si-
mon, 2015). For many years, unfractionated heparins (UFHs) 
and vitamin K antagonists (VKAs) have been the main op-
tions for the prevention and treatment of VTE (Franchini et al., 
2016). The treatment changed little until low molecular weight 
heparins (LMWHs), fragments of UFHs, were introduced in the 
1980s, simplifying the management of thromboembolism by 
saving the trouble of frequent coagulation monitoring (Weitz, 
1997). In the 2000s, ultra-low molecular heparins (ULMWHs) 
were developed in an effort to improve the pharmacokinetic 
profile of conventional heparin formulations and to lower the 
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risk of heparin-induced thrombocytopenia (HIT) (Masuko and 
Linhardt, 2012). However, all forms of heparin require paren-
teral administration, which is cumbersome for long-term use 
(Fareed et al., 2008). Similarly, oral VKAs have several draw-
backs including a wide range of food and drug interactions, as 
well as the need for frequent monitoring and dose adjustment 

(Hirsh et al., 2007).
Over the past decades new oral anticoagulants (NOACs), 

which more directly and selectively target specific proteins in 
the coagulation cascade, have been developed, as shown in 
Fig. 1. They are conveniently administered in oral, fixed doses 
without routine monitoring and have fewer interactions than 

Fig. 1. Chemical structures of current anticoagulants.

Warfarin Dabigatran 

Rivaroxaban 

Heparin 

Apixaban Edoxaban 

Table 1. Traditional and novel anticoagulants in the market and development

Generic Name Mechanism of action Reversal agents Anticoagulation monitoring

Traditional drugs
   Warfarin Deplete coagulation factors II VII, IX, and X through  

inhibition of cyclic interconversion of vitamin K and its epoxide
Vitamin K INR

   UFH Indirectly inhibit thrombin (factor II), factor X, IX, XI, and XII via 
enhancing the activity of antithrombin

Protamine sulfate PT, aPTT

   LMWH Inhibit thrombin and factor X via enhancing the activity of  
antithrombin

Protamine sulfate Anti-Xa assay

   ULMWH Inhibit factor X via enhancing the activity of antithrombin - Anti-Xa assay
New drugs
   Dabigatran Inhibit free and fibrin-bound thrombin via direct binding Idarucizumab aPTT, ECT
   Rivaroxaban Inhibit free and fibrin-bound factor Xa via direct binding Andexanet alfa, PER977 Anti-Xa assay
   Apixaban Inhibit free and fibrin-bound factor Xa via direct binding Andexanet alfa, PER977 Anti-Xa assay
   Edoxaban Inhibit free and fibrin-bound factor Xa via direct binding Andexanet alfa, PER977 Anti-Xa assay
Drugs under development
   Tifacogin Inhibit tissue factor-factor VIIa complex - -
   TB-402 Inhibit factor VIII via direct binding - -
   Pegnivacogin Inhibit factor IX via direct binding - -
   Factor XI-ASO Inhibit factor XI via direct binding - -
   rHA-infestin-4 Inhibit factor XII - -
   Recomodulin Inhibit factor V and VIII via activating protein C through  

thrombin-thrombomodulin complex
- -

aPTT: activated partial thromboplastin time, ASO: antisense oligonucleotide, INR: international Normalized Ratio, ECT: ecarin clotting time, 
LMWH: low molecular weight heparin, PT: Prothrombin time, UFH: unfractionated heparin, ULMWH: ultra-low molecular weight heparin.
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VKAs with foods or drugs (Mekaj et al., 2015). But NOACs 
have their own limitations such as lack of reliable coagulation 
monitoring methods and selective antidotes (except dabiga-
tran), as shown in Table 1. This review summarizes the phar-
macologic characteristics of traditional and new anticoagu-
lants, as well as anticoagulants under development, focusing 
on their advantages and disadvantages.

