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Abstract

Hepatitis C is a liver disease caused by infection of the Hepatitis C virus (HCV). Many indi-

viduals infected by the virus are unable to resolve the viral infection and develop chronic

hepatitis, which can lead to formation of liver cirrhosis and cancer. To understand better

how initial HCV infections progress to chronic liver diseases, we characterised the long term

pathogenic effects of HCV infections with the use of a humanised mouse model (HIL mice)

we have previously established. Although HCV RNA could be detected in infected mice up

to 9 weeks post infection, HCV infected mice developed increased incidences of liver fibro-

sis, granulomatous inflammation and tumour formation in the form of hepatocellular adeno-

mas or hepatocellular carcinomas by 28 weeks post infection compared to uninfected mice.

We also demonstrated that chronic liver inflammation in HCV infected mice was mediated

by the human immune system, particularly by monocytes/macrophages and T cells which

exhibited exhaustion phenotypes. In conclusion, HIL mice can recapitulate some of the clini-

cal symptoms such as chronic inflammation, immune cell exhaustion and tumorigenesis

seen in HCV patients. Our findings also suggest that persistence of HCV-associated liver

disease appear to require initial infections of HCV and immune responses but not long term

HCV viraemia.
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Introduction

The hepatitis C virus (HCV) is a positive-strand RNA virus [1] that was estimated to currently

infect 2–3% of the world’s population [2]. 50–80% of acute HCV infections progress to chronic-

ity [3, 4] while the incidence of cirrhosis and hepatocellular carcinoma (HCC) in chronic HCV

infections ranges from 15–35% and 1–3% respectively [5, 6]. Presence of HCV viraemia regard-

less of viral titres or genotype is a major risk factor for the development of HCC [6–8]. One of

the milestones in HCV research is the recent discovery of direct acting antivirals against HCV

which, when used in appropriate combinations is effective against various genotypes of HCV in

infected individuals [9–13]. Although patients who achieve sustained virologic response (SVR)

have a substantially reduced risk of HCC [14] and it is hopeful that we will soon be able to

achieve SVR in most HCV infected patients, the precise mechanisms of HCV pathogenesis are

still not well understood. Furthermore, a proportion of patients who achieved SVR still develop

HCC [15–17], hence, a better understanding of HCV pathogenesis is required for the develop-

ment of therapeutic strategies to manage viral mediated tumorigenesis.

One of the main obstacles for studying HCV pathogenesis is the restriction of HCV tropism

in humans. Currently, chimpanzees represent the most relevant animal model that can support

HCV infection and recapitulate host responses and clinical symptoms similar to those

observed in human patients. However, disadvantages of the primate model such as high cost,

poor chronic infection rates and ethical concerns have limited their applicability in hepatitis

research. To address these issues, small animal models that can accommodate HCV infections

have been developed. These include transgenic mice strains modified to express factors to

allow HCV permissiveness in mouse hepatocytes [18]. Genetically modified strains that allow

efficient chimaerisms of mouse livers with transplanted human hepatocytes such as the SCID/

Alb-uPA [19], Fah/Rag2/Il2rg [20], AFC8-hu HSC/Hep [21] and TK-NOG [22, 23] mice have

been shown to support HCV infections. We recently described the Humanised Immune sys-

tem and Liver (HIL) mice which supports chimaerism of both the immune component and

livers with cells from the same foetal liver donor. This can be achieved by introducing CD34

+ purified human foetal liver cells, which contains a proportion of CD34hiCD133hi haemato-

poietic progenitors and CD34loCD133lo hepatic progenitor cells into immunodeficient NOD-

scid Il2rg-/- (NSG) mice [24]. Unlike the other humanised mouse models, HIL mice do not

require additional transgene modifications or drug treatments to induce cell death of mouse

hepatocytes. In a recent study, we described successful infections of HIL mice with HCV,

resulting in the development of HCV-specific human immune responses and clinical symp-

toms such as liver inflammation and fibrosis by 9 weeks post infection, which, could be ame-

liorated by treatment with interferon alpha-2a [25].

In this report, we investigated further, the long term effects of hepatitis C pathogenesis in

HIL mice up to 28 weeks post infection. Although long term viraemia was not detected in

these mice, HCV infected HIL mice developed increased incidences of liver inflammation,

fibrosis, steatosis and rare occurrences of liver tumours. Analyses of the immune profiles of

HCV infected mice showed an expansion of monocytes/macrophages, particularly of the pro-

tumorigenic M2 phenotype and T cells with increased numbers of exhaustion-like CD4 T

helper populations. Our results suggest that an initial infection of HCV is sufficient to drive

chronic hepatitis which may subsequently promote liver tumorigenesis.

Materials and methods

Ethics statement

For the construction of humanised mice, human foetal livers were obtained from elective or

medically indicated termination of pregnancies after obtaining informed and written consent
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from the donors through a non-profit collaboration with the KK Women’s and Children’s hos-

pital. Identities of the patients were not provided or traceable. The collection of donor tissue

for constructing humanised mice for the purpose of studying human infectious diseases was

reviewed and approved by the SingHealth centralised institutional review board (CIRB Ref:

2012/064/F). Samples from 3 different donors were used to construct the HIL mice used in

this study (S1 Table).

