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Abstract

In food deprivation assays, several different responses have been observed in crustaceans.

However, studying energy reserves utilization among more than one species during the

same starvation period has not yet been performed, particularly to discern whether the

responses are due to intrinsic and/or environmental factors. We hypothesize that decapod

species with similar feeding habits have the same strategies in the use of energetic reserves

during starvation, even though they inhabit different environments. The aim of this study

was to compare the energy reserves mobilization of three decapods species (Cherax quad-

ricarinatus, Palaemon argentinus and Munida gregaria) with similar feeding habits, exposed

to similar food deprivation conditions. The crayfish, shrimp and squat-lobster were experi-

mentally kept at continuous feeding or continuous starvation throughout 15 days. Every 3rd

day, the midgut gland index (MGI), and the glycogen, lipid and protein contents were mea-

sured in the midgut gland (MG) and pleon muscle. Palaemon argentinus mobilized more

reserves during starvation, followed by C. quadricarinatus, and the last M. gregaria. The

starved shrimps presented low MGI, whereas MG showed a reduction in glycogen (from

day 6 to 15), lipid (from day 3 to 15), and protein levels (at day 9 and 15) while in their mus-

cle, lipid reserves decreased at days 3 and 6. In C. quadricarinatus, the most affected

parameters in the MG were MGI, glycogen (from day 6 to 15), and lipids (at day 12 and 15).

In the MG of M. gregaria only the glycogen was reduced during fasting from 3 to 15 days.

Even though the three studied species have similar feeding habitats, we found that their

energetic profile utilization is different and it could be explained by the habitat, life span, tem-

perature, organ/tissue, and metabolism of the species. Our results may be useful to under-

stand the several different responses of crustaceans during starvation.
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Introduction

In their natural habitats, crustaceans have to overcome and tolerate the scarcity or the total

absence of food for short or long periods for different reasons: molting; seasonal environmen-

tal changes, along with community structure changes; or pollution [1, 2]. Physiological

responses to starvation are further interpreted through ecological modulators. In natural habi-

tats, for instance, it is important to understand physiological responses to fasting, as they could

indicate whether organisms had reduced their feeding due to food availability (quantity and

quality), and/or the cessation of feeding to reduce a predation risk. Therefore, measures of

starvation are important for assessing the state of a population [3]. During the intermoult

period of crustaceans, starvation is responsible for the re-allocation of energy resources for tis-

sue maintenance, and survival, regardless of metabolic costs [4]. Induced experimental starva-

tion can reveal which macromolecules (glycogen, lipid and protein) are used, and in what

sequence the different energy compartments are depleted. In this context, the midgut gland

and the muscle of crustaceans are key body parts because they hold the greatest amount of

energy reserves [5], which can be mobilized during non-feeding periods.

In crustaceans, several different responses occur during food deprivation assays, such as dissim-

ilar sequence of glycogen, lipid and protein mobilization, which drop or increase enzyme activities.

This is the result of the vast diversity of environments that they inhabit and their long evolutionary

history [5]. Other factors that contribute to the observed diversity of interspecific variability of

energetic reserves mobilization are the dissimilar biochemical methods and distinct experimental

starvation periods utilized by the different authors [6]. However, both conjectures, diversity of

environments and/or different experimental protocols, have not yet been demonstrated. There-

fore, although there are numerous studies dealing with nutrition of decapod crustaceans and sev-

eral comparisons were made across species, none has previously compared the effect of starvation

on different species with the same methodology. This type of study can compare species from dif-

ferent habitats, and with different phylogeny, life spans, life cycle, feeding habits, etc. In addition, it

might also be possible to find a relationship between different species and their physiological fea-

tures using the same experimental design and biochemical analysis. We hypothesize that, as the

three decapod species present similar feeding habits, their strategies in the use of energetic reserves

will be similar during starvation, even though they inhabit different environments.

The studied decapod species were Cherax quadricarinatus, Palaemonetes argentinus and

Munida gregaria, which belong to the same suborder Pleocyemata, and different Infraorders:

Astacidea, Caridea, and Anomura, respectively. These species are good biological models

because, among other characteristics, they are phylogenetically dissimilar, they can be main-

tained under laboratory conditions, can accept a commercial diet, are easily caught in nature,

and have starvation resistance [7–11].

