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Abstract

The New York City Department of Health and Mental Hygiene has operated an emergency

department syndromic surveillance system since 2001, using temporal and spatial scan sta-

tistics run on a daily basis for cluster detection. Since the system was originally imple-

mented, a number of new methods have been proposed for use in cluster detection. We

evaluated six temporal and four spatial/spatio-temporal detection methods using syndromic

surveillance data spiked with simulated injections. The algorithms were compared on sev-

eral metrics, including sensitivity, specificity, positive predictive value, coherence, and time-

liness. We also evaluated each method’s implementation, programming time, run time, and

the ease of use. Among the temporal methods, at a set specificity of 95%, a Holt-Winters

exponential smoother performed the best, detecting 19% of the simulated injects across all

shapes and sizes, followed by an autoregressive moving average model (16%), a general-

ized linear model (15%), a modified version of the Early Aberration Reporting System’s C2

algorithm (13%), a temporal scan statistic (11%), and a cumulative sum control chart (<2%).

Of the spatial/spatio-temporal methods we tested, a spatial scan statistic detected 3% of all

injects, a Bayes regression found 2%, and a generalized linear mixed model and a space-

time permutation scan statistic detected none at a specificity of 95%. Positive predictive

value was low (<7%) for all methods. Overall, the detection methods we tested did not per-

form well in identifying the temporal and spatial clusters of cases in the inject dataset. The

spatial scan statistic, our current method for spatial cluster detection, performed slightly bet-

ter than the other tested methods across different inject magnitudes and types. Further-

more, we found the scan statistics, as applied in the SaTScan software package, to be the

easiest to program and implement for daily data analysis.
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Introduction

In the autumn of 2001 the New York City (NYC) Department of Health and Mental Hygiene

(DOHMH) established an emergency department (ED) syndromic surveillance system to

detect and track disease outbreaks and illness in the city. We described this system in 2004 [1],

along with an initial evaluation of the spatial scan statistic, the aberration detection method

used to detect spatial clusters of disease [2]. In the years since implementing these early sys-

tems, there has been a broadening of the practice of syndromic surveillance to include uses as

diverse as the monitoring of animal and human related injuries [3,4], tattoo related infections

[5], seasonal and pandemic influenza surveillance [6–8], and monitoring of the health effects

of pollen and particulate matter air quality [9]. There have also been significant developments

in the field of syndromic surveillance, related to the adoption of standardized data technology,

i.e. Health Level 7 (HL7) messaging [10], and modifications to existing statistical methods for

disease cluster detection [11–13].

A number of studies have investigated temporal [12,14–19] and spatial/spatio-temporal

[11,20–22] method performance, with a focus on detecting large simulated outbreaks within

simulated and actual syndromic data. While the majority of these studies have found good sen-

sitivity with detecting large, rapid increases in cases, most have been less successful with find-

ing smaller outbreaks, which are more likely to occur in practice. Furthermore, these studies

show that using as much historical data that is available can be beneficial [20], as well as testing

methods on multiple outbreak types and data streams of differing baseline counts [15,20],

including varying day of week and seasonal patterns [21]. Finally, adjusting for these temporal

patterns can significantly improve performance [14,20,23]. However, few of these studies com-

pared performance between multiple spatial/spatio-temporal methods.

Our goal in this study was to evaluate alternative statistical methods for use in ED syndro-

mic surveillance and compare their performance to our current temporal and spatial methods.

Thus, methods were evaluated based on their ability to detect simulated injects in actual syn-

dromic data, as well as their ease of development and implementation into a daily surveillance

system in a state or local health department.

Methods

Ethics statement

We did not submit this project to the NYC DOHMH Institutional Review Board, as the exist-

ing data are collected as part of routine public health surveillance, could not be linked to indi-

viduals, and were analyzed anonymously.

Data collection

At the time of this study, data from 51 hospital EDs in NYC, comprising approximately 98% of

all annual ED visits, are transmitted electronically to DOHMH daily in either flat files via file

transfer protocol or as HL7 messages. Variables transmitted include date and time of patient

visit, medical record number, patient demographics including age, sex, and residential ZIP

code, the reason for visit or chief complaint, how the patient arrived at the ED, and discharge

diagnosis (International Classification of Diseases Code version 9 and 10). For our syndrome

classifier, a text processing algorithm scans the free-text chief complaint field to identify key-

words indicative of a syndrome, such as “cough”, “sore throat”, and “fever” for influenza-like

illness, while accounting for misspellings, abbreviations, and negations. Each visit is then cate-

gorized into one of several syndromes, including but not limited to, asthma, respiratory, diar-

rhea, vomit, fever/influenza, and influenza-like illness, as previously described [2,7]. A more
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complete description of our keywords and syndromes is found in Heffernan, et al. [2]. All text

processing and data management is done using SAS (version 9.4, SAS Institute Inc, Cary, NC).

Training and spiked datasets

We used daily NYC syndromic data from 2007–2009 as a training dataset to fine tune the mod-

els. Each model was run on these data and final parameters were chosen. Then, to test the out-

break detection capabilities of the methods, we created datasets containing a baseline of real

syndromic data spiked with one simulated inject. Each baseline contained 730 days, starting

January 1, 2010 and ending December 31, 2011. Simulated injects were created based on four

characteristics: magnitude, epidemic curve shape, duration, and number of ZIP codes affected.