All animal experiments were conducted according to protocols approved by our institu-

tion’s (Biological Resource Centre, Agency of Science, Technology and Research, Singapore)

institutional animal care and use committee (IACUC). Approval of IACUC protocols for the

construction of humanised mice (IACUC #120716 and #151034) and the establishment of a

mouse model for hepatitis C virus infection suitable for studying viral-host interactions in vivo

(IACUC #120740 and #151037) were obtained for the course of this study.

HIL mice

NSG mice were purchased from the Jackson Laboratory, bred and housed under specific path-

ogen free (SPF) conditions in animal facilities at the Agency of Science, Technology and

Research’s Biological Resource Centre in Singapore. The construction and infection of HIL

mice with HCV were performed as previously described [25]. Briefly, one to three day old

NSG pups were irradiated with a sub-lethal dose of 1Gy and transplanted with 2x105

CD34+ human foetal liver cells via intra-hepatic injections. Mice were intravenously infected

with HCV 8–12 weeks post-transplantation and studied for a period of 27–28 weeks. A total of

44 HIL mice were used in this study (S1 Table). Animal health status, water and food uptake

were monitored daily. Animals were euthanised by carbon dioxide asphyxiation at experimen-

tal endpoints or if there was evidence of weight loss of more than 10% body weight within 24

hours or more than 20% of their original weight prior to infections or major signs of animal

distress such as hunched posture, weakness or inability to feed or drink. All efforts were made

to minimise animal suffering.

HCV production and titration

A laboratory HCV strain known as the J6/JFH1-P47 [26] was used throughout this study. Pro-

duction and viral titration were performed as previously described [27].

Analysis of human serum albumin or serum alanine aminotransferase

levels

When indicated, 50–100 μl of blood was collected into EDTA-treated tubes by bleeding the

facial veins of mice. Facial vein bleeding was carried out without the use of anaesthetics or

analgesics as this procedure is minimally invasive and is an established method of sampling

blood from conscious mice. Blood samples were centrifuged at 2000 x g for 10 minutes at 4˚C

and the plasma fraction was collected for further analysis. Human serum albumin (HSA) levels

were determined using the human albumin ELISA kit (Bethyl Laboratories) according to the

manufacturer’s instructions. Serum alanine aminotransferase levels were measured using a

Cobas C111 analyser (Roche) in the veterinary diagnostic laboratory at the National University

of Singapore.

Immunohistochemical and immunofluorescence staining

Mouse livers were collected at the specified time points, fixed with 10% neutral buffered for-

malin and embedded in paraffin for processing into 4 micron sections. Sections were
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rehydrated and stained with Haematoxylin and Eosin (H&E) (Thermo Scientific) or Sirius red

and Fast green (Sigma) before pathology evaluation. Alternatively, sections were treated with

heat mediated antigen retrieval with pH6 sodium citrate or pH9 Tris-EDTA buffer before

staining with primary antibodies. Primary antibodies used in this study include anti-HSA

(ab2406, ab19180 Abcam), anti-CD3 (ab699, Abcam), anti-CD20 (555677, BD), anti-CD68

(ab955, Abcam), anti-PD1 (ab137132, Abcam), anti-β-catenin (610154, BD), anti-glutamine

synthetase (MAB302, Millipore), anti-LFABP (ab190958, Abcam), anti-IL6 (ab6672, Abcam)

and anti-IL10 (ab34843, Abcam).

Immunohistochemistry staining was performed using the Superpicture 3rd Gen IHC Detec-

tion Kit (879673, Life Technologies) while immunofluorescence staining was done using anti-

mouse IgG, anti-rabbit IgG or anti-Goat IgG secondary antibodies conjugated to Alexafluors

488 or 647 (Life Technologies). Images were captured using an Olympus upright confocal

microscope or a Zeiss Axioscan Z1 slide scanner.

HCV Fluorescent RNA in situ hybridisation

Formalin fixed liver sections were prepared as per immunohistochemical staining and stained

using the Quantigene ViewRNA ISH tissue assay kit (QVT0012, Affymetrix) and co-stained

with anti-HSA (ab2406, ab19180 Abcam) antibodies according to the manufacturer’s instruc-

tions. Two type 6 probe sets specific for HCV RNA (VF6-18614, VF6-11508) were used in this

study. Images were captured using an Olympus upright confocal microscope.

Pathological analyses of liver abnormalities

Liver sections were examined as blinded studies by a pathologist at the advanced molecular

pathology unit (AMPL) at the institute of molecular and cell biology in Singapore. Key obser-

vations made included liver fibrosis, necrosis, steatosis, granulomatous inflammation, focal

nodular hyperplasia and the presence of liver tumours in the form of hepatocellular adenomas

or hepatocellular carcinomas.