Considering the phylogenetic relationships among the infraorders within the decapod

Reptantia clade, the estimated divergence time for Astacidea, Caridea, and Anomura linages

are 278, 263, and 309 million years ago, respectively [12]. We understand that interspecific

comparisons must take into account the phylogenetic relationships among species due to their

lack of statistical independence owing to a shared ancestry [13, 14]. However, our three-stud-

ied decapod species are evolutionarily distant; therefore, from an evolutionary point of view

we considered them as independent units for the purpose of the present study.

In general, the three studied species present similar feeding habits, as omnivores and

deposit feeders. As omnivores, they feed on benthic invertebrates and algae, and as deposit

feeders, they ingest detritus. Specifically, the redclaw crayfish, Cherax quadricarinatus (Deca-

poda, Parastacidae), is a freshwater crustacean, native from northern Australia and southeast

Papua New Guinea. In natural ecosystems, crayfishes have polytrophic feeding habits and have
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been described as predators, omnivores and/or detritivores, consuming a variety of macrophytes,

benthic invertebrates, algae and detritus [15] and references therein. The shrimp Palaemon argen-
tinus (Decapoda, Caridea), inhabits shallow lakes and streams of South America (in Argentina,

Paraguay, Uruguay and southern Brazil) [16, 17]. Palaemon argentinus is omnivorous and detriti-

vorous, and consumes algae, benthic macroinvertebrates and zooplankton [18]. The squat-lobster

Munida gregaria (Decapoda, Anomura), is distributed on the continental shelves off southern

South America, New Zealand and southern Australia [19]. This species is an omnivorous general-

ist and has two different and simultaneous feeding habits: as omnivore it feeds on crustaceans,

polychaets and macroalgae, and as a deposit feeder on particulate organic matter [20].

This study was aimed to compare the physiological responses of Cherax quadricarinatus,
Palaemon argentinus andMunida gregaria exposed to similar food deprivation conditions.

Specifically, analytical biochemical parameters were determined through a midgut gland index

and energy reserves quantification. This information may be useful to understand the different

responses of crustaceans during food deprivation conditions.

Materials and methods

Animals

Redclaw crayfish were hatched from a reproductive female stock supplied by Centro Nacional

de Desarrollo Acuı́cola (CENADAC), Corrientes, Argentina. Each ovigerous female (59.8 ±
3.2 g mean body weight) was maintained in an individual glass aquarium (60x40x30 cm, width

x length x height). Each aquarium contained 30L of dechlorinated tap water and was continu-

ally aerated. The temperature was maintained at 27±1˚C with ALTMAN water heaters (100W,

precision ± 1˚C), and the photoperiod cycle was 10 h light: 14 h dark. Each aquarium was pro-

vided with a PVC tube cave (10 cm of diameter and 25 cm long) [21]. Females were fed daily

ad libitum with both Elodea sp. and commercial TetraColor granules TETRA1 (47.5% crude

protein, 6.5% crude fat, 2.0% crude fiber, 6.0% moisture, 1.5% phosphorus, and 100 mg ascor-

bic acid/kg) according to Bugnot (2009) [22] and De Bock (2010) [23]. Juveniles became in-

dependent at stage 3 [24], and then, they were separated from their mothers. To reach the

desired experimental weight, they were pooled and maintained under conditions described in

previous studies [25, 26].

Shrimps Palaemon argentinus were obtained from the Nahuel Rucá pond, Buenos Aires,

Argentina, considered as an unpolluted area [27]. The animals were collected with a hand net

and transported to the laboratory. Shrimps were maintained in 70 L aquaria (60x35x25 cm

width x length x height) with continually aerated freshwater. The temperature was maintained

at 23±1˚C by ALTMAN water heaters, and a photoperiod cycle of 10 h light: 14 h dark.

Squat-lobsters were captured in the Beagle Channel, Tierra del Fuego, Argentina, by trawl-

ing for 10 minutes using an epibenthic trawl with 1.8 m and 1.2 m of horizontal and vertical

openings, and 10 mm of mesh size [28]. Animals were transported to the laboratory and kept

in polypropylene aquaria tanks (65×50×30 cm, width x length x height) with a chilled seawater

recirculation system at 6–8˚C and a photoperiod cycle of 10 h light: 14 h dark. Water quality

was maintained with mechanical (50 μm) and biological filters and a UV-sterilizer.

