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Abstract

Visceral motility dysfunction is a key feature of genetic disorders such as megacystis-microcolon-

intestinal hypoperistalsis syndrome (MMIHS, MIM moved from 249210 to 155310), chronic 

intestinal pseudo-obstruction (CIPO, MIM609629), and multisystemic smooth muscle dysfunction 

syndrome (MSMDS, MIM613834). The genetic bases of these conditions recently begun to be 

clarified with the identification of pathogenic variants in ACTG2, ACTA2, and MYH11 in 

individuals with visceral motility dysfunction. The MMIHS was associated with the heterozygous 

variant in ACTG2 and homozygous variant in MYH11, while the heterozygous variant in ACTA2 
was observed in patients with MSMDS. In this study, we describe the clinical data as well as the 

molecular investigation of seven individuals with visceral myopathy phenotypes. Five patients 

presented with MMIHS, including two siblings from consanguineous parents, one had CIPO, and 

the other had MSMDS. In three individuals with MMIHS and in one with CIPO we identified 

heterozygous variant in ACTG2, one being a novel variant (c.584C>T—p.Thr195Ile). In the 

individual with MSMDS we identified a heterozygous variant in ACTA2. We performed the 

whole-exome sequencing in one sibling with MMIHS and her parents; however, the pathogenic 

variant responsible for her phenotype could not be identified. These results reinforce the clinical 

and genetic heterogeneity of the visceral myopathies. Although many cases of MMIHS are 
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associated with ACTG2 variants, we suggest that other genes, besides MYH11, could cause the 

MMIHS with autosomal recessive pattern.
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Introduction

Visceral motility dysfunction is characterized by symptoms related to dysmotility of 

gastrointestinal and urinary tract, a key feature of genetic disorders such as megacystis-

microcolon-intestinal hypoperistalsis syndrome (MMIHS, MIM moved from 249210 to 

MIM155310); chronic intestinal pseudo-obstruction (CIPO, MIM15531); and multisystemic 

smooth muscle dysfunction syndrome (MSMDS, MIM613834). There is a significant 

overlap among these phenotypes and the recent advances regarding the genetic bases of 

these conditions contributed to improve the knowledge.

MMIHS is a severe condition characterized by functional obstruction in the urinary and 

gastrointestinal tract resulting in marked dilatation of the bladder, underdevelopment of the 

colon, and decreased or absent intestinal peristalsis [Gosemann and Puri, 2011]. More than 

200 described cases are sporadic, and the recent identification of de novo heterozygous 

variant in ACTG2 confirmed the autosomal dominant (AD) pattern in many, but not in all 

[Thorson et al., 2014; Wangler et al., 2014]. The occurrence of MMIHS in the offspring of 

consanguineous parents and/or recurrence in siblings with asymptomatic parents lent 

support to the hypothesis of autosomal recessive (AR) inheritance [Mc Laughlin and Puri, 

2013]. In addition, more recently the AR pattern was demonstrated by Gauthier et al. [2014], 

who reported a homozygous loss-of-function variant in MYH11 in an individual with 

MMIHS born to consanguineous parents.

ACTG2 is associated with a less severe phenotype of visceral myopathy named chronic 

intestinal pseudo-obstruction (CIPO) in familial cases with AD inheritance [Lehtonen et al., 

2012; Holla et al., 2014; Klar et al., 2015]. Currently, MMIHS and CIPO are understood as 

part of a phenotypic spectrum related to pathogenic variants in ACTG2 [Wangler et al., 

2014]. The MSMDS is a severe condition with significant overlap with MMIHS, but with 

congenital mydriasis and vascular abnormalities. This phenotype has been associated with 

de novo heterozygous variant in the codon 179 in ACTA2 [Milewicz et al., 2010].

Here, we report the clinical and molecular investigation of seven individuals with visceral 

smooth muscle diseases showing pathogenic variants in ACTG2 (four individuals) and 

ACTA2 (one individual) in sporadic cases, and two siblings with MMIHS without 

pathogenic variant identified. In addition, we present the state of the art of molecular bases 

of visceral myopathy based on a review of the related disorders.
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Materials and Methods

The present study was approved by National Committee of Ethics in Research (CONEP). 