TRADITIONAL ANTICOAGULANTS

Vitamin K antagonists
VKAs such as coumarin derivatives (e.g., warfarin, aceno-

coumarol, and phenprocoumon) exert their anticoagulant ef-
fects by interfering with the cyclic interconversion of vitamin K 
and its 2,3 epoxide (KO), therefore depleting the vitamin K hy-
droquinone (KH2; Wessler and Gitel, 1986). The coagulation 
factors II (thrombin), VII, IX, and X, as well as proteins C and 
S, require carboxylation, by converting glutamic acid to gam-
ma-carboxyglutamic acid, for their normal functions. The car-
boxylation procedure requires KH2 (Ageno et al., 2012). VKAs 
inhibit vitamin K epoxide reductase complex 1 (VKORC1), an 
enzyme that catalyzes the reduction of KO to vitamin K, which 
is then converted to KH2 and then oxidized back to KO, con-
comitantly with gamma-glutamyl carboxylation. The full antico-
agulation effect of warfarin is not achieved until the clearance 
of factor X and prothrombin that have half-lives of 36 and 50 
h, respectively (Loke et al., 2012). Because proteins C and S, 
with relatively short half-lives, initially exert their procoagulant 
effects, the combined use of VKAs with parenteral agents is 
required.

The anticoagulant response to warfarin is largely affected 
by diet, concurrent drugs, and genetic polymorphisms (Hirsh 
et al., 2003). The anticoagulant effect of warfarin can be coun-
teracted by vitamin K intake either through food or supple-
ments. A large amount of vitamin K causes warfarin resistance 
for up to a week because vitamin K accumulated in the liver 
can bypass VKORC (Lurie et al., 2010). The cytochrome P450 
enzyme (CYP2C9) is responsible for oxidative metabolism of 
the warfarin S-isomer, which is five times more potent than the 
R-isomer. Therefore, the dose-response of warfarin can be in-
fluenced by CYP2C9 inhibiting drugs that affect the metabolic 
clearance of warfarin, especially the S-isomers, such as phen-
ylbutazone, sulfinpyrazone, metronidazole, trimethoprim-sul-
famethoxazole, or amiodarone. It is also influenced by genetic 
polymorphisms in CYP2C9 and VKORC unit 1 genes (Fung et 
al., 2012). The individuals who carry CYP2C9*2 or CYP2C9*3 
tend to have higher levels of S-warfarin due to the impaired 
ability to metabolize it. Since CYP2C9 is also responsible for 
the metabolism of acenocoumarol, and less importantly for 
phenprocoumon, polymorphisms of CYP2C9 also affect the 
efficacy of acenocoumarol and phenprocoumon, although 
with a lesser extent than with warfarin (Verhoef et al., 2014). 
Genetic mutations or an altered expression of the VKORC1 
gene can also lead to variable responses, either hyper-sen-
sitivity or resistance to warfarin therapy. Acenocoumarol and 
phenprocoumon are also influenced by the VKORC1 geno-
type, especially in the first few months.

Hemorrhage is the most significant and frequent compli-
cation related to warfarin, with an annual incidence of major 
bleeding at a rate of 13 per 100 patients (Linkins et al., 2003). 
The risk of bleeding associated with warfarin is related not 

only to the degree of anticoagulation but also to patient-related 
factors and the concurrent use of antiplatelet agents or other 
drugs (Fitzmaurice et al., 2002). Bleeding complications can 
be managed by administering vitamin K, fresh frozen plasma 
(FFP), prothrombin complex concentrates (PCCs), or recom-
binant factor VIIa (Tran et al., 2013), which can antagonize the 
effects of warfarin therapy.

Heparins 
Heparins indirectly inhibit thrombin by enhancing the activ-

ity of antithrombin (AT), a proteinase inhibitor of coagulation 
enzymes such as thrombin and factors Xa of the common 
pathway, as well as IXa, XIa and XIIa of the intrinsic coagula-
tion pathway (Hirsh and Raschke, 2004). Following a confor-
mational change induced by heparin, AT irreversibly inhibits 
thrombin via binding its active site. For inactivation of throm-
bin, heparin must bind simultaneously to thrombin at exosite 
2 and AT, forming a ternary complex which requires at least 
18 saccharide units (Liaw et al., 2001). In contrast, heparin 
only binds to AT via high-affinity pentasaccharides, for the in-
hibition of factor Xa, without requiring a bridge between fac-
tor Xa and AT. Since most heparin molecules are at least 18 
units long, inhibitory activities of heparin against the thrombin 
and factor Xa are equivalent (Hirsh, 1991). However, the AT-
bound heparin weakly inhibits the thrombin, once formed as 
a ternary heparin-fibrin-thrombin complex, because it can no 
longer gain access to the exosite 2 already occupied. Further-
more, AT-bound heparin is unable to inhibit factor Xa bound to 
activated platelets (Teitel and Rosenberg, 1983).