No specific permissions were required for the locations used to capture Palaemon argenti-
nus andMunida gregaria, because these zones are not protected or private areas. The three

studied species are not endangered or protected species.

Experimental design

A total of eighty eight crayfish (5.26±1.46 g mean body weight in intermoult stage) were placed

in individual glass containers (1500 mL) with 1400 mL of filtered water under continuous
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aeration. In order to maintain the temperature constant at 27±1˚C, the containers were placed

in aquaria (53x40x12 cm, width x length x height) with water heaters [9]. During the trial, the

photoperiod cycle was set at 10 h light: 14 h dark and pH was set in a range of 7.3–8.4.

Five hundred twenty eight shrimps (0.16±0.04g mean body weight in intermoult stage)

were placed in individual plastic containers (500 mL) with 400 mL of filtered water under con-

tinuous aeration. In order to maintain the temperature constant at 23±1˚C, the containers were

placed into aquaria (60x35x25 cm, width x length x height) with water heaters. During the trial,

the photoperiod cycle was set at 10 h light: 14 h dark, and pH was set in a range of 7.9–8.9.

Eighty eight squat lobsters in intermoult stage (6.93±1.51 g mean body weight) were placed

in individual plastic containers (700 mL) with seawater under continuous aeration. In order to

maintain the temperature constant at 6±1˚C, the containers were placed in aquaria tanks

(25x37x10 cm, width x length x height) with chilled seawater. During the trial, the photoperiod

cycle was set at 10 h light: 14 h dark, and pH was set in a range of 7.2–7.6.

The three species were fed daily ad libitum with TetraColor granules (TETRA1) and accli-

mated to the experimental conditions above described during 1 week before the experimental

onset. Specifically, nutrient content in the diet is common for the three crustacean species;

therefore, food is not a source of variability. The first day of the assay (time 0 (T0), initial con-

trol), 8 crayfish, 48 shrimps and 8 squat lobsters were weighed (precision 0.1 mg) and dis-

sected, the midgut gland and pleon muscle extracted, and frozen at -80˚C.

The remaining animals of Cherax quadricarinatus (n = 80), Palaemon argentinus (n = 480)

andMunida gregaria (n = 80) were randomly and equitably distributed into two groups: half

of each species on the fed group and the other half in the starved group. The fed group was

daily fed ad libitum with TetraColor1 granules throughout the 15 days of the entire experi-

mental period. The starved animals were not fed until day 15. During the experimental period,

all containers were cleaned and water was renewed twice a week. Animals were sampled at

every three days (T3, T6, T9, T12 and T15) when 8 crayfishes, 48 shrimps and 8 squat lobsters

of the two groups, fed and starved, were weighed. Each midgut gland and pleon muscle was

dissected and frozen at -80˚C. Considering the small size of shrimps (and the subsequent small

volume of the obtained organ and muscular tissue) 6 midgut glands and pleon muscles from

the same experimental group and time were pooled (8 pools with 6 organs or tissues each), to

ensure enough material for all analysis.

The wet midgut gland index (MGI) was calculated to assess the potential mobilization of

metabolic reserves during the assay. This index was calculated according to Jones et al. (2000)

[29] as MGI (%) = (midgut gland weight/whole body weight) x 100. At T0 and for each macro-

molecule (glycogen, lipid and protein), a ratio between the macromolecule in the MG and in

the muscle pleon was also calculated.

Energetic reserves of midgut gland and pleon muscle

Total lipids were extracted following Folch´s protocol [30]. Lipids were extracted by homoge-

nizing pre-weighed samples of the midgut gland or muscle with a mixture of chloroform:

methanol (2:1 v/v). The homogenate was filtered through a funnel with a filter paper to recover

the liquid phase. Subsequently, liquid samples were washed with a NaCl solution (0.9%) to

obtain two layers. Total lipids were determined by the sulfophospho-vanillin method [31].