For all the participants and families the informed consent was duly obtained.

Patients

Seven individuals with visceral myopathy were included: Five individuals presenting typical 

findings of MMIHS (patients 1, 2, 3, 4, and 5), a sixth individual with CIPO phenotype 

(patient 6), and one with clinical features suggestive of MSMDS (patient 7)— Table I. The 

parents were included in the study when their DNA was available. Clinical data, including 

family history, and clinical follow up, were obtained from all patients.

Molecular Study

The investigation strategy was defined based on the phenotype. The sporadic cases of 

MMIHS and CIPO were studied by Sanger sequencing of ACTG2. The molecular 

investigation of the family with two affected siblings with MMIHS was performed only in 

one patient (patient 2), because DNA from her brother was not available. When the study 

was designed, ACTG2 was the only gene associated with MMIHS. Despite the presence of 

parental consanguinity and recurrence in siblings suggesting an AR inheritance in this 

family, we initially tested for dominant loci based on the hypothesis of parental gonadal 

mosaicism. Due to overlap between the MMIHS and MSMDS phenotype, we also 

performed Sanger sequencing of ACTA2 in patient 2; however, since the sequencing was 

negative for both genes, the whole-exome sequencing (WES) was performed for the trio 

(patient 2 and her parents).

In the patient with signs of MSMDS, ACTG2, and ACTA2 were sequenced by the Sanger 

method. At first, we tested ACTG2 because there was no information about vascular 

abnormality in the patient at that time. This data were provided during the follow up.

The molecular tests were performed on DNA extracted from lymphocytes (patients 2, 3, 4, 

5, and 7, parents of patients 1, 2, 3, 4, and 5, and mother of patient 7); and from saliva 

(patient 6 and her mother). DNA sample from patient 1, and the fathers of patients 6 and 7 

were unavailable.

For the ACTG2 and ACTA2 Sanger sequencing, the primers were designed to encompass all 

coding exons and their flanking regions. The gene nucleotide numbering of ACTG2 and 

ACTA2 is according to the sequence NM_001615 and NM_001613, respectively. The 

primers and the details about Sanger sequencing of ACTG2 and ACTA2 are described in the 

supplementary material (SM1). For the WES, the Agilent SureSelect Human All Exon V4–

51Mb kit (Agilent Technologies, Santa Clara, CA) was used to capture the target regions. 

The WES (paired end 100 bp reads) was performed using the Illumina HiSeq2500 platform 

(Illumina, Inc. San Diego, CA). The phenoDB analysis tool was applied to filter and 

prioritize rare functional variants (missense, nonsense, splice site variants, and indels) 

[Sobreira et al., 2015]. The detailed information regarding the WES is described in the 

supplementary material (SM2). For the novel variants, the pathogenicity was tested in 

different ways: (i) in silico analysis by PolyPhen-2, Mutation Taster, MutPred, Panther, 
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SNAP, Phd-SNP, and SNPs&GO (web sources); (ii) research in different databases: dbSNP, 

1000 Genomes project data, and Exome Variant Server (web sources); (iii) sequencing of the 

parental samples whenever possible and 100 alleles from control individuals. We used the 

HOPE program to analyze the structural and functional effects of novel variants [Venselaar 

et al., 2010].

Review of the Literature

Due to similarities between the MMIHS and MSMDS, and the recent advances in 

understanding their genetic bases, we reviewed both phenotypes in order to better 

characterize these diseases, in an attempt to verify a possible genotype–phenotype 

correlation. We performed the literature review through the PubMed site using the following 

key words: “megacystis microcolon intestinal hypoperistalsis,” “multisystemic smooth 

muscle dysfunction,” “ACTG2,” “ACTA2,” and “MYH11.” Only the articles reporting 

patients with molecular diagnosis were included. For the cases reported more than once we 

included the first description.

Results

Clinical Description

The clinical data and molecular results of the individuals are summarized in Table I. In 

addition, more detailed clinical information from each patient is presented below according 

to the respective phenotypes. In all cases reported here, the parents were asymptomatic.