Unfractionated heparins (UFH): Unfractionated heparin 
(UFH) is heterogeneous in terms of molecular size, anticoagu-
lant activity and pharmacokinetics (Garcia et al., 2012). The 
molecular weight of UFH ranges from 3,000 to 30,000 Da, with 
an average of 15,000 Da (approximately 45 saccharide units). 
Only 20-50% of UFH chains contain the high-affinity pentasac-
charide unit necessary for activating AT (Marmur, 2002). Hep-
arin molecules without a pentasaccharide unit have minimal 
activity at therapeutic concentrations. Low-affinity heparin can 
inhibit thrombin via heparin cofactor (Tollefsen et al., 1982) as 
well as factor Xa generation, through AT-independent mecha-
nisms (Garcia et al., 2012). 

Besides the multiple anticoagulant mechanisms, heparin 
involves multiple clearance mechanisms including both rap-
id, saturable and slow, non-saturable processes (Hirsh and 
Fuster, 1994). The rapid phase of heparin clearance occurs 
through binding to macrophages and endothelial cells at satu-
rable sites on the cell membrane and subsequent depolymer-
ization, whereas the slow clearance mechanism is through the 
kidneys. Because low doses of heparins initially undergo the 
saturable and dose-dependent clearance, the effect of heparin is 
not linear, although both intensity and duration of heparin activity 
may increase with escalating doses. As a result, the pharmaco-
kinetics and pharmacodynamics of UFH are unpredictable. 

Additionally, UFH has a number of limitations such as a 
short duration of action with a half-life of 60 min, poor bioavail-
ability after subcutaneous injection, and an immune-mediated 
reaction, a life-threatening adverse event (Krishnaswamy et 
al., 2010). Heparin complexes with an endogenous platelet 
factor 4 (PF4), which undergoes conformational changes and 
becomes immunogenic, leading to the generation of heparin-
PF4 antibodies (Kreimann et al., 2014). The heparin-PF4-IgG 
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immune complex then activates platelets and causes the re-
lease of microparticles, platelet consumption and peripheral 
thrombocytopenia, and also endothelial injury and activation 
(Rauova et al., 2006). Heparin’s affinity for PF4 depends on 
molecular weights and chain lengths (Amiral et al., 1995), thus 
accounting for the increased incidence of thrombocytopenia 
by UFH when compared with LMWH. 

The effect of UFH can be reversed by intravenously ad-
ministering protamine sulfate that binds to heparin and forms 
a stable salt (Greinacher et al., 2015). This can be advanta-
geous in situations of cardiac surgery or treating critically ill 
patients who may require rapid reversal of the anticoagulation 
effect. 

Low molecular weight heparins (LMWH): LMWH is a 
mixture of polymers with molecular weights that vary from 
1,000 to 10,000 Da, with a mean molecular weight between 
4,000 and 5,000 Da, approximately one third the size of UFH 
(Hirsh, 1998). Since LMWHs are prepared by various chemi-
cal or physical depolymerizations of heparin, each LMWH 
has unique characteristics in terms of molecular weight, poly-
saccharide chain length distributions, and pharmacological 
properties that may influence pharmacokinetic properties and 
anticoagulant activity profiles (Merli and Groce, 2010). Since 
50 to 75% of LMWH species have a length of less than 18 
saccharides, which will inhibit only factor Xa, the selectivity 
ratio of activity against factor Xa to thrombin varies between 
4:1 and 2:1, depending on their preparations (Holmer et al., 
1986). Because LMWH mostly undergoes renal elimination, 
its biologic half-life may be prolonged in cases of renal insuffi-
ciency, especially for those with lower molecular weights such 
as enoxaparin or nadroparin (Schmid et al., 2009). 

In addition to the convenience of subcutaneous adminis-
tration and almost 100% subcutaneous bioavailability, LMWH 
has several advantages over UFH in terms of pharmacologi-
cal characteristics (Hirsh and Raschke, 2004). The low protein 
binding of LMWH makes anticoagulant effects more predict-
able, which allows for a fixed or body weight-based dose regi-
men without the need for frequent monitoring (Hirsh and Ra-
schke, 2004). Low nonspecific binding to macrophages and 
endothelial cells increases the plasma half-life of LMWH. In 
addition, the lower binding to platelets, PF4 and osteoclasts 
may reduce the risk of HIT and osteoporosis. 