This method consists of oxidizing cellular lipids to small fragments after a chemical digestion

with hot concentrated sulfuric acid. After the addition of a solution of vanillin and phosphoric

acid, a fuchsia complex was formed and its absorbance was read at 530 nm on a CINTRA 10e

CBC spectrophotometer. The standard solution was prepared with commercial extra virgin

olive oil (Cocinero, Molinos Rı́o de la Plata S.A.).
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Glycogen concentration in both the midgut gland and muscle was measured based on Lo´s

protocol [32]. In a glass tube, 1 mL of 30% KOH saturated with Na2SO4 was added to the pre-

weighed sample. Tubes with their screw cap were put in a boiling water bath for 1 h, and then

cooled in ice. One milliliter of ethanol 96˚ was added to precipitate the glycogen. The samples

were placed in ice for 30 min and then were centrifuged (ROLCO 2036) at 4500 rpm for 10

minutes. The glycogen precipitates were next dissolved in 1 mL of distilled water. An aliquot of

300 μL of the above glycogen solution was brought to a sample volume of 1 mL by the addition

of distilled water, 1 mL of 8% phenol solution added, and 5 mL of H2SO4 was added rapidly.

Subsequently, the tubes were allowed to stand for 10 minutes, then shaken and placed for 10–20

minutes in a water bath at 25–30˚C, before readings were taken. The absorption spectrum was

read at 490 nm and the standard solution was prepared with rabbit glycogen (Sigma G0885).

Finally, total soluble protein was evaluated with the Coomassie blue dye method according

to Bradford´s protocol [33] using serum bovine albumin as the standard (Sigma A6003).

Statistical analysis

All data are expressed as mean ± standard error. The statistical analyses were performed com-

paring the three treatments fed, starved and the initial control group (T0). All statistical analysis

was performed with the same sample size in each studied species at each time (Cherax quadri-
carinatus: N = 8; Palaemon argentinus: N = 8 (8 pools of 6 animals/organ or tissues each); and

Munida gregaria: N = 8). Data from the midgut gland index, glycogen and total lipids reserves,

and soluble protein were analyzed by Generalized Linear Mixed Models (GLMMs) using Info-

Stat software (2015) [34]. The heterogeneous variance structure was modeled and the most par-

simonious model was selected by comparison using the Akaike Information Criterion (AIC),

and graphical inspection of their residue distribution. Post-hoc comparisons were performed

using Fisher’s LSD test. For all analyses, residuals were analyzed for normal distribution via sta-

tistic of the Shapiro-Wilk test. The significance level was set at 0.05.

Results

In starving condition, MGI changed in the crayfish and shrimp (Fig 1). From T6 to T15,

starved crayfish had lower MGI values than fed animals and the initial control (Fig 1A). In

starved shrimps, the MGI had lower values than T0 and feed animals at all sampling times (Fig

1B). On the other hand, MGI remained unchanged inMunida gregaria between treatments

during the whole experiment (Fig 1C).

Crayfish started to consume midgut gland glycogen after day 6 of fasting (Fig 2A). Starved

Palaemon argentinus reduced their glycogen reserves from T6 to T15 days compared to T0

and fed shrimps. In addition, in fed shrimps the MG glycogen concentration was higher than

the control and throughout the experiment (Fig 2B). In starvedMunida gregariaMG glycogen

levels decreased earlier than in the other two species, after 3 days of starvation (Fig 2C). In the

pleon muscle of both Cherax quadricarinatus andMunida gregaria, the glycogen reserves

remained unchanged between treatments (Fig 2D and 2F). In Palaemon argentinus the glyco-

gen concentration of the pleon muscle increased in both treatments: in fed animals at day 3,

but later in starved animals, at day 12 (Fig 2E).

Midgut gland lipids changed differently in the three species (Fig 3). In starved crayfish, MG

lipid concentration was lower at T12 and T15 than in fed animals and the initial control (Fig

3A). Similarly, in starved squat lobsters MG lipids decreased only at T12 (Fig 3C). On the con-

trary, in the shrimp MG lipid concentration was lower in the starved condition during all the

experiment, whereas fed animals showed an increment on lipid values at T6, T12 and T15 (Fig

3B).
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Fig 1. Midgut gland index of Cherax quadricarinatus (A), Palaemon argentinus (B) and Munida

gregaria (C) after starvation. Different letters indicate statistical differences (p<0.05).

https://doi.org/10.1371/journal.pone.0184060.g001
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Our results show that crayfish, shrimp and squat lobster did not use their muscle lipids dur-

ing the 15 days of starving conditions (Fig 3). In particular, we found that just at T3 and T6,

starved shrimps presented lower lipid levels than the fed ones. Also, fed animals accumulated

lipid reserves from T9 (Fig 3E).