Flow cytometry

Mononuclear cells were extracted from livers and spleens as previously described [24]. Anti-

bodies against human CD3 (564307, BD), CD4 (563550, BD), CD14 (325608, BD), CD19

(563325, BD), CD45 (562279, BD), CD45RA (304106, BD), CD56 (304606, BD), CD69

(563835, BD), CD152/CTLA4 (349914, Biolegend), CD197/CCR7 (563449, BD), CD279/PD1

(329928, Biolegend), HLADR (641393, BD) and mouse CD45.1 (110730, BD) were used for

the staining of leukocytes. Flow cytometry data was acquired using a BD LSRII flow cytometer

and analysed with the Flowjo software (Treestar).

Cytokine detection

Detection of inflammatory cytokines, IFN-γ, MCP-1, IL6, IL8, IL10, IL12p70, IL17A, IL18 and

IL23 from plasma samples were performed using the Legendplex multi-analyte flow assay kit

(Biolegend) according to the manufacturer’s instructions.

Statistical analyses

Statistical analyses were done using a two-tailed Student’s T test to evaluate the statistical sig-

nificance of data generated. Differences in measured data were considered to be statistically

significant when p< 0.05.
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Results

HCV infected HIL mice have elevated serum ALT and HSA levels

To address the potential variations due to donor genetics, three cohorts of mice humanised

from different donors were studied (S1 Table). For cohort 1, mice were mock infected (PBS,

Huh7.5 culture media) or infected with 106 or 107 ffu of HCV. For cohorts 2 and 3, mice were

mock infected or infected with 107 ffu of HCV. At eight weeks post reconstitution, HIL mice

used in this study had a mean of ~39% human immune cell reconstitution in peripheral blood

and 23.79 ng/mL of HSA. To study the long term effect of HCV infection, HIL mice were

intravenously injected with mock, 106 or 107 ffu of J6/JFH1-P47 HCV (Genotype 2a) between

eight to twelve weeks after reconstitution and followed up for twenty eight weeks.

Serum alanine aminotransferase (ALT) levels were measured prior to and at monthly time

points after the introduction of HCV as a non-invasive method for assessing the presence of

liver damage (Fig 1). Normal ALT values published for mice are 17–77 U/L. In the first cohort

of mice (S1 Table), Mock infected mice had ALT levels ranging from 18.64 to 53.12 U/L. None

of the mice infected with 106 ffu dose of HCV had increased ALT levels whereas 2 of 5 (40%)

of mice infected with a 107 ffu dose of HCV had elevated serum ALT levels (Fig 1A). Based on

this observation we surmised that a higher dose of HCV induced a higher incidence of liver

damage. Subsequent cohorts of mice were therefore infected with a 107 ffu dose of HCV. For

cohorts 2 and 3, mock infected mice had ALT levels ranging from 6.08 to 39.36 U/L (cohort 2)

and 12.16 to 265.92 U/L (cohort 3) throughout the course of study. 1 of 6 (17%) mouse from

the mock infected group and 7 of 16 (44%) mice from the group infected with a 107 ffu dose of

HCV had elevated serum ALT levels (Fig 1C and 1E).

HSA levels were also measured to gauge the initial level of human hepatocyte reconstitution

and to track the subsequent proliferation of the human hepatocytes during the course of the

study. With the exception of 1 mouse, levels of HSA appeared constantly under 50 ng/mL in

12 of 13 (92%) mock infected mice while 3 of 10 (30%) and 6 of 21 (29%) mice infected with a

106 or 107 ffu dose of HCV respectively, showed elevated levels of HSA ranging from 54 to 180

ng/mL (Fig 1B, 1D and 1F).

In cohorts 1, the earliest elevations of serum ALT levels were observed at 7–16 weeks post

HCV infection. However, increased serum ALT levels were only recorded after 16–21 weeks

post HCV infection in cohorts 2 and 3, which could be attributed to the difference of human

donor genetics. Elevations of HSA were constantly observed by 9 weeks post infection in all 3

cohorts, although no obvious correlations between increased serum ALT and HSA levels were

noted (S2 Table). These results suggest that human hepatocytes in HIL mice may undergo

expansion after HCV infection. Readings of serum ALT and HSA are also available as (S3

Table).

HCV infected HIL mice do not develop long term viraemia

We previously reported that HCV RNA could only be detected after purification of human

epidermal growth factor receptor expressing cells from mouse livers but not by directly assay-

ing total RNA extracted from mouse plasma or livers [25]. To increase the sensitivity of our

HCV detection assay, a pre-amplification step was performed prior to qPCR. Plasma from

HIL mice spiked with known amounts HCV RNA were used to determine the sensitivity of

this assay to a detection limit of 23 copies of HCV RNA per 100 μl of plasma. However, no

HCV RNA could be detected from plasmas of infected HIL mice at 5, 9 or 28 weeks post infec-

tion (Panel A in S1 Fig). Similarly, although we were able to detect HCV RNA in fixed liver

sections in mice 9 weeks post HCV infection in an RNA in situ hybridisation assay, no HCV
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RNA could be detected from any HCV infected mice at 20–28 weeks post infection (Panel B in

S1 Fig). Collectively, these findings suggest that there was no detectable long term viraemia in

these mice.