Megacystis-Microcolon-Intestinal Hypoperistalsis Syndrome (MMIHS)

Patients 1 and 2 (family 1)—A male and a female infant, respectively, were born from 

consanguineous parents (F = 0.0625) and both manifested the first symptoms during the 

prenatal period. Hydronephrosis and megacystis were identified in both by the 13 and 20th 

week, respectively. While severe oligohydramnios was observed at19 weeks in patient 1, 

polyhydramnios was detected after 25th week in patient 2. Patient 1 was unsuccessfully 

treated with a vesicoamniotic shunt. After his birth, symptoms of gastrointestinal 

hypoperistalsis (bilious emesis, enteral feeding intolerance, and absent meconium 

elimination), and microcolon were observed suggesting MMIHS. He died due to renal 

failure at the end of the 1st month. The presence of mydriasis was not evaluated. The 

diagnosis of MMIHS in patient 2 was considered during the pregnancy because of 

megacystis plus the previously affected brother. After birth, severe gastrointestinal 

hypoperistalsis and microcolon were confirmed. In addition, she presented with congenital 

mild mydriasis with pupils slightly reactive to the light reflex. She was followed by us up to 

6 months, when she transferred to another country in order to try the multivisceral 

transplantation, which finally occurred when she was 16 months old. However, she died due 

to an infection 4 months after the transplantation.

Patient 3 (family 2)—A male infant and the first child of young parents. The megacystis 

was identified at the 21st week of pregnancy. Hyperechogenic kidneys, hydroureter, club 

feet, and oligohydramnios were seen on the subsequent prenatal ultrasound examination. 

After birth, the patient developed symptoms of gastrointestinal hypomotility such as enteral 
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feeding intolerance, abdominal distention, and absence of meconium elimination. 

Microcolon was detected and MMIHS was diagnosed. There was no evidence of mydriasis. 

Despite the supportive therapy he died at 7 months.

Patient 4 (family 3)—A female infant and the second child of young parents. Megacystis 

and polyhydramnios were detected by prenatal ultrasound at the 30th week of pregnancy. 

After birth, she presented with mild gastrointestinal hypomotility symptoms and tolerated 

oral feeding during 4 months. After this period, she developed progressive symptoms of 

intestinal dysmotility that included enteral feeding intolerance and chronic constipation 

without evidence of mechanical obstruction. She required parental nutrition and despite the 

supportive therapy, she died at 11 months due to sepsis. There was no evidence of mydriasis.

Patient 5 (family 4)—A male infant and the second child of young parents. Megacystis 

was identified by prenatal ultrasound at the 35th week. The amniotic fluid volume was 

normal. After birth, intestinal hypomotility symptoms such as vomiting, constipation, and 

abdominal distention and microlon were identified, supporting the diagnosis of MMIHS. 

There was no evidence of mydriasis. He did not tolerate oral feeding and is total parental 

nutrition– nutrition (TPN)-dependent since the first days of his life. Due to meningitis, the 

patient developed secondary hydrocephalus.

Patients 1, 2, and 3 presented with signs of prune-belly at birth. All patients were parental 

nutrition-dependent, but the patient 4 tolerated oral feeding for a short period.

Chronic Intestinal Pseudo-Obstruction (CIPO)

Patient 6 (family 5): A female child with two asymptomatic older brothers. Although her 

mother reported that bladder dilatation was observed during a prenatal ultrasound 

examination in the 3rd trimester, at birth there was no evidence of megacystis or visceral 

motility dysfunction. The symptoms of CIPO, such as recurrent episodes of vomiting, 

constipation, and abdominal distention, began when she was 2 years old. These acute 

symptoms occurred during a varicella zoster infection and were associated with urinary 

retention, and transitory megacystis during some episodes. The urinary symptoms 

spontaneously resolved after the improvement of the gastrointestinal complaints. Besides 

episodic megacystis, no other abnormality was identified in the urinary system. During the 

acute episodes of intestinal pseudo-obstruction, the treatment was conservative wherever 

possible and consisted of oral fasting, tube for gastrointestinal decompression, and 

parenteral nutrition with gradual transition to enteral feeding according to her clinical 

recovery. So far, her nutrition is totally enteral. Therapeutic surgical procedures (Table I) 

were performed only when conservative measures were inefficient. Only the mother was 

available for molecular study.