Protein levels of midgut gland remained unchanged in starved Cherax quadricarinatus, but

decreased in Palaemon argentinus andMunida gregaria in both treatments (Fig 4). In fed C.

quadricarinatus, proteins increased at T9 and T12, whereas in starved crayfishes proteins only

increased at T12. Fed and starved shrimps showed lower protein values than initial controls at

all times, and also were different at T6, T9 and T15 (Fig 4B). Similar results were observed in

squat lobsters, where the midgut gland of fed and starved animals presented lower protein lev-

els than T0, except at T6 (Fig 4C).

In starving condition, muscle protein levels remained unchanged in shrimps and squat lob-

sters, but in crayfish proteins were lower after 3 days (Fig 4). In fed Cherax quadricarinatus
protein concentration was lower than T0 after 6 days (Fig 4D). On the other hand, during the

whole experimental time, protein levels were higher in fed than in starved shrimps and T0

(Fig 4E).

At T0 the midgut gland had higher levels of all macromolecules than the muscle. In Cherax
quadricarinatus, Palaemon argentinus andMunida gregaria respectively, the ratio MG:muscle

for each macromolecule were: 4.5, 5.7 and 4 for glycogen; 6.7, 2.5 and 19.4 for lipid; and 1.7,

62.8 and 10 for protein.

Discussion

Our results demonstrate that the three crustacean species present dissimilar physiological pro-

files and strategies in the utilization of energetic reserves during food deprivation despite hav-

ing similar feeding habits. Specifically, Palaemon argentinus was the species that mobilized

more kind of reserves during the 15 days of starvation, followed by Cherax quadricarinatus
andMunida gregaria.

The midgut gland of starved shrimps presented low MGI, and a reduction in glycogen,

lipid and protein levels; while in their muscle, lipid reserves decreased at days 3 and 6. In

Cherax quadricarinatus, the most affected parameters in MG were MGI, glycogen and lipids.

In the midgut gland ofMunida gregaria only the glycogen concentration was reduced during

fasting (Table 1).

In general, as a response to starving the reduction in the midgut gland weight is due to

macro-molecule changes (e.g. glycogen, lipid and protein). In Cherax quadricarinatus and

Palaemon argentinus, such a drop in MGI is coincident with a decline in glycogen in crayfish,

as well as glycogen and lipids in shrimp. On the contrary, during starvation, the midgut gland

weight inMunida gregaria remained unchanged, despite its glycogen reserves depletion

(Fig 2C).

In shrimps, lobsters and crayfish, glycogen stores are quickly depleted and likely converted

to glucose to obtain energy e.g. [29, 35–40]. Under starvation, inMunida gregaria and Palae-
mon argentinus, the decrease of MG glycogen was fast and reached basal levels at day 3 (ca.

0.74 mg/g tissue) or day 6 (ca. 1.2 mg/g tissue), respectively. Cherax quadricarinatus showed a

stronger starvation resistance, since during our 15 day starvation period the MG glycogen

decreased, probably reaching its basal levels at day 15, thereafter remaining constant [9, 11,

41].

Fig 2. Glycogen levels of midgut gland (left panel) and pleon muscle (right panel) of Cherax quadricarinatus (A, D), Palaemon

argentinus (B, E) and Munida gregaria (C, F) after 15 days of starvation. Different letters indicate statistical differences (p<0.05).

https://doi.org/10.1371/journal.pone.0184060.g002
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The present study suggests that the three studied crustaceans did not mobilize glycogen

reserves from the tail muscle during the non-feeding period. The preservation of glycogen tail

muscle may reflect its utility as a fuel in searching for food and/or tail-flip escape reaction.

Nevertheless, in brachyuran crabs such as Neohelice granulata (Varunidae) or Ocypode quad-
rata (Ocypodidae) the muscle glycogen levels gradually decrease after 7 or 15 days of starva-

tion, in order to maintain its energy requirements [42, 43].