HCV infected HIL mice developed liver pathological changes

Although monitoring of serum ALT levels is one of the most commonly used non-invasive

diagnostic methods for detecting liver damage, many HCV infected patients with significant

liver disease present normal levels of serum ALT [28, 29]. To confirm the presence of liver

Fig 1. Longitudinal serum ALT and human albumin levels in HIL mice post HCV infection. 3 cohorts of HIL mice were either mock

infected or infected with a 106 or 107 ffu dose of HCV. For mice that survived more than 8 weeks, serum taken from each mouse every

month were analysed (Cohort 1: mock n = 8, 106 ffu HCV n = 10, 107 ffu HCV n = 10. Cohort 2: mock n = 10, 107 ffu HCV n = 13. Cohort 3:

mock n = 3, 107 ffu HCV n = 11). (A, C, E) Serum ALT and (B, D, F) HSA levels were measured at various time points for a period of 27–28

weeks post HCV infection.

https://doi.org/10.1371/journal.pone.0184127.g001
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disease, histological analyses were performed on livers harvested from HIL mice between 20 to

28 weeks post infection from three different cohorts of mice (Fig 2 and Table 1). Mice that did

not survive beyond 20 weeks post HCV infection were excluded from this study. Livers har-

vested from mock infected mice appeared normal (Fig 2A) which was confirmed by H&E

staining (Fig 2B) while superficial lesions of nodular patterns were observed in some of the liv-

ers from HCV infected mice (Fig 2A). A total of 10 mice were infected with a 106 ffu dose of

HCV. None from this group were found to have developed liver fibrosis, which could be visu-

alised by Sirius Red/Fast green stains, however, 3 (30%) were found with liver necrosis, 1

(10%) with focal or diffuse hepatic vacuolation, indicative of liver steatosis and 8 (80%) with

granulomatous inflammation. No benign or malignant neoplasms were detected in this treat-

ment group at 20–28 weeks post infection (Table 1).

Of the 21 mice infected with 107 ffu HCV, 1 (5%) was found with steatosis (Fig 2C), 7 (33%)

with liver necrosis, 2 (10%) with liver tumours in the form of hepatocellular adenomas

Fig 2. Liver abnormalities detected in HCV infected mice at 27 weeks post infection. (A-H) Livers were

harvested from mice in the mock and HCV infected groups, paraffin-embedded and processed for staining

with (B-G) haematoxylin and eosin or (H) Sirius red/fast green stains. (A) Representative image showing

gross appearance of livers obtained from either mock or HCV infected mice at 27–28 weeks post infection.

Representative image of H&E stains showing (B) normal liver from mock infected mice and (C) steatosis, (D)

hepatocellular adenoma, (E) hepatocellular carcinoma, (F) granulomatous inflammation, (G) focal nodular

hyperplasia and (H) liver fibrosis from livers harvested from HCV infected mice.

https://doi.org/10.1371/journal.pone.0184127.g002
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(Fig 2D) and carcinoma (Fig 2E), 16 (76%) with granulomatous inflammation (Fig 2F), 1 (5%)

with focal nodular hyperplasia (Fig 2G) and 5 (24%) were found to have liver fibrosis (Fig 2H).

Compared to the group of mock infected mice, both HCV infected groups had increased fre-

quencies of liver fibrosis, steatosis and granulomatous inflammation. Developments of liver

necrosis were seen in around 20–30% of all mice from both infected and mock infected groups,

suggesting that necrosis was not caused by HCV infection but by other factors such as the old

age of mice at the time of analysis. No signs of liver fibrosis, steatosis or tumours were detected

in mock infected mice, although 2 (20%) of 10 mice had minimal liver necrosis and 4 (31%)

were found to have minimal granulomatous inflammation (Fig 2 and Table 1).

Liver tumour formation in HCV infected HIL mice

As shown above, we observed the formation of both hepatocellular adenomas and carcinomas

in 10% of HCV infected mice and 5% with benign growths in the form of focal nodular hyper-

plasia (Table 1 and Fig 2). Intranuclear cytoplasmic invaginations of acidophilic inclusions

were also observed within the adenomas (Fig 2D).

The presence of multiple tumour types were noted in some mice, for instance, two separate

regions of hepatocellular carcinoma were detected in the liver section from one HCV infected

mouse (Fig 3A). Both regions of hepatocellular carcinoma localised within larger hepatocellu-

lar adenomas (Fig 3B and 3C), suggestive of malignant transitions of the hepatocellular adeno-

mas into hepatocellular carcinomas. To assess if the HCC containing tumour regions were

populated by cells of human or mouse origin, liver tumour sections were stained for human

serum albumin. Results revealed that the tumours were comprised of a mixture of both human

and mouse cells (Fig 3D–3F). Other liver tumours formed in this study were also analysed

using the same methodology, revealing similar results, suggesting that all tumours contained

both human and mouse cells. Percentages of human albumin+ cells vary between tumours,

ranging from an estimated 33% to 91% with a mean of 62% whereas adjacent non-tumour

regions range from 16 to 18% with a mean of 17%. Mock infected mice show similar percent-

ages of HSA positive cells to non-tumour regions with a range of 9 to 18% with a mean of 14%