Inject magnitude M was based on Fricker, et al. [14] and defined for each season (winter,

spring, summer, and autumn) as small (M = [μ + 3σ]/4), medium (M = [μ + 3σ]/2), and large

(M = [μ + 3σ]) where μ and σ are the mean and standard deviation, respectively, of the syn-

drome during the season-specific study period. The total number of injected cases was then dis-

tributed over time according to three shapes of epidemic curve: single-day spike, point source

exposure, and propagated transmission. A single-day spike is composed of a single day in

which the count of a particular syndrome exceeds its expected value. The inclusion of a one-day

outbreak in our analysis reflects knowledge of similar prior disease outbreaks in NYC and else-

where. A point source exposure is based on a single time-limited exposure, with cases distrib-

uted according to a simple bell-shaped epidemic curve and following the analytic expression to

calculate the cumulative fraction of infected cases: F(t) = 1/(1+exp(-0.1×t)×((1–0.01)/0.01))

(Fig 1A) [24]. Three durations were considered: 3 days, 5 days, and 15 days. A similar approach

was applied to the empirical frequency distribution used for the propagated transmission. The

propagated transmission reflects person-to-person infection, where the syndrome count above

expected is based on communicability and incubation period (Fig 1B) [24]. The cumulative

fraction of infected cases for each day d of an outbreak of duration D, as represented by:

t = d×32/D. The duration of a propagated transmission was randomly selected as a number of

days between 15 and 32 days; we limited duration to approximately one month mainly for prac-

tical purposes. The number of cases for each day of the inject period was computed using

Monte Carlo simulation and the three cumulative epidemic curve types [15]. For an inject of

magnitude M, a series of M random numbers pl uniformly distributed between 0 and 1 were

generated and each of the M inject cases was assigned to the day d such that F(d-1)< pl� F(d).

The result is a specified number of cases for each day of the outbreak {M(d), d = 1,. . .,D}, where

Fig 1. Epidemic curves for (A) point-source exposure and (B) propagated transmission.

https://doi.org/10.1371/journal.pone.0184419.g001
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D is the total number of days in the outbreak, such that:

M ¼
XD

d¼1

MðdÞ

Once the M cases were temporally distributed among the D days of the inject period, they

were then spatially distributed among ZIP codes using Monte Carlo simulation. The allocation

of cases to ZIP codes was straightforward if the inject concerned a single ZIP code. For clusters

of S ZIP codes (2� S� 10; given the kernel ZIP code and cluster size S, other members of the

cluster were selected as the (S-1) ZIP codes that are the closest to the kernel ZIP code based on

Euclidean distances between their geographical centroids) and citywide outbreaks (all ZIP

codes in NYC), the proportion of the total number of visits recorded on each day d was com-

puted for each ZIP code z which is a member of that cluster. We limited the maximum number

of ZIP codes in a cluster to 10. The S NYC ZIP codes were then ranked according to their

share of the total number of visits and a cumulative frequency distribution Fd(z) was built. To

allocate the M(d) cases simulated on the d-th day, a series of M(d) random numbers pl uni-

formly distributed between 0 and 1 were generated and each of the M(d) cases was assigned to

the ZIP code z such that Fd(z-1)< pl� Fd(z). The result is a specific number of injected cases

for each day of the outbreak and each ZIP code {M(d;z), d = 1,. . .,D; z = 1,. . .,S} such that:

MðdÞ ¼
XS

z¼1

Mðd; zÞ

These injects were randomly inserted within the two year baseline while ensuring each sea-

son had an equal number of injects to account for seasonality. Characteristics of the average

daily counts of the different syndromic baselines, before the simulated injections were inserted,

are described in Table 1.

In summary, a total of 300 citywide datasets, ranging in magnitude of 1 to 343 excess daily

cases, and 120 spatial datasets, ranging in magnitude of 1 to 26 daily excess cases, were created.

The characteristics of the simulated injections for the temporal analysis is given in Table 2.

Table 1. Daily count distributions of tested syndrome baselines.

Syndrome Minimum Maximum Mean Standard deviation

Temporal

Diarrhea 65 309 144 42

Fever/Influenza 306 1093 563 113

Influenza-like illness 51 555 187 87

Respiratory 349 1528 793 218

Vomit 147 525 287 66

Spatial (ZIP Code)

Respiratory 0 48 4 5

https://doi.org/10.1371/journal.pone.0184419.t001

Table 2. Characteristics of simulated temporal injects, daily counts.

Syndrome Min Max Mean Number of injects

Diarrhea 1 86 6 60

Fever/Influenza 1 315 17 60

Influenza-like illness 1 205 10 60

Respiratory 1 343 20 60

Vomit 1 110 7 60

https://doi.org/10.1371/journal.pone.0184419.t002
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Because computational intensity was significantly higher for the spatial/spatio-temporal

methods, we inserted injects into only one syndrome in order to reduce overall processing

time (Table 3).

Method selection

The DOHMH ED syndromic surveillance system at study onset used the SaTScan temporal

and spatial scan statistics [25] to detect daily citywide increases and spatial clusters, by hospital

and residential ZIP code, for the aforementioned syndromes.