Unlike UFH’s complete neutralization activity of anti-factor 
Xa, protamine sulfate reverses only about 60% of the anti-
factor Xa activity of LMWH (Wolzt et al., 1995). This may be 
due to the fact that protamine favors the regions of larger hep-
arin chains, and an effective antidote for the residual smaller 
chains in LMWHs is not available (Schroeder et al., 2011). 
Furthermore, the subcutaneous administration of heparins is 
more difficult to completely reverse. 

Ultra-low molecular weight heparins (ULMWHs): Ultra-
low molecular weight heparins (ULMWHs), also known as an 
indirect factor Xa inhibitors, are synthetic analogues of the 
pentasaccharide contained within heparins, with an average 
molecular weight of less than 3,000 Da (Walenga and Lyman, 
2013). These small, homogeneous drugs have been devel-
oped on the basis that higher selectivity in the activity against 
factor Xa or thrombin would produce similar or better efficacy 
than LMWHs, but have a lower risk of bleeding and HIT. ULM-
WHs also exhibit anticoagulant efficacy through the selective 

inhibition of factor Xa via the unique pentasaccharide unit 
(Hirsh, 1998). 

ULMWHs only exhibit the anti-factor Xa effect when bind-
ing to AT and are devoid of other functional components of 
heparins such as the release of TFPI from the vascular en-
dothelium, the formation of complexes with PF4, and profibri-
nolytic actions. It is likely that the heparin chains must be of 
a sufficient length to form a complex with PF4 for binding to 
antibodies, which is a pathological mechanism of HIT (Rauova 
et al., 2005). Besides anticoagulant activity which is weaker 
than that of UFH or LMWHs, ULMWHs show anti-angiogenic, 
anti-metastatic and anti-inflammatory activities (Gandhi and 
Mancera, 2010). 

The hepatic clearance of heparin is believed to involve the 
stabilin-2-receptor that requires heparin chains longer than 
decasaccharides for binding (Pempe et al., 2012). Therefore, 
unlike UFH, ULMWHs never reach the size needed for hepatic 
clearance and therefore depend heavily on renal clearance 
(Rupprecht and Blank, 2010).

ULMWHs offer several advantages over conventional hep-
arins such as a higher bioavailability, rapid onset of action with 
longer biological half-lives, and a lower risk of bleeding, as 
well as osteoporosis. Because of the absence of binding to 
other plasma proteins, ULMWHs have predictable pharmaco-
kinetics with almost 100% bioavailability. However, no antidote 
is available for bleeding associated with ULMWHs, whereas 
protamine sulfate can neutralize UFH completely and LMWHs 
partially. Unlike the impermeability of LMWHs or UFHs through 
the placental or blood-brain barrier, ULMWHs are able to par-
tially pass the blood-brain barrier (Hoppensteadt et al., 2003).

NEW ANTICOAGULANTS

The newer anticoagulants offer superior therapeutic control 
over coagulations with minimal bleeding complications. They 
directly target either thrombin or factor Xa in the coagulation 
cascade, which is pharmacologically distinct from traditional 
anticoagulant agents (Fig. 2). Since the amount of activated 
coagulation factors is amplified at each level of the coagula-
tion cascade, direct inhibition of the final products from both 
the intrinsic and extrinsic coagulation pathways (factor Xa and 
thrombin) can provide more effective anticoagulation. 

Direct thrombin inhibitors
Thrombin is an end product in the coagulation cascade, 

which converts soluble fibrinogen to insoluble fibrin. It ampli-
fies coagulation by activating factors V and VIII on the surface 
of platelets and platelet-bound factor XI, stimulating platelets 
and generating more thrombin. By activating XIII, it also ac-
celerates the formation of cross-linked fibrins and clot stabi-
lization. In addition to its procoagulant role, thrombin plays a 
role in growth factor synthesis, cell proliferation, prostaglan-
din I2 synthesis, and chemotaxis of polymorphonuclear cells 
(Coughlin, 1994). Therefore, inhibition of thrombin may pro-
vide benefits in addition to anticoagulation (Bea et al., 2006).

The antithrombotic action of heparin occurs through binding 
to both AT and thrombin’s exosite 2, a heparin-binding domain, 
simultaneously. Heparin also can act as a bridge between fi-
brin and thrombin, enhancing thrombin’s affinity for fibrin and 
increasing the amount of fibrin-bound thrombin. Because the 
fibrin-heparin-thrombin complex, therefore, occupies not only 
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exosite 2 but also exosite 1 (fibrin-binding site), fibrin-bound 
thrombin is protected from inhibition by the heparin-AT com-
plex and remains active, resulting in further thrombus genera-
tion (Weitz et al., 1990). As such, heparin is relatively ineffec-
tive at inhibiting thrombin propagation (Di Nisio et al., 2005).