(Fig 3G). These results suggest that in HCV infected HIL mice, human hepatocytes were spe-

cifically transformed into tumour cells and mouse cells in the same vicinity of actively dividing

human tumour cells were engulfed and incorporated into the tumours. This hypothesis was

further evidenced by pathological analyses: 29 randomly sampled mitotic cells within various

tumours were counted, of which 27 expressed HSA (Fig 3H) whereas 2 did not (Fig 3I), dem-

onstrating that a majority (93%) of actively dividing cells within the liver tumours were human

cells. To exclude the possibility of non-specific binding of the anti-HSA antibody, liver sections

from wild-type mice and mice with CpG oligodeoxynucleotide induced liver tumours were

used as controls for staining. No positive staining was observed in the mouse hepatocytes in

normal mouse livers (Panels A and B in S2 Fig) or mouse tumours, although regions of mouse

tumours showed higher background compared to normal livers (Panels C and D in S2 Fig).

Table 1. Frequencies of liver abnormalities in HCV infected mice.

Fibrosis Necrosis Steatosis Granulomatous

inflammation

Focal nodular

hyperplasia

Hepatocellular

adenoma

Hepatocellular

carcinoma

Mock 0/13 4/13 0/13 4/13 0/13 0/13 0/13

106 HCV 0/10 3/10 1/10 8/10 0/10 0/10 0/10

107 HCV 5/21 7/21 1/21 16/21 1/21 2/21 1/21

Total

HCV

5/31 10/31 2/31 24/31 1/31 2/31 1/31

https://doi.org/10.1371/journal.pone.0184127.t001
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Fig 3. Majority of dividing cells in liver tumours are of human origin. (A-C) H&E stain of a hepatocellular

adenoma containing liver section. (B&C) Nodular growth, loss of normal architecture with irregular growth

pattern and compression of the surrounding parenchyma. (D-F) Serial section stained using an antibody

specific against HSA showing 80–90% human albumin positivity within the liver tumours. (G) HSA expressing

hepatocytes of mock (n = 3), non-tumour (n = 2) and tumour (n = 2) regions within liver sections were counted

and expressed as a percentage of total hepatocytes. Percentages represent averaged counts of HSA

expressing hepatocytes against total hepatocytes from five randomly selected 500 x 250 μm regions per

sample. Error bars represent standard error of the means. (H-I) Representative images of mitotically active

hepatocytes that (H) express HSA or (I) do not express HSA.

https://doi.org/10.1371/journal.pone.0184127.g003

HCV induced liver pathogenesis and tumorigenesis in HIL mice

PLOS ONE | https://doi.org/10.1371/journal.pone.0184127 September 8, 2017 9 / 19

https://doi.org/10.1371/journal.pone.0184127.g003
https://doi.org/10.1371/journal.pone.0184127


These results confirmed that the staining in HIL mouse livers and tumours were specific for

HSA (Panels E and F in S2 Fig).

The hepatocellular adenomas found in HCV infected HIL mice were further characterized

by the expression of β-catenin, glutamine synthetase and liver fatty acid binding protein

(LFABP) according to previous studies [30–32]. Liver sections from both mice with hepatocel-

lular adenomas showed no nuclear localisation of β-catenin, with negative or focal staining of

glutamine synthetase suggesting that none of the adenomas were β-catenin mutated (Panels A

and B in S3 Fig). LFABP staining was negative in all adenomas from one HCV infected mouse

(Panel A in S3 Fig) and positive in all adenomas from the other HCV infected mouse (Panel B

in S3 Fig). Although only two HCV infected HIL mice in this study developed hepatocellular

adenomas, our data demonstrates that both HNF1a inactivated and inflammatory adenomas

can develop in this model.

Human CD3 T cells and CD68 monocytes/macrophages are the major

immune cell types present in chronically inflamed HCV infected livers

To visualise the infiltration of human immune cells, liver sections were stained using an anti-

body specific against human CD45, a pan-leukocyte marker. Livers from mock-infected HIL

mice showed evenly distributed human leukocytes with no obvious signs of inflammation (Fig

4A and 4B). At 20–28 weeks post infection, an increased amount of human CD45+ cells was

observed in livers of HCV infected mice (Fig 4C–4F). In tumour regions, the accumulation of

human leukocytes with patterns resembling granulomatous inflammation was observed within

the tumours, especially at regions with steatosis (Fig 4D) and at the tumour peripheries (Fig

4E). Non-tumour regions in HCV infected livers also showed increased amount of infiltrating

human leukocytes and granulomatous inflammation (Fig 4F).

In an earlier study, we have shown that HCV infection stimulated responses from human

monocytes/macrophages and T cells during the early stage of infection (~9 weeks post infec-

tion) [25]. To investigate which immune cell types contributed to the chronic inflammation

in this long term study, liver sections from mice 27 weeks post infection were stained with

antibodies against human CD68, CD3 and CD20 which are markers of monocytes/macro-

phages, T cells and B cells respectively. CD68 staining revealed the presence of aggregated

monocytes/macrophages in multiple granulomatous inflammation (Fig 4G). CD3+ T cells

were also found infiltrated in various regions (Fig 4H), however, only a few CD20+ B cells

were detected (Fig 4I). These findings are consistent with previous clinical observations that

T cells and monocytes/macrophages both play a major role in HCV induced chronic hepati-

tis [33–37].