A search was conducted in PubMed, Google Scholar, and ISI Web of Science to identify

alternative methods, using keywords (e.g., syndromic surveillance, statistical method, aberra-

tion detection, etc.), and resulting manuscripts were categorized into general methods (e.g.,

Control Chart, Bayesian, Time Series, etc.). Analysts in the Syndromic Surveillance Unit read

each manuscript and completed a survey, scoring each method by the following criteria: pub-

lished in peer-review literature, no license required, able to adapt to systematic variations typi-

cally found in syndromic data (e.g., day of week patterns), ability to adjust baselines, ability to

handle count/ratio data, and feasibility to be coded in available, commonly used software, such

as SAS or R. Methods that met all criteria were then selected for final review and presented to

the project’s voluntary Advisory Board (a group of experts in Public Health, Epidemiology,

and Statistics, all of whom have experience in syndromic surveillance) for additional consider-

ation. The complete list of methods evaluated, including those we use in our current system,

are shown in Table 4.

Method implementation

We fit six temporal and four spatial and spatio-temporal methods to a training dataset contain-

ing real NYC syndromic data from 2007–2009. Each model was implemented as it would be

for daily syndromic surveillance use and the decisions necessary for implementation reflected

this goal. In the following section, we briefly describe each of the models.

Table 3. Characteristics of simulated spatial injects, daily counts.

Respiratory Mean number of cases per ZIP (range) Mean duration of outbreak (in days) Mean number of ZIPs Number of injects

Overall 2 (1–14) 9.3 2.9 120

Single day 3 (1–14) 1 2.7 24

Point source 2 (1–11) 7.6 2.7 72

Propagated 2 (1–13) 22.9 3.7 24

https://doi.org/10.1371/journal.pone.0184419.t003

Table 4. Candidate methods for evaluation.

Temporal Spatio-temporal

Autoregressive integrated moving average (ARIMA) Bayesian space-time regression

Cumulative sum control chart (CUSUM) Generalized linear mixed model (GLMM)

Generalized Linear Model (GLM) Space-time permutation scan statistic

Holt-Winters exponential smoother Spatial scan statistic

Modified EARS C2

Temporal scan statistic

https://doi.org/10.1371/journal.pone.0184419.t004
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Temporal methods

Modified EARS C2. We first evaluated a modified version of the C2 algorithm. The stan-

dard C2 method [26] uses seven days of daily syndrome counts to estimate a baseline mean

and standard deviation. To determine if the previous day’s counts are unusual, a test statistic is

calculated by subtracting the baseline mean from the previous day’s counts and dividing by the

baseline standard deviation. An alert is generated when the test statistic is�3 standard devia-

tions. Four modifications as suggested by Tokars, et al [12] were incorporated: (1) stratification

of baseline days by weekdays versus weekends; (2) lengthen the normal 7-day baseline to 14

and 28 days; (3) adjust for total visits; and (4) increase the minimum allowable standard devia-

tion from 0.2 to 1.0. We tested all four changes on the training data and found that modifica-

tions #1 and #2 had minimal effects on the mean absolute residual, thus we only adopted

modifications #3 and #4. The final model used a 7-day baseline, adjusted for total ED visits,

and had a minimum standard deviation of 1. SAS 9.2 was used to generate the test statistic.

Autoregressive integrated moving average (ARIMA). For the second method, we fit a

seasonal ARIMA model, which is a modified version of the ARIMA model specified in Reis

and Mandl [19], to the training data. Our final optimal model was (1,1,2)x(0,1,1)7 with sinusoi-

dal cross-correlation parameters to account for seasonal trends. The model can also be

expressed as:

ð1 � �1BÞð1 � BÞð1 � B7Þyt ¼ ð1þ y1Bþ y2B
2Þð1þY1B

7Þet

Where yt = yt−1, B7Yt = yt−7, ϕ1 is the non-seasonal autoregressive coefficient, θ1 is the non-

seasonal moving average coefficient Θ1 is the seasonal moving average coefficient, and et is the

variance of the error. The non-seasonal components of our model are denoted by the first set

of parameters, and include an autoregressive term with a one-day lag, a one-day differencing

term, and two moving average terms with a one-day and two-day lag. The seasonal compo-

nents account for weekly trends with a one-week differencing term and a moving average

term with a one-week lag. In order to capture seasonal trends, we chose a longer baseline that

contained multiple seasons. Thus, a three-year sliding baseline was used, forecasting one day

into the future. PROC ARIMA in SAS 9.2 was used for model development and analysis.

Generalized linear model. We next assessed a Poisson generalized linear model (GLM).

Two sliding baseline lengths were analyzed, 180 days and 56 days, the latter being similar to

the adaptive regression model described by Burkom [23]. We first adjusted for long-term

trends by including linear (centered to the middle of the baseline period), quadratic, and cubic

terms in each model. Because of strong day of week effects in the data, we added a day of week

term, and finally, a holiday indicator. In the 56-day baseline model, the cubic term was not sig-

nificant, so only the linear and quadratic terms were included. Both models accounted for

over-dispersion in the data, using the dscale option in SAS’s Proc GENMOD. We observed the

56-day baseline model had smaller residuals and thus was selected for our final model:

EðXtÞ ¼ b0 þ b1ðDOWtÞ þ b2ðHÞ þ b3ðLT Þ þ b4ðQTÞ

Where E(Xt) is the expected number of cases on day t, DOWt is categorical day of week, H is a

holiday indicator, LT is linear time trend, and QT is quadratic time trend. The method esti-

mates a standardized residual which is then used as the test statistic.