Multisystemic Smooth Muscle Dysfunction Syndrome (MSMDS)

Patient 7 (family 6)—She is the first child of young parents. During the pregnancy, 

megacystis, hydroureter, and hydronephrosis were identified by the ultrasound examination. 

After birth she presented with congenital mydriasis, intestinal malrotation, and symptoms of 

intestinal hypoperistalsis including vomiting and constipation. Cardiovascular abnormalities 
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included atrial septal defect, ductus arteriosus aneurysm, and pulmonic valve dilatation. 

Surgical closure of the ductus arteriosus was performed in the 1st month of life. MRI/MRA 

performed at 10 months showed increased T2 and FLAIR signal intensity in the 

supratentorial region, predominantly in the centrum semiovale, corona radiate, and frontal 

subcortical region suggestive of terminal ischemic injuries. Bilateral stenosis of the 

extracranial carotid artery with abnormally straightened arterial course was noted, including 

the terminal segments and hypoplastic posterior circulation system with significant reduction 

of basilar flow. The posterior circulation has been maintained through the communicating 

system. There is no evidence of aneurysm. She was partially fed by parenteral nutrition in 

her first months of life and currently she receives an enteral diet by gastrostomy. Only her 

motherwas available for molecular study.

Molecular Study

As shown in Table I, we found four heterozygous pathogenic variants in ACTG2 (patients 3, 

4, and 5 with MMIHS and patient 6 with CIPO), and one heterozygous variant in ACTA2 in 

patient 7 with MSMDS. The DNA chromatograms with the variants are shown in the 

supplementary material (Fig.—SM3). In ACTG2, the variants c.532C>T, c.770G>A, and c.

533G>T were identified, respectively, in patients 3, 4, and 5. They were absent in the parents 

and considered apparently de novo variants. The change in the same gene in patient 6 (c.

584C>T) is a novel mutation. It was not detected in her mother and the DNA from her father 

was not available. This variant was predicted as pathogenic by all software programs except 

by SNAP and SNPs&GO (see pathogenicity prediction in the supplementary material—

SM4). According to the HOPE program, the substitution of threonine by isoleucine at the 

position 195 is probably damaging to the protein, because unlike the wild-type, this change 

introduces a larger molecular weight and more hydrophobic residue in the mutated protein, 

possibly affecting the hydrogen bond formation between the original residue and the 

methionine at position 191. In addition, the mutant residue is located in the surface of the 

protein, near a highly conserved position probably disturbing interactions with other 

molecules or other parts of the protein. This change was absent in 100 alleles from control 

individuals. Patient 7 presented with the known c.535C>T variant in ACTA2. It was not 

detected in her mother and the DNA from her father was unavailable.

The molecular investigation of the family with two affected sibs with MMIHS (patients 1 

and 2), was performed only in patient 2. The ACTA2 and ACTG2 sequencing did not show a 

pathogenic variant. In the WES analysis, we initially prioritized the identification of 

homozygous variants. We also considered other possibilities such as AR—compound 

heterozygous and AD with recurrence explained by parental gonadal mosaicism. A total of 

23 candidate genes were identified: AR—homozygous (10 genes), AR— compound 

heterozygous (four genes), and AD (nine genes), but no association between a specific gene 

and the phenotype has yet been proven for the candidates genes. We did not identified 

pathogenic variant in MYH11 in patient 2.

Review of the Literature

Sixteen articles including clinical and molecular data from individuals with MMIHS or 

MSMDS were reviewed. As summarized in Table II, for the individuals with MMIHS and 
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pathogenic variants in ACTG2 (23 probands), the intestinal hypoperistalsis (21/21), and the 

bladder dysfunction are essential symptoms (23/23). The vesical hypocontractility often 

manifests as megacystis (91.3%— 21/23), and microcolon appears in 69.5% (16/23). 