To analyse the human inflammatory cytokines in HCV infected HIL mice, plasma from

HIL mice in all 3 cohorts were assayed for a panel of 9 inflammatory cytokines including inter-

feron gamma (IFN-γ), monocyte chemoattractant protein 1 (MCP-1), interleukins (IL) 6, 8,

10, 12p70, 17A, 18 and 23. Of these cytokines, significantly increased levels of MCP-1, IFN-γ
and IL18 were detected in plasmas of HIL mice infected with a 107 ffu dose of HCV at 27–8

weeks post infection (Fig 4J). MCP-1, IFN-γ and IL18 were also reported to be elevated in the

plasmas of HCV infected individuals and have been implicated in macrophage and T cell func-

tions during HCV infection [38–41].

To determine if HCV infections had affected the immune profiles of HIL mice, absolute

leukocyte counts coupled with flow cytometric analyses were performed on leukocytes col-

lected from spleen and livers from HIL mice in cohorts 2 & 3 at 27–28 weeks post HCV infec-

tion. A representative flow cytometric gating strategy plot is shown as (S4 Fig).
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HIL mice infected with a dose of 107 ffu of HCV had enlarged livers and spleens with

increased numbers of leukocytes compared to mock controls (Liver, Mock: 1.09 ± 0.30 x 106

cells, HCV: 7.19 ± 2.52 x 106 cells, p = 0.03; Spleen, Mock: 36.51 ± 11.79 x 106 cells, HCV:

70.64 ± 15.66 x 106 cells, p = 0.05) (Fig 5A and 5B). Although no significant changes in propor-

tions of different immune cell types were detected in the livers and spleens of HCV infected

mice compared to mock infected mice (S5 Fig), analysis of liver leukocytes revealed signifi-

cantly increased numbers of human CD45+ leukocytes, CD56+ NK cells and CD4+ T cells in

HCV infected mice. Amongst the liver CD4+ T cells, CD4+HLADR+ activated T cells,

CD4+CD45RA-CCR7- effector memory and CD4+CD45RA-CCR7+ central memory cells were

significantly increased compared to mock infected mice (Fig 5A). The spleens of HCV infected

mice contained significantly increased numbers of human CD14+ monocyte/macrophages,

CD56+ NK cells, total CD4+ T cells, CD4+HLADR+ activated T cells, CD4+PD1+CTLA4+ T

cells, CD4+CD45RA-CCR7- effector memory and CD4+CD45RA-CCR7+ central memory T

cells, and total CD8+ T cells compared to mock infected mice (Fig 5B). Collectively these

results are similar to clinical data obtained from chronically infected HCV patients [33, 40,

42–44].

Fig 4. Human immune cell infiltration and inflammation in HCV infected HIL mice. Liver sections from

(A-B) mock infected or (C-F) HCV infected HIL mice 27 weeks post infection were stained for human CD45

and counterstained with haematoxylin. Representative images showing (A) liver from mock infected HIL mice,

(B) high magnification of an area in mock infected mice (Squared region), (C) liver from HCV infected HIL

mice, (D-E) high magnification of areas in a hepatocellular adenoma from HCV infected mice, and (F) high

magnification of an area in a non-tumour region from HCV infected mice. (G-I) Representative images

showing human (G) CD68, (H) CD3 and (I) CD20 stains within hepatocellular adenoma in HCV infected mice.

(J-K) Plasma samples at 27–28 weeks post infection were quantified for the presence of human cytokines: (J)

IL10, IL12p70, IL17A, IL23 (K) MCP-1, IL6, IL8, IL18 and IFN-γ. Mock n = 10, 106 ffu HCV n = 5, 107 ffu HCV

n = 16.

https://doi.org/10.1371/journal.pone.0184127.g004
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Localisation of exhausted like T cells and pro-tumour M2 macrophages

in the livers of HCV infected HIL mice

One of the important dysfunctions that occur during chronic viral infections and tumorigene-

sis is the progressive exhaustion of T cells which express PD1 and CTLA4 [45, 46]. Although

PD1+ T cells had been detected in HCV infected HIL mouse liver by flow cytometry (Fig 5A),

immunofluorescence was also applied to visualise the location of these T cells within the liver.

Histological analyses revealed that CD3+ T cells in livers from mock infected mice were gener-

ally dispersed evenly throughout the liver and were negative for PD1, whereas aggregation of

CD3+PD1+ T cells were seen in inflamed regions in both non-tumour and tumour regions of

HCV infected livers (Fig 6A).

Macrophages can be further classified into pro-inflammatory (M1) or pro-tumour (M2)

phenotypes [47–49]. To visualise liver M1 or M2 macrophages, liver sections were stained

using antibodies against CD68, a pan-macrophage marker with IL6 (Fig 6B) or IL10 (Fig 6C)

which are the respective M1 or M2 macrophage markers. CD68+ macrophages within unin-

fected livers generally do not form multinucleated giant cell formations and expressed IL6 but

Fig 5. Human immune cell composition and phenotyping in HCV infected HIL mice. Leukocytes were

prepared from livers and spleens of mock infected or mice infected with 107 ffu of HCV 27 weeks post

infection and analysed by flow cytometry. Shown are absolute numbers of various immune cell populations in

(A) livers or (B) spleens of mock or HCV infected mice. Error bars represent standard error of the means.