Cumulative sum control chart. Our evaluation of CUSUM required two steps [14]. First,

in order to account for systematic trends in the data, we applied the same GLM model

described in the previous section. Residuals from the model were then used in a one sided
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CUSUM,

SðtÞ ¼ max½0; Sðt � 1Þ þ YðtÞ � m � k�

Where S(t) is the test statistic, μ is the target residual, and k is the reference interval.

We tested four baselines: 4 week, 6 week, 8 week, and 12 week. For all baseline durations,

the models tended to have a higher residual on days with low syndrome counts compared to

days with higher syndrome counts, i.e., overestimate low counts and underestimate high

counts. Because signal strength and frequency is dependent on both baseline and reference

interval, we tested four k values: 0.5, 0.65, 0.75, and 1. We found that as baseline length

increased, signal frequency increased. The longest baseline (12 weeks) signaled often, suggest-

ing this model might be oversensitive, whereas the shortest baseline, even with a low k, rarely

signaled. Comparing the correlation between the standardized residuals and observed counts,

we determined that the best fit model used an 8-week baseline, with a target residual μ of zero,

and k set to 0.5. We used PROC CUSUM in SAS 9.2.

Holt-Winters exponential smoother. The Holt-Winters exponentially weighted smooth-

ing algorithm weights a prediction at any time point (t) based on previous time points (t-n)

[23]. In order to implement Holt-Winters, smoothing coefficients for level (i.e. weight of

recent events vs. past events), linear trend, and seasonality must be specified. We tested

weights between 0 and 1 for all inputs across a longer baseline (full training data set) vs shorter

baseline (2 years). Mean squared error and R-squared were estimated for all model types. For

our best fit model of the lowest mean squared error and highest R-squared, we specified

weights of 0.55 for level, 0.0001 for linear trend, and 0.05 for seasonal trend, using a sliding

2-year baseline. We fit the additive Holt-Winters model using PROC FORECAST in SAS 9.2.

SaTScan temporal scan statistic. For our final temporal method, we evaluated the SaTS-

can temporal scan statistic using a discrete Bernoulli probability model, which is used by our

current system, and has been previously described [2]. The current method compares the pre-

vious day, two days, or three days to a 14-day baseline, and p-values are estimated using

Monte Carlo significance testing. Previous efforts at the NYC DOHMH have optimized this

model to our data. Thus, we decided to keep the input parameters the same in order to evaluate

other algorithms against our current methodology. We used SaTScan version 9.3.1 [27].

Spatial and spatio-temporal methods

Bayesian space-time regression. We adapted the two-level Bayesian model of Corberon

Vallet [22]. At the first level, within-area variability of the counts for a particular syndrome in

zip code i and day t is modeled using the Poisson distribution

yit ~ P0ðeityitÞ

where the naïve expected count of visits eit represents the “background” effect (calculated

based on the spatial distribution of total ED visits in NYC) and θit is the unknown area-specific

relative risk, which is estimated in the second level of the model.

The logarithm of the relative risk θit is decomposed in additive components representing

spatial and covariate effects at the second level of the model,

logðyitÞ ¼ rþ ui þ vi þ

X7

d¼1

adIdðtÞ þ
X2

h¼1

ahIhðtÞ

where ρ is the overall level of the relative risk, ui and vi represent respectively spatially corre-

lated and uncorrelated extra variation, fadg
7

d¼1
and fahg

2

h¼1
are the day of week and holiday
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effects, respectively, and Id(t) and Ih(t) are indicator functions which takes the value 1 if time t
corresponds to day d or holiday h, and 0 otherwise.

The prior distributions for the intercept and uncorrelated spatial effect are uninformative

and assumed to be zero mean Gaussian with variance s2
r

and s2
v , respectively. To borrow

strength over space, the conditional autoregressive (CAR) model proposed by Besag, et al. [28]

is used as a prior for the spatially correlated effect where the neighborhood is assumed to con-

sist of first-order spatial neighbors defined by a common boundary. To ensure more stable

estimates of day of week and holiday parameters, the prior distributions are informative and

assumed to be normally distributed with mean and variance of a sample (four weeks apart to

reduce correlation) of estimates of these parameters when the model was run with a 6-month

baseline over a 3 year period.

A 15-day moving baseline period was chosen, in part because of computational restrictions,

as increasing length of baseline substantially increases runtime and local memory require-

ments. Another factor that influenced this decision was the recognition that longer baselines

smooth over possible shifts in relative risk and diminish the ability of the method to detect

abrupt increases in syndrome visits. Inputs were combined in a hierarchical model to estimate

ZIP code-specific expected visits, and alerts were generated on days for which observed values

within a ZIP code were significantly higher than expected values as measured by a Bayesian

diagnostic. We used a combination of SAS 9.2, R 3.0, and WinBUGS14.

Generalized linear mixed model. Our generalized linear mixed model (GLMM) was sim-

ilar to one proposed by Kleinman, et al [21] and was developed in consultation with the proj-

ect’s Advisory Board. The R software’s “glmmPQL” model (GLMM model using Penalized

Quasi-Likelihood) was applied, specifying family = “Poisson”. The model included fixed effect

terms for total ED visits, season, and day-of-week and a random intercept term for ZIP code.