Unlike heparins, direct thrombin inhibitors (DTIs) act without 
a preceding interaction with AT and directly suppress throm-
bin, as well as its interaction with its substrates (Di Nisio et al., 
2005). DTIs block the action of thrombin by binding to the cat-
alytic site (univalent) or to both the catalytic site and exosite 1 
(bivalent) (Bates and Weitz, 2000). Therefore, DTIs can inhibit 
both free and fibrin-bound thrombin. In addition, there are oth-
er advantages such as more predictable anticoagulant effects 
due to the absence of interaction with plasma proteins, not 
being neutralized by PF4, the inhibition of thrombin-induced 
platelet aggregation and absence of immune-mediated throm-
bocytopenia (Lee and Ansell, 2011). 

Bivalent DTIs include recombinant hirudins (e.g., lepirudin 
and desirudin) and a synthetic hirudin, bivalirudin (Di Nisio 
et al., 2005). Bivalent DTIs form an irreversible complex with 
thrombin, but bivalirudin, which is slowly cleaved by thrombin 
once bound, restores the catalytic function of thrombin (Lee 
and Ansell, 2011). As a result, thrombin inhibition using bivali-
rudin is temporary, which may contribute to its low bleeding 
risk compared with recombinant hirudins (Nawarskas and An-
derson, 2001). Bivalirudin is mainly cleared by proteolysis and 
hepatic metabolism, whereas recombinant hirudins predomi-
nantly undergo renal excretion. 

Univalent DTIs, such as argatroban, ximelagatran, and 
dabigatran exteilate, non-covalently and reversibly bind to 
thrombin, leaving a small fraction of free thrombin (Di Nisio 
et al., 2005). Reversible and selective binding to thrombin ac-
companies a minimal risk of bleeding and rapid restoration of 

hemostasis to baseline upon discontinuation. Like recombi-
nant hirudins, argatroban is a parenteral DTI but is metabo-
lized by the liver (Koster et al., 2007). 

Ximelagatran, a prodrug of melagatran, is the first oral DTI, 
which represents a new era of anticoagulation for the preven-
tion and treatment of VTE. Although it was withdrawn from 
the market due to a risk of significant hepatotoxicity, ximela-
gatran demonstrated improved antithrombotic efficacy when 
compared with traditional anticoagulation therapies (Evans et 
al., 2004). A few years later, dabigatran etexilate, the second 
oral DTI, was developed with some improvements such as no 
risk of hepatotoxicity and low potential for food or drug interac-
tions. Following oral absorption, dabigatran etexilate is rapidly 
converted into its active form, dabigatran, by nonspecific se-
rum esterase without the involvement of cytochrome P450 en-
zymes or other oxidoreductases. Therefore, dabigatran etexi-
late has a low potential for interacting with drugs (Stangier and 
Clemens, 2009). Approximately 80% of circulating dabigatran 
is excreted unchanged via the kidneys and the remainder is 
conjugated with glucuronic acid. The conjugated dabigatran, 
which exhibits similar properties to the unconjugated form, is 
predominantly excreted via the bile. 

Currently, none of the DTIs, except dabigatran, have direct 
reversal agents available for use. Recombinant factor VIIa, 
activated prothrombin complex concentrate (aPCC), activated 
charcoal, desmopressin and von Wilebrand factor concentrate 
have been tried in various studies (Majeed and Schulman, 
2013; Baumann Kreuziger et al., 2014). Dabigatran effects 
can be reversed within minutes of intravenous administration 
of idarucizumab, a humanized monoclonal antibody, which 
binds tightly and prevents dabigatran from binding to thrombin 
(Sie, 2016). 
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Fig. 2. Targets of various anticoagulants in the coagulation pathways. VKA: vitamin K antagonists, UFH: unfractionated heparin, LMWH: 
low molecular weight heparin, ULMWH: ultra-low molecular weight heparin, NAP: nematode anticoagulant protein, ASO: antisense oligo-
nucleotide, DrotAA: drotecogin alpha (activated), *catalyzed by thrombin.
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Direct factor Xa inhibitors
Factor Xa is a primary site of amplification for coagulation 