Mock n = 5, 107 ffu HCV n = 12.

https://doi.org/10.1371/journal.pone.0184127.g005
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not IL10, indicating that they are primarily of the M1 phenotype. In contrast, both M1 and M2

macrophages were seen within and outside of tumour regions in HCV infected livers, often

forming multinucleated cell structures (Fig 6B and 6C). Quantification of PD1+ T cells, M1

and M2 macrophages revealed increased total numbers of all three cell types in the livers of

HCV infected mice compared to mock infected mice (Fig 6D).

Collectively, our data suggests that HCV infections can trigger long-term inflammation and

human immune cell infiltrations of livers in humanised mice. Most importantly, exhaustion

and tumour associated phenotypes such as PD+ T cells and M2 macrophages, which are typi-

cally detected in patients with chronic hepatitis were reproduced in this model.

Fig 6. Deposition of human T cells and macrophages in non-tumour and tumour regions in the livers of HCV infected HIL mice.

Livers sections from mock infected and HCV infected HIL mice 27 weeks post infection were stained for human CD3, PD1, CD68, IL6 and

IL10. Representative images are shown for the stains of (A) CD3 and PD1, (B) CD68 and IL6 and (C) CD68 and IL10. Scale bars represent

50 μM. (D) Total number of CD3+PD1+, CD68+IL6+ or CD68+IL10+ cells were counted from five randomly selected 310 x 310 μm regions

from mock liver sections, non-tumour or tumour regions from HCV infected HIL mice. Error bars represent standard error of the means.

https://doi.org/10.1371/journal.pone.0184127.g006
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Discussion

In our previous study, we described HCV mediated liver pathogenesis in HIL mice for up to 9

weeks post infection. While the onset of inflammation and liver fibrosis were noted, liver

tumorigenesis was not detected potentially because a longer duration was required for the

development of tumours. In this study, HCV infected HIL mice were analysed 20–28 weeks

post infection and were found to have increased frequencies of liver abnormalities such as liver

fibrosis, steatosis and granulomatous inflammation; symptoms also observed in patients with

chronic HCV infections. These findings demonstrate that hepatitis C pathogenesis is able to

progress beyond 27 weeks in the HIL mouse model. Despite the observations of chronic hepa-

titis, viraemia could not be detected from plasma or livers of infected mice. One of the limita-

tions of this study is the difficulty of detecting HCV RNA using non-sacrificial sampling

methods. We have demonstrated previously that HCV RNA could only be detected after

extracting RNA from purified human hepatocytes in infected HIL mice [25], although this

renders the liver tissue unusable for histopathological analyses. Here, although we were able to

detect HCV RNA in fixed liver tissues 9 weeks post infection in RNA in situ hybridisation

assays, no HCV RNA was detected at 20–28 weeks post infection. No HCV RNA could be

detected either, from sera of infected mice at 9 or 20–28 weeks post infection. This suggests

that initial infection of HCV was sufficient to induce onset of liver inflammation, which persist

28 weeks post infection potentially due to other factors such as secondary infections; an obser-

vation also seen in some HCV patients who have achieved SVR but without improvement in

liver inflammation [50]. One of the observations supporting this hypothesis is the presence of

granulomatous inflammation, shown to be mediated by CD68 expressing monocyte/macro-

phages, and is consistent with a chronic viral infection phenotype [51, 52]. This was accompa-

nied by increased levels of MCP-1, a chemokine that functions by stimulating migration and

infiltration of monocytes and macrophages (Fig 4J).

Significant human T cell responses, evidenced by increased numbers of effector memory,

central memory and HLA-DR expressing CD4+ T cells were found in livers and spleens of

HCV infected HIL mice. As shown in our previous work, the increased numbers of activated

CD4+ T cells accounted for the elevated levels of plasma IFN-γ in infected HIL mice [25].

Although exhaustion of CD4+ and CD8+ T cells have been described by many clinical studies

during chronic viral infection [44, 45], we found that there were more CD4+ T cells expressing

PD1 and CTLA4 compared to CD8+ T cells in this model. One potential explanation for this is

the observation that exhaustion of CD4+ T cells becomes apparent earlier during chronic viral

infection as compared to CD8+ T cells [46]. In addition, another chronic inflammation associ-

ated phenotype is the accumulation of M2 Macrophages, which was also observed in this

study. Collectively, our data showed that the immune cell types primarily responsible for sus-

taining chronic inflammation in infected HIL mice were human monocyte/macrophages and

T cells. This is consistent with findings from the early stage of infection by HCV [25]. These

observations support the rationale of specifically targeting the immune component to treat

chronic HCV pathogenesis [53]. Even though mice in each cohort have received cells from the

same foetal liver, variations of long term HCV pathogenesis were observed in these mice. This

is likely explained by the differences such as the degree of immune cell and human hepatocyte

reconstitution, environmental factors or other health status. Mouse models that support high

levels of human hepatocyte reconstitution without a humanised immune system such as the

SCID/Alb-uPA or Fah/Rag2/Il2rg mice have been shown recently to be capable of supporting

long term HCV infection but fail to reproduce the pathological outcomes of hepatitis C infec-

tions [19, 20]. These observations along with our data and recent findings made in HCV
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infected AFC8-hu HSC/Hep mice [21] suggest that humanisations of both the immune system

and liver are crucial for the progression of HCV mediated chronic liver inflammation.