Mydriasis and PDA were not identified in patients. The single reported individual with loss-

of-function variant in MYH11 presented with the typical signs of MMIHS. The main 

findings in individuals with MSMDS and proven pathogenic variants in ACTA2 (probands) 

are mydriasis (23/23), PDA (22/23), and vascular abnormalities (22/23). Visceral 

dysfunction is mainly due to bladder involvement with (4/23) or without (10/23) megacystis, 

while intestinal hypoperistalsis is less frequent (5/23), and microlon is absent in patients 

with MSMDS. Although the prune-belly phenotype is not common, this feature was 

described in both phenotypes.

Discussion

In the present study, we report the clinical data and molecular investigation of seven 

individuals from six families presenting different phenotypes of visceral myopathy. 

Pathogenic variants were found in five families, each with only one affected individual.

In patients with MMIHS, we identified three individuals with heterozygous variants in 

ACTG2. All were sporadic and the respective variants have been previously described—c.

532C>T [Thorson et al., 2014; Wangler et al., 2014; Halim et al., 2016], c.770G>A [Tuzovic 

et al., 2015], and c.533G>T [Thorson et al., 2014; Halim et al., 2016]. For the family with 

two siblings (typical phenotype of MMIHS and family history suggestive of AR pattern), the 

molecular investigation showed no pathogenic variants in ACTG2, ACTA2, or MYH11. 

Although we have identified 23 candidate genes by WES, a pathogenic variant could not yet 

be proven. Through the analysis of the exome, we did not find a pathogenic variation in the 

following genes: CHRM3 (associated with urinary dysfunction and mydriasis in humans) 

[Weber et al., 2011], and other genes such as CHRNA3, CHRNB2, or CHRNB4 (based on 

MMIHS-like phenotype—mydriais, megacystis, hypoperistalsis, gastric, and intestinal 

distention observed in mice) [Xu et al., 1999a,b].

Most of the published cases of MMIHS are sporadic and caused by de novo heterozygous 

variants in ACTG2. Recurrence in siblings related to ACTG2 was recently reported under 

the hypothesis of gonadal mosaicism because the parents were asymptomatic and did not 

present the variant in the sequencing [Tuzovic et al., 2015]. In another patient, the variant in 

ACTG2 had paternal origin, but the father had a milder phenotype [Wangler et al., 2014]. 

However, some individuals with MMIHS, but without pathogenic variant in ACTG2 
[Wangler et al., 2014; Halim et al., 2016], including two patients whose parents are 

consanguineous [Halim et al., 2016], suggest genetic heterogeneity and AR pattern in some. 

AR inheritance has been suggested because of the presentation of a number of families with 

recurrence in siblings and/or parental consanguinity, and asymptomatic parents [Mc 

Laughlin and Puri, 2013]. The molecular evidence supporting this inheritance pattern was 

recently demonstrated by Gauthier et al. [2014] in an individual with MMIHS and a 

homozygous variant (c.3598A>T—p.LysK1200Ter) in MYH11, whose parents are 

consanguineous. Although a functional study has not yet been performed, this variant was 

absent in the genome database, as well as in 323 control individuals. This variant is 
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predicted as likely to be deleterious by in silico analysis [Gauthier et al., 2014]. These 

authors defended the hypothesis that this variant could interfere with dimerization of the 

protein or inducing the degradation of the transcript through nonsense-mediated decay. The 

association of MYH11 with MMIHS is supported by animal models in which the mice with 

homozygous deletion of Myh11 presented with symptoms such as giant bladder, abnormal 

intestinal movement, and delay in the closure of ductus arteriosus [Morano et al., 2000].

The individual with CIPO has the novel heterozygous variant c.584C>T in ACTG2. Its 

pathogenicity was suggested by in silico analysis and reinforced by its absence in different 

databases, and in 100 alleles from control individuals.

Until now, 31 families with ACTG2-related disorders and 15 different pathogenic variants in 

ACTG2 were described, all but one being missense variants—supplementary material (SM5) 

[Lehtonen et al., 2012; Holla et al., 2014; Thorson et al., 2014; Wangler et al., 2014; Klar et 

al., 2015; Tuzovic et al., 2015; Halim et al., 2016]. The only exception is an in tandem base 

substitution reported by Klar et al. [2015]. Many missense variants (10/14 = 71.4%) 

resulting in a substitution of an arginine for another amino acid in different codons 

[Lehtonen et al., 2012; Holla et al., 2014; Thorson et al., 2014; Wangler et al., 2014; Tuzovic 

et al., 2015; Halim et al., 2016].