factors, generating about 1,000 thrombin molecules from a 
single Xa molecule (Mann et al., 2003). Factor Xa binds to 
negatively charged phospholipid surfaces, which are exposed 
on activated platelets, together with factor Va to form the pro-
thrombinase complex, the activator that converts prothrombin 
into thrombin. The conversion of fibrinogen to fibrin, the basic 
building block of all blood clots, is then catalyzed by thrombin. 
The rate of prothrombin activation by factor Xa in a prothrom-
binase complex is dramatically increased, thereby rapidly fa-
cilitating thrombin generation and plug formation at sites of 
injury. Whereas heparin inhibits factor Xa and thrombin to a 
similar degree, LMWHs have a relatively greater inhibitory ef-
fect against factor Xa, which has drawn attention as a poten-
tial anticoagulant target (Garcia et al., 2012). The interest of 
factor Xa as a drug target was further solidified by positive 
results from the use of fondapariunux, a parenteral indirect 
factor Xa inhibitor (Yeh et al., 2012). 

Unlike indirect factor Xa inhibitors which are dependent on 
AT, direct factor Xa inhibitors interact directly and selectively 
with factor Xa and inhibit both free and bound forms of fac-
tor Xa without affecting platelet aggregation (Rupprecht and 
Blank, 2010). They are also associated with reduced inci-
dence of rebound thrombosis compared to direct and indirect 
thrombin inhibitors (Perzborn et al., 2011). Because direct fac-
tor Xa inhibitors have good bioavailability with rapid onset of 
action, there is no need for bridging therapy with a parenteral 
agent (Cabral and Ansell, 2015). In general, they exhibit linear 
pharmacokinetics and display predictable anticoagulation ef-
fects following oral administration. All three agents, rivaroxa-
ban, apixaban, and edoxaban, are excreted through the kid-
neys to varying degrees and have elimination half-lives much 
shorter than the VKAs. Rivaroxaban has a dual mechanism of 
excretion, with two-thirds of the administered dose excreted 
through the urine as either unchanged or inactive metabolites 
and one-third of the dose excreted through feces (Perzborn 
et al., 2011). Only 25% of an apixaban dose is eliminated by 
the kidneys with the remainder excreted via the fecal route 
(Eriksson et al., 2009). Edoxaban undergoes multiple elimina-
tion pathways with 35% excreted in the urine. Over 70% of 
the dose is excreted unchanged (Bounameaux and Camm, 
2014). 

The substantial benefits of oral factor Xa inhibitors are un-
fortunately accompanied by a high incidence of major and 
clinically relevant bleeding including gastrointestinal bleed-
ing (Connolly and Spyropoulos, 2013). Moreover, all three 
factor Xa inhibitors are CYP3A4 and P-glycoprotein (P-gp) 
substrates that carry potential drug interaction issues. The 
CYP3A4 and/or P-gp inhibitors, as well as inducers, might im-
pact the concentration of oral factor Xa inhibitors, leading to 
increased risk of bleeding or thrombosis (Short and Connors, 
2014). 

Potential antidotes for reversing anticoagulation caused by 
factor Xa inhibitors are currently under development (Ahmed 
et al., 2016). Andexanet alfa is a recombinant, modified factor 
Xa protein with a mutation on the catalytic site that abolishes 
the procoagulant property, which binds to direct and indirect 
factor Xa inhibitors in the blood (Connors, 2015). PER977 
(e.g., arapazine and ciraparantag) binds to factor Xa inhibi-
tors, as well as direct and indirect thrombin inhibitors, through 
noncovalent bonds and electrical charge interactions (Das 

and Liu, 2015). 

ANTICOAGULANTS UNDER DEVELOPMENT

Both thrombin and factor Xa inhibitors have been exten-
sively evaluated in several large clinical trials for the preven-
tion and treatment of thromboembolic disorders. Despite their 
excellent efficacy compared to traditional agents, these drugs 
have their own drawbacks. Bleeding is still a major issue, with 
no reliable diagnostic test available to safely monitor the ther-
apeutic dosage, as well as a lack of effective reversal agents 
(Hyers, 1999; Miller et al., 2012; Hu et al., 2016). 

A variety of anticoagulant strategies, targeting other steps 
in coagulation, are in development to attempt to overcome 
the limitations of currently used agents. Drugs that target the 
tissue factor (TF)-factor VIIa complex inhibit the initiation of 
coagulation. Propagation of coagulation can be inhibited by 
drugs that target factors IXa or Xa or by agents that inactivate 
their respective cofactors, factors VIIIa and Va.