We tested two baselines: the first based on the 56-day sliding baseline GLM model described

above and the second on a longer 6-month baseline. As the ZIP code-level daily counts were

low, and in some ZIP codes extremely low, the 6-month baseline was considered to be more

appropriate. The model could be expressed as:

log½m� ¼ b0 þ b1ðEDÞ þ b2ðDOW; df ¼ 6Þ þ b3ðD; df ¼ 8Þ þ

X183

z¼1

bz

Where ED is the total number of ED visits, DOW is day of week, D is date, and b is the random

intercept in ZIP code z. A signal or an aberration from the expected was based on residuals

outputted from the GLMM model. For each ZIP code, the mean and standard deviation of the

residuals for the same day of week during the 6-month baseline period were used to compute

threshold cutoffs. Alternate cutoff options were explored and signals were generated when the

current day’s ZIP code residual was found to be larger than n = 1, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6,

and 10 standard deviations from the mean.

SaTScan space-time permutation scan statistic. A prospective space-time scan statistic

was evaluated using the space-time permutation probability model in SaTScan version 9.3

[11]. The scanning window in the space-time permutation can be thought of as a cylinder,

with the base representing the geographic area of analysis, and the height representing time.

The cylinders are then iterated over the ZIP code centroids, with the base radius gradually

expanding to a user-determined maximum (in our case 50% of syndrome visits in the city)

and base height ranging from 1 day to a maximum (we limited to 30 days). These inputs were

selected based on the size and length of our simulated outbreaks. To account for multiple test-

ing, SaTScan shuffles the temporal and spatial characteristics and creates many random per-

mutations of the reorganized data (we limited to 999 permutations). We used standard
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unadjusted p-values to account for repeated analyses, as recommended by Kulldorff and Klein-

man [29]. Cluster significance is then estimated using Monte Carlo hypothesis testing from

the simulated datasets.

SaTScan spatial scan statistic. Finally, we evaluated the SaTScan spatial scan statistic

using the discrete Poisson probability model in SaTScan 9.3, our current methodology, which

we’ve described previously [2]. The spatial scan statistic compares visits from the previous day

to a user-defined baseline (we used 14 days) in each geographic area of analysis. Similar to the

space-time permutation described above, the geographic window can be thought of as a circle,

which is then iterated over ZIP code centroids in expanding circle size (we set to a maximum

of 20% of syndrome cases in the city). The temporal window is limited to one day. Baseline

length and spatial window were based on our current input parameters. Similar to the other

SaTScan analyses, we determined the statistical significance of the clusters using Monte Carlo

testing set at 999 replications.

Candidate method testing

Models were first tested on the training dataset to determine model baseline, final model vari-

ables, and fine tune model parameters. Once the models were optimized, we then tested each

of the models on the datasets with the simulated injects. The following section describes the

metrics for comparing model performance.

Comparing method performance. Each method was run on the spiked datasets from the

beginning to the end of the two year period. Thresholds were chosen for each method to give a

range of specificities in order for all methods to be compared on a receiver operator character-

istic (ROC) curve. The methods were evaluated on two categories of criteria: (1) proportion of

spiked injects correctly and incorrectly detected and (2) the difficulty in development, imple-

mentation, and interpretation of the method. For the first part of the evaluation, we estimated

sensitivity, specificity, positive predictive value, timeliness, and the proportion of inject days in

which the method signaled (what we will call coherence). These measures are commonly used

as performance metrics in syndromic surveillance literature [12,13,15,17,18]. For the purposes

of calculating these measures, we defined a detected inject as a signal on any day in a spiked

dataset for temporal methods, and for the spatial methods, a signal in any of the spiked ZIP

codes within an inject. In other words, an inject was successfully detected if a temporal method

caught at least one spiked day or a spatial method caught at least one spiked ZIP code in one

spiked day. Conversely, non-injects were defined as a day without a signal for the temporal

methods. For the spatial methods, non-injects were defined as no signals in any of the 183

daily ZIP codes. The performance measures are defined as sensitivity (the number of injects

detected, i.e., true positives) divided by all injects), specificity (the measure of correctly identi-

fying the non-injects; the number of non-injects, i.e., true negatives, divided by all non-

injects),positive predictive value (the number of correctly identified injects divided by all sig-

nals; his is a measure of the probability of a signal being a true signal),timeliness (signal timeli-

ness was measured as [1-(first day of signal/number of days in outbreak)];values range from 0

to 1, with 1 indicating the best timeliness), coherence (the percentage of inject days in which

the method signaled, regardless of size of cluster detected).

All evaluation analyses were conducted using SAS version 9.2, R (version 2.13.0, R Develop-

ment Core Team), and WinBUGS (version 1.4.3, Cambridge Institute of Public Health, Cam-

bridge, UK). For the second part of the evaluation, we noted each method’s implementation

into the chosen statistical software, programming time, run time, and the ease of use of the

method, taking into account the familiarity of the programming package, the statistics used,

and interpretation of the output. At the time of the study, SAS was the most widely used
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software at the NYC DOHMH and thus, most widely known to analysts. However, we consid-

ered R and other statistical software if there were specific methods or analyses that were diffi-

cult to implement in SAS.