The decline in MG lipid levels in Cherax quadricarinatus and Palaemon argentinus suggest

that a lipolysis is taking place in the midgut gland as an energetic source. In the shrimp lipids

probably have reached basal levels at day 9 (15.3 mg/g tissue) of starvation. Other species have

a faster rate of lipid depletion, e.g. Penaeus vannamei (Penaeidae) reaches the lowest lipid levels

after 4 days of starvation [38], and Palaemon argentinus uses 66% of the initial lipids during

the first day of starvation [8]. Instead, in our work, Palaemon argentinus utilized ~ 30% of their

lipid reserves throughout 3 starvation days. Lipid reduction, as a response to a different period

of food deprivation (6–28 days), was also reported in other crustaceans such as the copepod

Acanthodiaptomus denticorni (Diaptomidae); and the Penaeidae shrimps: Penaeus vannamei,
Penaeus duorarum, Penaeus semisulcatus, Penaeus monodon, Penaeus japonicus, and Penaeus
esculentus [35, 37, 38, 44–47].

There is no clear pattern thatMunida gregaria utilizes its MG lipid reserves during the 15

days of food deprivation. However, this species has 5 and 13 times more lipids than Cherax
quadricarinatus and Palaemon argentinus, respectively. The preservation of lipidic reserves

could be related to the subantartic water temperature (5–10˚C) in whichMunida gregaria
thrives, and hence preventing a possible cellular damage. Even though there are few studies

about the relationship between unsaturated fatty acids and membrane fluidity in marine

organisms [48], ectothermic animals increase membrane content of unsaturated fatty acids as

a response to cold conditions to maintain its fluidity [48, 49].

Our results suggest that none of the three studied species utilize the energy from protein

catabolism along the 15 days food deprivation period. During the experiment, soluble protein

levels in midgut gland and muscle showed different fluctuation patterns, but in any case pro-

teins were not spent. Starved prawns, shrimps or crabs can however, obtain energy through

the catabolism of amino acids [37, 45, 50], but a prudent utilization of protein in short starva-

tion periods may be an adaptive strategy to avoid the usage of high costly macromolecules,

which could represent an energetic saving in case of prolonged periods without food [38]. For

example, in the shrimp Penaeus vannamei soluble protein concentration remains relatively

constant during 5 days of starvation [38]. Moreover, the lobster Nephrops norvegicus (Nephro-

pidae) fasted through 12 weeks and 6 months, does not reduce protein levels in their tail mus-

cle [51]. We hypothesize that the catabolism of protein and free amino acid pool might

provoke the enzyme proteolysis and the lack of amino acid for the enzyme de novo synthesis,

which could be essential in different metabolic processes for obtaining energy through the

Krebs cycle, glycolysis, and fatty acid β-oxidation. Some authors suggest that in crustaceans

the most important energy reserve compartments are the midgut gland and muscle [5]. How-

ever, our results in comparing the concentration of three macromolecules at T0 confirm that

the midgut gland is the major organ of reserve storage, and that the tail muscle does not mobi-

lize energetic resources due to the starvation stress in the same degree as the midgut gland.

Another interesting result of our research was that fed Palaemon argentinus increased lipid

and glycogen levels in MG and lipid, glycogen and protein levels in pleon muscle, although the

Fig 3. Lipid levels of midgut gland (left panel) and pleon muscle (right panel) of Cherax quadricarinatus (A, D), Palaemon argentinus (B,

E) and Munida gregaria (C, F) after 15 days of starvation. Different letters indicate statistical differences (p<0.05).

https://doi.org/10.1371/journal.pone.0184060.g003
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stored concentration is much higher in the midgut gland than in the muscle. This result con-

firms that this species has the capacity to accumulate more reserves, also illustrating the plastic-

ity of this organ. The histological analysis of the midgut gland will be necessary to evaluate

possible histopathological effects.

We are confident that our results are unbiased, even in the comparison of a permanent cul-

tured species such as Cherax quadricarinatus with the other wild the species. Juveniles of cray-

fish were obtained in laboratory conditions from cultured individuals, with a regular feeding

regime. Palaemon argentinus andMunida gregaria were captured from the wild, and therefore

they might already have been subjected to starvation and could have a physiological advantage.

Cherax quadricarinatus can recover from both short and long fasting periods. For example, in

a regime of 4d of feeding and 4 d of starvation, energetic reserves remain unchanged [52].