Tissue factor pathway inhibitors
Following vascular injury, TF, also known as thromboplas-

tin, is exposed to the blood and binds to factor VIIa, which 
sets off the extrinsic coagulation pathway (Wood et al., 2014). 
The TF-factor VIIa complex activates factors X and IX. Addi-
tionally, activated factor IX forms a complex with factor VIIIa, 
which also activates factor X. Factor Xa then binds to factor 
Va to form prothrombinase, an enzymatic complex which rap-
idly converts prothrombin to thrombin. The TF activity and the 
extrinsic pathway are regulated by the tissue factor pathway 
inhibitor (TFPI). It inhibits factor Xa directly and the TF-factor 
VIIa complex in an Xa-dependent fashion. The factor Xa-de-
pendent inhibition of the TF-factor VIIa complex generates an 
inactive quaternary complex in the plasma membrane. 

Inhibition of TF-factor VIIa complex by recombinant TFPI 
was examined in various models of disseminated intravas-
cular coagulation such as sepsis. Tifacogin, a recombinant 
TFPI expressed in Saccharomyces cerevisae, inhibits factor 
VIIa in a factor Xa-dependent fashion (Matyal et al., 2005). 
The drug requires intravenous infusion since the drug has a 
short plasma half-life and easily eliminated by the liver. The 
benefits of tifacogin administration in sepsis, pneumonia, and 
bacteremia have been investigated without promising results 
(Abraham et al., 2003; Hardy et al., 2006; Laterre et al., 2009). 
The synthetic nematode anticoagulant protein (NAPc2), which 
was originally isolated from the canine hookworm Ancylos-
toma canimum, binds to a non-catalytic site on factor Xa to 
form a NAPc2-factor-Xa complex and inhibits factor VIIa from 
binding to TF (Vlasuk and Rote, 2002). Because of its high af-
finity binding, NAPc2 has a half-life of about 50 h after subcu-
taneous administration. Factor VIIa with its active site blocked 
competes with factor VIIa for TF binding sites, thereby attenu-
ating the initiation of coagulation by the TF-factor VIIa complex 
(Dickinson and Ruf, 1997)

Factor VIII inhibitors
Factor VIII (i.e., anti-hemophilic factor) acts as a cofactor for 

factor IXa, which activates factor X, thereby, forming an am-
plification loop (Lenting et al., 1998). Partial inhibition of factor 
VIII appears to be essential to reduce the risk of bleeding be-
cause complete inhibition will induce pathological hemophilia. 
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TB-402 is a recombinant human monoclonal antibody that 
binds with a high affinity to factor VIII, partially inhibiting the 
action of factor VIII (Verhamme et al., 2010). It is under phase 
2 clinical trials and the exact target of factor VIII inhibition and 
the degree of inhibition need to be established in further re-
search. 

Factor IXa inhibitors
The TF-factor VIIa complex activates factor IX, which is 

relatively stable and diffuses toward activated platelets (How-
ard et al., 2007). The activated platelets then bind the factor 
VIIa-IXa complex and recruit factor X for its activation. The ac-
tivation of factor X by the factor VIIa-IXa complex is nearly 50 
times more efficient than the TF-factor VIIa complex (Butenas 
et al., 2002). Therefore, factor IXa represents a prime target 
for anticoagulation. Defects in factor IXa lead to hemophilia B, 
while increased concentrations of factor IXa in the blood result 
in a significantly increased risk of thrombosis formation. 

Factor IXa inhibitors including factor IX-directed monoclonal 
antibodies, factor IXa-directed RNA aptamers (e.g., pegniva-
cogin), and oral factor IXa inhibitors (e.g., TTP889) have been 
investigated in humans. SB249417, a chimeric monoclonal 
antibody directed against the factor IXa, completed a phase 
I clinical trial, showing a dose-dependent effect on clotting 
times after continuous infusion (Chow et al., 2002). The REG1 
system consisted of pegnivacogin (RB006) and anivamersen 
(RB007), its complementary control agent being an aptamer-
base factor IXa inhibitor that is being investigated for acute 
coronary syndrome (Vavalle and Cohen, 2012). Aptamers are 
small oligonucleotides with high affinity that are used as ac-
tive drugs. Partial inhibition using TTP889 was not an effective 
strategy for VTE prophylaxis and TTP889 is currently being 
investigated for advanced heart failure to determine the poten-
tial benefit of attenuated thrombin generation (Roser-Jones et 
al., 2011). Natural factor IX binding proteins and factor IXai are 
under pre-clinical trials. 