Due to diversity of the manifestations of visceral myopathy related to ACTG2, Wangler et 

al. [2014] proposed a phenotypic spectrum of ACTG2-disorders ranging from MMIHS, the 

most severe presentation characterized by early onset of symptoms (prenatal or neonatal) 

with severe dysmotility of bowel and bladder, and parenteral nutrition dependence, to milder 

forms with variable degree of gastrointestinal, and urinary dysfunction, including CIPO, also 

referred as familial visceral myopathy [Lehtonen et al., 2012]. Indeed, CIPO was the first 

phenotype associated with ACTG2 variants [Lehtonen et al., 2012]. It is not possible to 

define a genotype–phenotype correlation, since a same variant was observed in MMIHS and 

in individuals with a milder phenotype [Thorson et al., 2014; Wangler et al., 2014; Tuzovic 

et al., 2015; Halim et al., 2016]. However, cases resulting from de novo variants are 

frequently more severe than inherited cases [Wangler et al., 2014]. Although the penetrance 

seems to be complete, there is a considerable intra-familial variability and milder 

presentation may not be recognized [Lehtonen et al., 2012; Wangler et al., 2014]. Even in 

the severe phenotype, some variability related to the onset (prenatal or neonatal), voiding 

dysfunction and TPN dependence, have been observed [Wangler et al., 2014].

Beyond gastrointestinal and urological manifestations, others symptoms identified in 

individuals with pathogenic variants in ACTG2, including biliary complications 

(cholecystistis and cholelithiasis), and impaired uterine contraction, suggest that the 

myopathy may not be restricted to the gastrointestinal and urinary tracts, thus, expanding the 

phenotype [Lehtonen et al., 2012; Klar et al., 2015]. This is reinforced by the histologic 

findings of myopathy detected in the gallbladder of the patient with CIPO here reported.

In the patient with MSMDS, we identified a previously reported ACTA2 variant, c.535C>T 

[Meuwissen et al., 2013]. Heterozygous variants in ACTA2 were first described in 

individuals with thoracic aortic aneurysm with dissection (TAAD) [Guo et al., 2007], 
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coronary artery disease, stroke, and Moyamoya disease [Guo et al., 2009]. Then, a severe 

phenotype named multisystemic smooth muscle dysfunction syndrome (MSMDS) including 

PDA, congenital mydriasis, hypotonic bladder, ascending aorta aneurysms, and 

cerebrovascular disease was associated with a de novo heterozygous variant in the codon 

179 [Milewicz et al., 2010]. The p.Arg179His variant is the most common substitution 

associated with this severe phenotype; however, other variants in the same codon 

(p.Arg179Cys and p.Arg179Lys) result in a similar phenotype [Moller et al., 2012; Munot et 

al., 2012; Meuwissen et al., 2013]. Patient 7, described in the present study with MSMDS, is 

the second individual identified with the c.535C>T (p.Arg179Cys) in ACTA2. The recurrent 

association between a severe clinical presentation and the arginine substitution in the 179 

position suggests a genotype-phenotype correlation. The variant in this codon could cause a 

severe systemic disease because of the arginine in the 179 position, that is, near to a 

keyprotein–protein interaction site [Milewicz et al., 2010]. Interestingly, one individual 

reported by Roder et al. [2011] presenting the p.Arg179His variant has Moyamoya disease 

without other manifestations observed in MSMDS.

In order to better understand the overlap between MMIHS and MSMDS, two severe 

phenotypes with visceral myopathy, the review of published cases with proven pathogenic 

variants shown in Table II highlights more clearly the features characterizing each 

phenotype. While the visceral dysfunction in individuals with MMIHS manifests mainly as 

intestinal hypoperistalsis and megacystis, bladder involvement without megacystis is 

observed in patients with MSMDS. Some findings seem quite specific of each phenotype, as 

microcolon in MMIHS and mydriasis, PDA, and vascular abnormalities in MSMDS. 