Results

Performance evaluation of temporal methods

We show the overall performance of the temporal methods in Fig 2. We ran each temporal

method on the 300 spiked citywide datasets. Across all inject types and sizes, the Holt-Winters

detected the most injects (19%), followed by the ARIMA (16%), GLM (15%), modified C2

(13%), temporal scan statistic (11%), and CUSUM (<2%), at a specificity of 0.95. A detailed

breakdown of method performance by epidemic curve and magnitude, at a specificity of 0.95,

is given in Table 5. This specificity was chosen because this is the minimum at which we would

trigger further investigation into a signal.

The Holt-Winters also had the highest sensitivity across the majority of inject types com-

pared to the other methods. Across all methods, sensitivity was highest among the largest out-

breaks. There was no method that was consistently the fastest in time to detection. All the

methods showed poor PPV, never exceeding 6%. Coherence was low for all methods, ranging

from less than 1% to-8%. We also ran the modified C2 on the injected data using a 14-day and

28-day baseline, as recommended by Tokars [12], and found no differences in performance

compared to the 7-day baseline (data not shown).

Performance evaluation of spatial and spatio-temporal methods

In Fig 3, we show the ROC curve for the spatial/spatio-temporal methods across all outbreak

types. At a specificity of 95%, the spatial scan statistic detected 3% of all outbreaks, the Bayesian

regression detected 2%, and the GLMM and space-time permutation scan statistic detected

none.

Method performance improved with larger (3 SD above baseline) injects (Fig 4). At a speci-

ficity of 95%, none of the methods detected an outbreak of less than 3 SD above baseline and at

3 SD, only 8% of injects were detected by the spatial scan statistic and 4% by the Bayesian

Fig 2. Receiver operator characteristic (ROC) curve for tested temporal methods.

https://doi.org/10.1371/journal.pone.0184419.g002
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regression. The GLMM and space-time permutation scan statistic did not detect any outbreaks

at the 95% specificity level.

PPV was essentially zero for all the methods, regardless of inject size. With regard to timeli-

ness of inject detection, the spatial scan statistic had the shortest time to detection (0.63) fol-

lowed by the Bayesian regression (0.54). Coherence never exceeded more than 1% for any of

the methods.

Table 5. Metrics for temporal methods for citywide injects at specificity 0.95.

Small sized injects (1 SD) Medium sized injects (2 SD) Large sized injects (3 SD)

Sens PPV Time Sens PPV Time Sens PPV Time

ARIMA Single day spike 0.20 0.01 N/A 0.55 0.02 N/A 0.95 0.03 N/A

C2 0.20 0.01 N/A 0.55 0.02 N/A 0.75 0.02 N/A

CUSUM 0.00 0.00 N/A 0.00 0.00 N/A 0.10 0.01 N/A

GLM 0.00 0.00 N/A 0.45 0.01 N/A 0.75 0.02 N/A

HW 0.30 0.01 N/A 0.65 0.02 N/A 0.95 0.03 N/A

TSS 0.05 0.01 N/A 0.20 0.01 N/A 0.35 0.01 N/A

ARIMA Point source 0.38 0.01 0.70 0.33 0.01 0.84 0.65 0.02 0.72

C2 0.28 0.01 0.68 0.32 0.01 0.68 0.52 0.03 0.63

CUSUM 0.07 0.01 1.00 0.03 0.01 0.83 0.13 0.05 0.63

GLM 0.23 0.01 0.83 0.28 0.02 0.83 0.45 0.03 0.67

HW 0.27 0.01 0.69 0.33 0.02 0.78 0.67 0.02 0.73

TSS 0.22 0.02 0.78 0.27 0.01 0.54 0.28 0.02 0.57

ARIMA Propagated 0.45 0.02 0.61 0.40 0.02 0.51 0.55 0.03 0.51

C2 0.40 0.02 0.66 0.30 0.01 0.45 0.50 0.02 0.46

CUSUM 0.20 0.04 0.88 0.05 0.03 0.29 0.15 0.06 0.73

GLM 0.15 0.02 0.59 0.25 0.01 0.70 0.35 0.03 0.72

HW 0.45 0.02 0.69 0.55 0.02 0.67 0.65 0.03 0.59

TSS 0.25 0.02 0.67 0.45 0.03 0.70 0.55 0.04 0.51

https://doi.org/10.1371/journal.pone.0184419.t005

Fig 3. ROC curve of spatial and spatio-temporal methods, all outbreak types.

https://doi.org/10.1371/journal.pone.0184419.g003
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Fig 4. ROC curves of spatial and spatio-temporal methods, by inject magnitude.

https://doi.org/10.1371/journal.pone.0184419.g004
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We then examined performance by inject type (Fig 5). The spatial scan statistic found 2% of

single day injects, at a specificity of 95%, while the other methods detected none. Among point

source outbreaks, the Bayesian regression found 4% and the spatial scan statistic 2%. Only the

spatial scan statistic detected propagated injects (7%). PPV for all the methods was low (less

than 1% of ZIP code level signals were true signals).

Practice-based evaluation of the methods

Ultimately, disease detection methods can only be used if they can be successfully imple-

mented, maintained, and updated in practice. For syndromic surveillance, this is usually at the

local public health setting. As such, a thorough evaluation would acknowledge the importance

of practice-based considerations.