Although the formation of liver tumours is a rare occurrence in this study, we report that

HCV infected HIL mice can develop liver tumours by 20–28 weeks post infection with inci-

dence rates of 2 of 31 (6%) HCV infected mice forming hepatic tumours. Clinical studies

report that approximately 1–3% of chronically infected patients developed HCC which are

diagnosed over a mean timeframe of 28±11 years [5, 6, 54]. Although none of the mice in this

study developed chronic viral infections, our findings are similar in that 1 of 31 (3%) HCV

infected mice developed HCC after 20–28 weeks post infection. The formation of liver

tumours in HCV infected HIL mice without HCV viraemia suggest that this mouse model

may mimic cases of clinical hepatitis C where patients previously infected with HCV still

develop HCC after achieving SVR [55–58]. Since no long term viraemia could be detected at

20–28 weeks post infection, we hypothesise that initial infection by HCV contributes to the

induction of chronic inflammation, which in turn unremittingly stimulates liver regeneration

and may eventually lead to liver tumorigenesis. Majority of the mitotic cells within the

tumours were human HSA+ cells, suggesting that this process had selectively transformed

human hepatocytes. Since HIL mice possessed approximately 5% human hepatocyte reconsti-

tution, it is possible that initial infections of a small percentage of hepatocytes could be suffi-

cient to initiate tumorigenesis.

Further classification of the hepatocellular adenomas revealed that of 2 hepatocellular ade-

nomas, 1 was inflammatory, 1 was HNF1-alpha inactivated and none were β-catenin mutated.

Multiple adenomas formed in a single mouse were consistently of a single type. Clinical data

estimates that the incidences of inflammatory, HNF1-alpha inactivated, β-catenin mutated

and unclassified hepatocellular adenomas to be 50%, 35–40%, 10–15% and 10% respectively

[59]. Hence, it is possible that only inflammatory and HNF1-alpha inactivated adenomas were

detected in this study due to the small sample size. Our study of HCV infections in a novel

humanised mouse model revealed that initial HCV infections of a small number of human

hepatocytes may be sufficient to induce chronic liver inflammation, development of exhaus-

tion immune cell phenotypes and selective transformation of human tumours in humanised

mice. These findings provide new insight on HCV pathogenesis, human specific immune

responses, and potentially provide a platform for drug testing against chronic hepatitis.

Supporting information

S1 Table. Details of mice cohorts used in this study.

(TIF)

S2 Table. Correlation of mice with elevated ALT and HSA levels throughout the 27 week

course of study.

(TIF)

S3 Table. Serum ALT and HSA values.

(TIF)

S1 Fig. (A) RNA extracted from mouse sera or HCV spiked sera samples were converted to

cDNA and analysed via qPCR. HCV RNA was detected to 23 copies per 100ul sera in the

spiked samples. No HCV RNA was detected from mock or HCV infected sera at weeks 5, 9 or

28 post infection. (B) Detection of HCV RNA by fluorescence in situ hybridisation. Formalin

fixed paraffin embedded liver sections from mock infected mice or HCV infected mice at 9

and 20 weeks were stained with anti-HSA antibodies (green) and RNA probe sets specific

against HCV RNA (red). HCV RNA was detected in HSA expressing hepatocytes in the livers
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of HCV infected HIL mice at 9 weeks but not at 28 weeks post infection or in mock infected

mice. Representative images are shown. Scale bars represent 20 μM.

(TIF)

S2 Fig. Staining of liver sections with a HSA specific antibody showing background stain-

ing in normal mouse liver (A, D), in CpG oligodeoxynucleotide induced mouse liver

tumours (B, E) or in HCV induced liver tumours in HIL mice (C, F). (A, B, D, E) Positive

staining can be seen in the blood vessels and liver sinusoids but not in the mouse hepatocytes.

(C, F) Positive staining of human hepatocytes within the hepatocellular adenoma and a portion

of cells outside of the tumour demonstrates the specificity of the HSA antibody.

(TIF)

S3 Fig. Classification of hepatocellular adenomas formed in HCV infected HIL mice. Liver

sections containing hepatocellular adenomas were classified by staining with antibodies

against β-catenin, glutamine synthetase and liver fatty acid binding protein as (A) HNF1α
inactivated or (B) inflammatory hepatocellular adenomas.

(TIF)

S4 Fig. Gating strategy for analysing the immune profiles of HIL mice.

(TIF)

S5 Fig. Immune profiles of HIL mice expressed as proportions of total human leukocytes.

(TIF)
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