After 50 days of starvation and 30 days of re-feeding, this crayfish recovers levels of glycogen,

lipids, digestive enzyme activity, hepatopancreas structure, and regains its molting frequency

[11]. Moreover, such a long fasting period can promote growth at low culture temperatures

[53].

On the other hand, as the tested species thrive in different environments, i.e. marine or

freshwater, they likely present different nutritional requirements. Wild animals used in the

present study,Munida gregaria and Palaemon argentinus, can grab, manipulate, ingest, and

metabolize the food they were offered at the beginning of the experiments. Several studies have

demonstrated that wild crustaceans can be fed with TetraColor1. For example, the squat lob-

ster fed exclusively with TetraColor1 can develop its ovary in a 4-month experiment [7] and

successfully incubate embryos during their whole development [54]. Palaemon argentinus
shrimp feeding on these commercial pellets can grow its midgut gland (Fig 1), and molt regu-

larly (pers. obs.). Therefore, these results indicate that even though the diet may not be optimal

for the three species, it is adequate for the animals to efficiently accomplish physiological pro-

cesses with high energetic requirements, such as reproduction or molting. Furthermore, it is

unknown whether feeding habits or food itself, could be under natural selection pressure,

affecting directly the physiological fitness of these species.

Our results demonstrate that the species with the shortest life-span has mobilized more

reserves during starvation: Palaemon argentinus (life-span ~1.5 yr) mobilized more reserves

than Cherax quadricarinatus (life-span >3 yr), followed byMunida gregaria (life-span >5 yr)

(Tables 1 and 2). Among decapods life-span varies considerably [55]. We did a literature

review on the energetic mobilization of decapods during starvation in relation to their habitat

Fig 4. Protein levels of midgut gland (left panel) and pleon muscle (right panel) of Cherax quadricarinatus (A, D), Palaemon argentinus

(B, E) and Munida gregaria (C, F) after 15 days of starvation. Different letters indicate statistical differences (p<0.05).

https://doi.org/10.1371/journal.pone.0184060.g004

Table 1. Summarized results of differences in the use of energy reserves of Cherax quadricarinatus, Palaemon argentinus and Munida gregaria

after starvation.

Parameter C. quadricarinatus P. argentinus M. gregaria

Midgut gland MGI T6 –T15 T3 –T15 unchanged

Glycogen T6 –T15 T6 –T15 T3 –T15

Lipid T12, T15 T3 –T15 non utilized

Protein non utilized T9, T15 non utilized

Muscle Glycogen T3 non utilized non utilized

Lipid non utilized T3, T6 non utilized

Protein non utilized non utilized non utilized

https://doi.org/10.1371/journal.pone.0184060.t001
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and life-span (Table 2). The percentage of mobilization indicates the proportion of reserve

reduction (considering the reserve concentration of fed animals as 100%) during the starvation

period (Table 2). A comparison of the mobilization percentage among 21 decapod species

shows a range from 28% to 99%. This mobilization is relatively low in species with longer life-

span (>3 years) relativized to starvation days. Nevertheless, Lithodes santolla, Munida gregaria
and Penaeus esculentusmobilize ~ 32% reserves during 60, 15 and 14 days of starving respec-

tively; whereas,Homarus americanus, Nephrops norvegicus, Procambarus clarkii, Cherax
destructor, and Cherax quadricarinatus mobilize more reserves (>60%) but during a longer

period (102, 84, 210, 150, 154, and 80 days respectively) (Table 2). Therefore, we hypothesize

that decapod species with longer life spans present lower proportion of reserve mobilization

than species with short life-span, at similar starvation period. This pattern is also common to

our studied species. Another approach shown in the literature is that marine decapods likely

utilize glycogen reserves as an energy source during starvation independently of their life-

span. By contrast, the starved freshwater decapods usually tend to utilize the three macromole-

cules: glycogen, lipids and protein (Table 2). In general, freshwater habitat is more variable

than marine habitat with respect to temperature, current (lentic or lotic), nutrients (eutrophic

or oligotrophic), and other factors. We further hypothesize that freshwater decapods present

more plasticity to utilize more than one type of reserves due to variable habitat than marine

decapods. Finally, the amount of different energetic reserves used by species could be related

to the molt rate (as a proxy to the metabolic rate, given the numerous catabolic and anabolic

processes involved in molting [56]; namely, at low molt rates the types of mobilized macromol-

ecules will be few during starvation and vice versa (e.g Lithodes santolla, Munida gregaria,