Therefore, these findings may direct the molecular investigation of a patient with signs of 

visceral smooth muscle dysfunction. On the other hand, when the phenotype is more 

suggestive of MMIHS, there are no clear clinical signs for the differentiation between 

autosomal dominant (ACTG2) and recessive (MYH11) inheritance. Autosomal recessive 

inheritance seems to be less frequent than sporadic and autosomal dominant, and further 

studies are needed for a better etiologic definition of MMIHS. Although PDA had not been 

identified in individuals with homozygous MYH11 variant [Gauthier et al., 2014], it remains 

a possibility due to involvement of ductus arteriosus in Myh11 mice and in individuals with 

heterozygous variants in MYH11 [Zhu et al., 2006]. Although the prune-belly appearance is 

not common in either MMIHS or MSMDS, this phenotype should be taken into account 

during the initial evaluation of a child with clinical signals of visceral motility dysfunction.

The main features present in MMIHS and MSMDS can be identified in other phenotypes 

such as the X-linked chronic intestinal pseudo-obstruction (CIPO-X), and urinary bladder 

disease/prune-belly caused by FLNA and CHRM3 variants, respectively [Kapur et al., 2010; 

Weber et al., 2011]. In CIPO-X, besides CIPO, other manifestations including 

gastrointestinal abnormalities as intestinal malrotation, short small intestine, microcolon, 

and pyloric stenosis are described. Extra enteric findings like PDA, vascular abnormality in 

CNS, megacystis, periventricular nodular heterotopy, thrombocytopenia, and dysmorphic 

facies were observed in some patients [Clayton-Smith et al., 2009; Kapur et al., 2010]. The 

phenotype called urinary bladder disease/prune-belly, caused by homozygous CHRM3 
variants, is associated with bladder dysfunction, mydriasis, and dry mouths without 

intestinal abnormality [Weber et al., 2011].
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The similarity of these diseases can be explained by the involvement of different parts of 

visceral contractile apparatus, including contractile filaments as α and γ-actin, myosin 

heavy chain 11, and filamin A (ACTA2, ACTG2, MYH11, and FLNA respectively), and 

muscarinic acetylcholine receptor (CHRM3). However, unexpected findings highlight 

interesting points regarding the expression of these proteins. For instance, the intestinal and 

bladder dysfunction in patients with ACTA2 variants indicate that the α-actin isoform 

probably has a more important role in enteric smooth muscle cell than previously supposed, 

where the γ-actin is the major isoform [Milewicz et al., 2010]. The absence of vascular 

manifestations in the ACTG2-related disorders reinforces the concept that ACTG2 does not 

have an important function in vascular smooth muscle cell contraction.

With respect to mydriasis, it is usually described in MSMDS (ACTA2) as well as in urinary 

bladder disease/prune-belly (CHRM3). However, the pupils and their responses to light, and 

cholinergic agents seem to be different in these disorders. While the pupils in MSMDS are 

usually nonreactive to the light and the pilocarpine [Moller et al., 2012; Richer et al., 2012; 

Roulez et al., 2014], the pupils of the individuals with variants in CHRM3 are described as 

having impaired constriction to light [Weber et al., 2011]. The presence of a weak light 

reflex and a very little change in pupil size when pilocarpine is instilled in Chrm3 mutant 

mice support the hypothesis that other mechanisms could be related to the contraction of the 

pupillary sphincter muscle [Matsui et al., 2000]. Finally, despite CHRM3 being the main 

muscarinic receptor involved in visceral smooth muscle contraction, gastrointestinal 

symptoms were not evidenced in patients reported by Weber et al. [2011], suggesting a non-

M3 acetylcholine receptor response or possible upregulated non cholinergic mechanisms of 

contraction maintaining gastrointestinal function, similar to those observed in animal models 

[Uchiyama and Chess-Williams, 2004].