Table 6 shows the results of the practice-based metrics. The temporal methods were pro-

grammed in SAS 9.2 and SaTScan. The programming time varied based on the method and

ranged from low of 3 days for the GLM and temporal scan statistic to a high of 3 weeks for

ARIMA. The programming time, however, did not reflect the amount of time required for the

analyst to understand and develop the base model, which depending on the model, ranged

from weeks (e.g., GLMM) to months (e.g., Bayesian). The run time (an average of three runs)

for the temporal methods never exceeded more than 4 seconds of processing time. The spatial/

spatio-temporal methods were coded in R, WinBUGS, and SaTScan. Programming time ran-

ged from 3 days (spatial scan statistic and the space-time permutation) to 10 weeks (Bayesian).

Run time ranged from 6 seconds (spatial scan statistic) to 2 minutes (Bayesian).

Discussion

Summary and main findings

This study was undertaken to compare and evaluate the performance of our current aberration

detection methods to alternative methods published in the literature. Our goal was to deter-

mine the best temporal and spatial/spatio-temporal methods applicable to our data, using a

combination of performance and practice-based metrics. Furthermore, it was important to us

to build and implement the methods to reflect how we would use them in daily practice. While

previous method evaluations have focused on performance, with good reason, we believe it

important to determine the work load burden and level of expertise required in implementing

these various methodologies in a syndromic system.

Overall we found the spatial/spatio-temporal methods, including our current method, did

not work well in detecting small simulated injects at the ZIP code level. Sensitivity improved

with increased magnitude of injects, which aligns with other evaluations of aberration detec-

tion methods for syndromic surveillance [14,15,19,31]. PPV for all methods was negligible,

suggesting that when these methods signaled, it was rarely the result of the simulated injects,

but more likely from a number of things such as data anomalies or errors, an actual outbreak,

or quite possibly just a false signal. We also found that performance differed between single

day spikes, point source injects, and propagated injects for both spatial/spatio-temporal and

temporal methods. Based on our findings, the spatial scan statistic worked best for detecting

spatial clusters, though its performance was not much better than the other tested methods.

The GLMM model used in this evaluation needs refinement to reduce the large number of

false positives. Further development of this model to include information about spatial prox-

imity between ZIP codes—to aid in the identification of spatial clusters—would also be

beneficial.
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Fig 5. ROC curves of spatial and spatio-temporal methods, by inject type.

https://doi.org/10.1371/journal.pone.0184419.g005
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Other findings and comparison to other studies

Performance of our tested methods differed by the shape and duration of the injections, which

was consistent with some [14,18] but not all [15] studies. However, we should note that pub-

lished evaluations of syndromic surveillance systems tend to focus primarily on temporal

methods for outbreak detection [14,15,23,32]. Sensitivity was better for point source and prop-

agated injects, and in general, increased as inject duration increased. This was expected given

there was more opportunity for detection with longer injects. In general, the ability of these

methods to detect a spike in cases in the early stages of an inject was good, with the exception

of the spatial scan statistic detecting propagated injects. We did not estimate timeliness and

coherence for single day spikes because there was only one day to measure. For the temporal

methods we tested, we found one-day single-day spikes to be the most commonly detected

injects when inject size was large and propagated injects when inject size was small. An evalua-

tion of temporal methods by Jackson, et al [15] suggests the GLM should have outperformed

the C2 across all inject sizes and distributions, though we found the opposite. This difference is

likely due to the modifications we made to the C2, as suggested by Tokars, et al. [12]. Similarly,

Fricker, et al., [14] showed a CUSUM with a 56-day sliding baseline outperformed a C2 in sev-

eral scenarios of different inject magnitudes and durations. Our findings suggest a modified

C2 performed better than the 56-day sliding baseline CUSUM. One recent study expressed

concern with use of the prospective scan statistic in SaTScan, citing issues with adjusting for

previous analyses [33], though further discussion has emphasized the appropriate use of

Table 6. Programming metrics for tested methods.

Method Software Programming

time

Run time

(sec)

Ease of use

Temporal methods

ARIMA SAS 9.2 3 weeks 00:01 Significant amount of testing needed for the final model inputs; also, it is a method

that has not frequently been used at DOHMH so there was a learning curve; its

description in the literature [19] and actual coding of the method were

straightforward

C2 SAS 9.2 1 week 00:01 One of the most commonly used methods; easy to understand; easy to code and

well documented in the literature [26]

CUSUM SAS 9.2 1 week 00:01 Commonly used method; determining inputs to the CUSUM model was the most

difficult part; otherwise, easy to code and well documented [14]

GLM SAS 9.2 3 days 00:01 Commonly used model; accessible to most analysts to understand, code, and

troubleshoot [23]

Holt-Winters SAS 9.2 2 weeks 00:01 Experience was similar to the ARIMA where significant time went into developing

the model specifications; the method has not been frequently used but is

accessible and not difficult to understand [23]

Temporal scan statistic SaTScan 3 days 00:04 Much of the programming is done already in the SaTScan program [27], so

analysts only needed to define parameters; if called from SAS or R, will need to

write programs to define the parameters and run macros

Spatial/spatio-

temporal methods

GLMM R 1 week 0:50 Moderately difficult to program the model and output, knowledge of regression

models needed [21]

Bayesian R,

WinBUGS

10 weeks 2:00 Highly difficult; extensive knowledge of several statistical packages and advanced

statistics is required to understand and implement [22,30]

Spatial scan statistic SaTScan,

R

3 days 0:06 Much of the programming is done already in the SaTScan software [27], so analyst

only needed to define parameters; some knowledge of spatial epidemiology is

needed

Space-time

permutation

SaTScan,

R

3 days 0:12 Same as spatial scan statistic [27]

https://doi.org/10.1371/journal.pone.0184419.t006
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recurrence intervals based on standard unadjusted p-values [29], which was how we dealt with

repeated analyses. PPV was low across all methods and inject types, likely due to our use of

actual syndromic data, which contained unknown outbreaks.