Nephrops norvegicus) (Table 2). This could be because a high molt rate would imply a high

metabolism and, therefore, greater energy requirements would be needed during starvation to

maintain homeostasis. In our three studied species molting frequency is variable: 40 d-1 [57],

45–50 d-1 (Sacristan unpublished data), and 2 yr-1 [28] in Palaemon argentinus, Cherax quadri-
carinatus andMunida gregaria respectively, and therefore this coincides with the type of

reserve mobilized during starvation for the three species.

Crustacean decapods display stronger relationships between the type of mobilized reserve

and habitat, than phylogenetic distance among species (Fig 5). Specifically, infraorder Astaci-

dea contains (short phylogenetic distance): astacids and nephropids, each one a freshwater or

a marine lineage respectively. Freshwater crayfishes likely utilize the three kind of reserves as

an energy source during starvation. Instead, marine clawed lobsters consume glycogen

reserves independently of their phylogenetic relationship within the Astacidea. In the Caridea

lineage, similar responses are observed between freshwater (Palaemonidae) and marine (Cran-

gonidae) species (Fig 5). Moreover, marine species usually tend to utilize glycogen reserves

during fasting periods, e.g. infraorders Anomura, Brachyura, and the suborder Dendrobran-

chiata (penaeid shrimps and their relatives) (Fig 5). Therefore, glycogen reserves consumption

as a preferential energy source in the midgut gland could be considered as an ancestral charac-

ter in decapods.

The sea realm is the ancestral environment of the Decapoda, with conquest of freshwater

habitats being a later adaptation [66, 67]. In the freshwater prawn of genusMacrobrachium,

and in lineages that split later, several adaptations associated with the transition to fresh water

habitat or “freshwaterization” process were observed, such as reproductive adaptations, larval

development and starvation resistance [68] [67] and references therein. In this sense, the abil-

ity to catabolize different compounds under short fasting periods may have emerged as an

adaptive advantage to colonize more unstable environments such as freshwater. This capacity

could have arisen more recently in the evolution of the organisms that inhabit freshwater habi-

tats, and could have appeared more than once, since it can be observed in Caridea and
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Reptantia (Fig 5). Therefore, the physiological responses perceived the present study and pre-

vious works could indicate that freshwater decapods have acquired the ability to mobilize

more than one kind of energetic reserve as part of the freshwaterization process. We hypothe-

size that in the evolutionary history of decapod species could have arisen a certain character

that allowed to develop different mechanisms in response to starvation. Nevertheless, more

comparative research between related species from different habitats and dissimilar phyloge-

netic distance are needed to test this hypothesis.

Considerable research has been focused on nutrition of decapod crustaceans and many

comparisons have been made across species. This is the first study, which uses the same meth-

odology and compares three decapod species with similar feeding habits living in different

environments, and with patterns of energetic mobilization that are comparable across other

decapod species. Nevertheless, for future works we propose the use of biochemical methods

instead of proximal composition analyses for the study of decapod starvation response in

order to test our hypothesis, and thus avoid the variability factor associated to the methodology

employed. Specifically, reserve mobilization may be explained through intrinsic factors, such

as life span and molt rate, as well as modulating environmental factors (e.g. temperature), hab-

itat and phylogenetic relationships. Therefore, the present study shows that decapod crusta-

ceans display a vast diversity of reserve mobilization strategies to deal with starvation, and

suggests that these strategies are not related to the type of food. Finally, according to our

results, the literature reviewed, and the hypothesis suggested above, presumably a variety of

shared trends takes place in the physiological responses of decapod crustaceans during starva-

tion. However, we could not confirm experimentally this assumption as it is necessary to

Fig 5. Energetic reserves mobilization of midgut gland, environments, and phylogenetic relationship among

decapods crustaceans. Phylogenetic tree adapted from Porter et al. (2005) [12]. Numbers on left to the species

names are the reference numbers of Table 2. Different color boxes (light blue, green and yellow) indicate the habitat

of species.

https://doi.org/10.1371/journal.pone.0184060.g005
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include a number of species per habitat in the same study along with the use of an identical

methodological approach.
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