In conclusion, a clinical and molecular study of seven individuals from six families with 

disorders of visceral smooth muscle contraction showed mutations in ACTG2 (four) and in 

ACTA2 (one) in five patients, and failed to find pathogenic variant, especially in MYH11, in 

the only consanguineous family, suggesting the existence of other gene(s) related to 

autosomal recessive inheritance. The results reinforce the clinical and genetic heterogeneity 

of the visceral myopathies. The review of MMIHS and MSMDS, similar phenotypes, 

suggest that some features can direct the molecular investigation of a patient with visceral 

myopathy. Finally, considering that the genes related to visceral myopathies in humans 

and/or in mouse models are genes encoding contractile proteins or acetylcholine receptors in 

enteric smooth muscle, further analysis should prioritize genes related to visceral contractile 

apparatus.

Addendum Added During Revision of the Manuscript

After the submission of this manuscript, two articles were published in on line version 

describing patients with ACTG2-related disorder:MMIHS [Lu et al.,2016] and MMIHS, and 

CIPO [Matera et al., 2016].
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Web Sources

PolyPhen-2: http://genetics.bwh.harvard.edu/pph2/

Mutation Taster: http://www.mutationtaster.org/

MutPred: http://mutpred.mutdb.org/

Panther: http://www.pantherdb.org/

SNAP: https://rostlab.org/services/snap/

Phd-SNP and SNPs&GO: http://snps.biofold.org/snps-and-go/snps-and-go.html

dbSNP: http://www.ncbi.nlm.nih.gov/projects/SNP/

1000 Genomes project data: http://browser.1000genomes.org/index.html

Exome Variant Server: http://evs.gs.washington.edu/EVS/

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table II
MMIHS and MSMDS: Summary of Clinical Data and Genotype of Individuals With 
Molecularly Confirmed Diagnosis

Phenotype Megacystis-microcolon-intestinal hypoperistalsis syndrome (MMIHS) Multisystemic smooth 
muscle dysfunction 

syndrome (MSMDS)

Gene ACTG2a MYH11b ACTA2c

Number of probands 23 1 23

Parental consanguinity − + (Algerian origin) −

Inheritance AD AR AD

Pathogenic variant Heterozygous—all missense Homozygous—stop codon Heterozygous—all 
missense (codon 179)

De novo variant 16/18d No 23/23

Familial recurrence of the phenotype 1/23e − −

Megacystis 21/23 + 4/23

Bladder dysfunction without 2/23 − 10/23

megacystis

Microcolon 16/23 + −

Intestinal hypoperistalsis 21/21f + 5/23

Prune-belly 2/20g + 2/23

Mydriasis − − 23/23

Patent ductus arteriosus − − 23/23

Vascular involvement 23/23

Cerebrovascular − − 21/23

Aortic aneurism − − 14/23

AD, autosomal dominant, AR, autosomal recessive, MMIHS, megacystis-microcolon-intestinal hypoperistalsis syndrome; MSMDS, 
multisystemicsmooth muscle dysfunction syndrome; +, feature present; —, feature absent. A summary of phenotype, genotype, and family history 
data of all individuals with ACTG2-related disorder, including MMIHS and milder phenotypes, is described in the supplementary material (SM5).

a
[Thorson et al., 2014]; [Wangler et al., 2014]; [Tuzovic et al., 2015]; [Halim et al., 2016].

b
[Gauthier et al., 2014].

c
[Milewicz et al., 2010]; [Al-Mohaissen et al., 2012]; [Moller et al., 2012]; [Munot et al., 2012]; [Richer et al., 2012]; [Meuwissen et al., 2013]; 

[Moosa et al., 2013]; [Amans et al., 2014]; [Brodsky et al., 2014]; [Roulez et al., 2014]; [Yetman et al., 2015].

d
Unknown finding in five of the 23 individuals (18 evaluated patients), 16/18, one individual inherited the variant from the father, who presented 

with milder disease—family 34 [Wangler et al., 2014] and parental inheritance in a family due to probable gonadal mosacism—family 1 [Tuzovic 
et al., 2015].

e
The recurrence of MMIHS was reported in a family with two affected siblings and normal parents—family 1 [Tuzovic et al., 2015].

f
Unknown finding in two of the 23 individuals (21 evaluated patients).

g
Unknown finding in three of the 23 individuals (20 evaluated patients).
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