Generalizability to other health departments and lessons learned

We chose to use injected simulated spikes in real datasets for this evaluation because we

believed that the performance would most accurately reflect real experience, specifically with

the temporal and spatial patterns found in our data. However, our evaluation approach likely

penalized these methods by ignoring real outbreaks in the data. There is much debate about

whether simulated data is a better alternative, especially if they are made to reflect real data as

much as possible [34]. Future work may want to include testing of both actual and synthetic

syndromic baseline data, as well as actual and simulated outbreak events, in parallel, as recom-

mended by Fricker [34]and Unkel and colleagues [35].

We ran all spatial/spatio-temporal methods on ZIP code level data, which was the finest

spatial granularity available for analysis in the DOHMH syndromic surveillance system. While

analyzing small spatial units is ideal from a public health perspective given potential disease

outbreaks can be pinpointed with reasonable precision, from the analytic viewpoint, ZIP code-

level counts can be sparse and vary widely. Thus, we would recommend exploring a range of

spatial granularities and perhaps choosing a spatial scale for which syndrome counts or rates

are less variable.

Typically when the NYC syndromic system identifies a cluster at the hospital or ZIP code-

level, the syndromic analyst follows up by “eye-balling” the visit-level information for patients

in the cluster to check for any anomalous patterns in age, time of visit, or disposition. Clusters

that look suspicious or unusual are followed up by contacting ED staff where the cluster

occurred. Due to high false positives, it is essential that protocols provide guidance on which

signals need follow-up or careful observation on subsequent days. The application of sophisti-

cated models cannot alone determine a cluster or an outbreak. Proper cluster identification

requires an experienced analyst with a good understanding of syndromic data and data quality

issues, as well as an understanding of statistics and the models being applied.

An evaluation of methods would not be complete without a comment on the quality of data

used in the models. Syndrome definitions are based on querying the chief complaint, an

unstructured free-text field, for key terms. These key terms can include clinical or lay person

words and phrases. Being that chief complaint data is not standardized and highly dependent

on hospital coding practices, using sophisticated modeling techniques for aberration detection

at smaller spatial resolutions is very challenging. Therefore, we highly recommend that before

building any statistical model, health departments explore the completeness and quality of

their chief complaint syndromic data.

Finally, regarding the ease of adapting these models to our syndromic data, we found that

some models (e.g., Bayesian) were more complicated, required additional training, and there-

fore took longer to develop and implement. This is an important consideration when deciding

whether to test alternative models.

Limitations

This study has several limitations. Only published methods were selected, and of those, only a

few were able to be evaluated. Thus there potentially could be better performing methods we

did not evaluate. Also, we used actual syndromic data for our analytic baseline. Detection of

unknown outbreaks or other data anomalies in the baseline data is counted as a false positive,

thereby leading to lower specificity and positive predictive values. However, a common
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argument against using purely synthetic data is that it does not capture all of the nuances and

variation of ED visit data. Furthermore, because of the computational intensity of running

these methods spatially, we were able to run only a relatively small number of simulations,

thus limiting our understanding of how methods performed over a wide range of inject sizes.

For this study, our focus was on detection of small injects of disease. As a consequence, the

majority of injects were small and thus many of the methods had difficulty in determining the

signal from the noise. The spatio-temporal methods used in this study take very different

approaches to identifying signals and therefore a direct comparison of model performance is

difficult. The spatial scan statistic and space-time permutation were the only spatial methods

that identified “clusters,” i.e., reported signals for a group of neighboring ZIP codes. The other

models treated ZIP codes as being independent of each other and did not include any informa-

tion about how ZIP codes might be spatially related. This information could be included in the

models described, however this wasn’t attempted due to its complexity.

Recommendations and conclusions

In summary, our evaluation suggests the models we tested did not perform well in detecting

temporal and spatial clusters of cases. We chose to analyze injects at the ZIP code level primar-

ily because this is the smallest spatial granularity reported to our system. But we suggest other

jurisdictions analyze data at a spatial granularity that makes sense to them (which may or may

not be at the ZIP code level). As data quality improves as hospitals move towards standardized

electronic health record and data transmission practices, these methods might be more suc-

cessful in detecting aberrations. We are currently using the space-time permutation scan statis-

tic in parallel with the spatial scan statistic in our system and will prospectively evaluate the

frequency and makeup of signals from the two methods. We found the Bayesian regression to

show promise in detecting injects and plan to compare this method with the scan statistics,

while addressing some of the limitations of the current study.

While syndromic surveillance was set up for early detection of large-scale bio-terrorism

related events, identifying disease clusters continues to be a challenge. Nonetheless, syndromic

systems have shown the ability to track seasonal disease trends, such as influenza and norovi-

rus, and provide valuable real-time situation awareness during evolving events (e.g., hurri-

canes, heat emergencies). It can be certain that syndromic surveillance will continue to

provide timely and useful information, once an event has occurred, beyond just finding aber-

rations in count data.
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