Factor XI inhibitors
A study showed that factor XI deficiency was associated 

with a less severe bleeding tendency and a lower incidence 
of venous thrombosis and stroke, compared to deficiencies 
of factors VIII or IX, which suggests factor XI is a safe target 
for anticoagulation. Factor XI inhibition has been extensive-
ly studied in both arterial and venous thrombosis in diverse 
animal models. Antibodies and antisense oligonucleotides 
(FXI-ASO) against factor XI both showed protective effects 
in thrombosis without an increased risk of bleeding (Büller et 
al., 2015). The anti-human factor XI monoclonal antibody was 
used to prevent vascular graft occlusion in a primate throm-
bosis model. Similar studies are currently being conducted to 
ensure the safety of factor XI inhibitors in humans.

Factor XII inhibitors
Available data on factor XII was limited but factor XII knock-

out mice were observed to have protection against pathologic 
thrombosis while having no hemostasis changes. The selec-
tive factor XIIa inhibitor, recombinant human albumin fused 
to the factor XIIa inhibitor infestin-4 (rHA-infestin-4), was 
developed (Hagedorn et al., 2010). Inhibition of factor XII is 
apparently a safe and efficient way of thrombosis prevention, 
at least in animals. Factor XII antisense, Pro-Phe-Arg-chloro-
methylketone, Ir-CPI, and several non-specific protein inhibi-

tors are under pre-clinical trials.

Factor Va inhibitors 
Factor V acts as a cofactor of factor Xa and forms a pro-

thrombinase complex, together with platelet membrane phos-
pholipids. Factor Va inhibitors include drotecogin alpha (ac-
tivated; DrotAA) and Recomodulin (ART-123), which were 
initially developed for sepsis-induced thrombosis treatment. 
DrotAA is a recombinant form of activated protein C with an-
tithrombotic, anti-inflammatory and pro-fibrinolytic properties 
(Dellinger, 2003). It showed some beneficial effects for coagu-
lation abnormalities associated with severe sepsis but failed to 
show improvement of patients with severe sepsis. As of 2011, 
DrotAA was withdrawn from the market. 

Recomodulin, a recombinant human thrombomodulin al
pha, has shown to be efficacious for VTE prophylaxis fol-
lowing total hip replacement surgery and sepsis-associated 
disseminated intravascular coagulation (DIC) (Kearon et al., 
2005; Vincent et al., 2013). Thrombomodulin is a thrombin 
receptor and the thrombin-thrombomodulin complex activates 
protein C to form activated protein C, which inactivates factors 
Va and VIIIa (Esmon, 2005). It has a long plasma half-life after 
a subcutaneous injection of two to three days, such that it can 
be given once every five to six days to maintain anticoagulant 
activity. 

Polyphosphate inhibitors
Polyphosphate is a polymer of inorganic phosphate resi-

dues and is secreted by activated platelets and mast cells. It 
may initiate and/or accelerate coagulation, acting at several 
points in the coagulation cascade (Ruiz et al., 2004). It accel-
erates the activation of factor V, as well as factor XI by throm-
bin, and enhances fibrin clot structure increasing its resistance 
to fibrinolysis (Smith and Morrissey, 2008; Smith et al., 2012). 
A variety of compounds that inhibit polyphosphate and reduce 
thrombosis are under investigation in animal disease models. 
Universal heparin reversal agent (UHRA) compounds were 
studied in mouse models of thrombosis and hemostasis to 
ensure reduced toxicity and bleeding risk, compared to the 
toxic substances such as polyethylenimine, polyamidoamine 
dendrimers, and polymyxin B (Travers et al., 2014).

CONCLUSIONS

The prevention and treatment of VTE is evolving. The new 
target-specific oral anticoagulants such as oral DTIs and direct 
factor Xa inhibitors have shifted a paradigm from hospitals to 
outpatient settings exempting drug monitoring. Current oral 
anticoagulants available offer predictable, reversible antico-
agulant effects with no need for invasive monitoring. However, 
the major complication of these drugs, bleeding, especially 
gastrointestinal bleeding, continues to persist, and an optimal 
management strategy needs to be provided. To date, different 
categories of anticoagulants are currently under development 
with unique profiles, along with benefits and potential draw-
backs. In the future, the search for safer and more effective 
oral anticoagulants that have an antidote for rapid reversal will 
continue.
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