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Exonic Mosaic Mutations Contribute Risk
for Autism Spectrum Disorder

Deidre R. Krupp,1,6 Rebecca A. Barnard,1,6 Yannis Duffourd,2 Sara A. Evans,1 Ryan M. Mulqueen,1

Raphael Bernier,3 Jean-Baptiste Rivière,4 Eric Fombonne,5 and Brian J. O’Roak1,7,*

Genetic risk factors for autism spectrum disorder (ASD) have yet to be fully elucidated. Postzygotic mosaic mutations (PMMs) have been

implicated in several neurodevelopmental disorders and overgrowth syndromes. By leveraging whole-exome sequencing data on a large

family-based ASD cohort, the Simons Simplex Collection, we systematically evaluated the potential role of PMMs in autism risk. Initial

re-evaluation of published single-nucleotide variant (SNV) de novo mutations showed evidence consistent with putative PMMs for 11%

of mutations. We developed a robust and sensitive SNV PMM calling approach integrating complementary callers, logistic regression

modeling, and additional heuristics. In our high-confidence call set, we identified 470 PMMs in children, increasing the proportion

of mosaic SNVs to 22%. Probands have a significant burden of synonymous PMMs and these mutations are enriched for computation-

ally predicted impacts on splicing. Evidence of increased missense PMM burden was not seen in the full cohort. However, missense

burden signal increased in subcohorts of families where probands lacked nonsynonymous germline mutations, especially in genes

intolerant to mutations. Parental mosaic mutations that were transmitted account for 6.8% of the presumed de novo mutations in

the children. PMMs were identified in previously implicated high-confidence neurodevelopmental disorder risk genes, such as CHD2,

CTNNB1, SCN2A, and SYNGAP1, as well as candidate risk genes with predicted functions in chromatin remodeling or neurodevelop-

ment, including ACTL6B, BAZ2B, COL5A3, SSRP1, and UNC79. We estimate that PMMs potentially contribute risk to 3%-4% of simplex

ASD case subjects and future studies of PMMs in ASD and related disorders are warranted.
Introduction

Autism spectrum disorder (ASD [MIM: 209850]) has a

strong genetic component and a complex genetic architec-

ture. Technological advances have allowed the discovery

of rare inherited and de novo mutations in ASD cohorts,

including copy-number variants (CNVs), structural vari-

ants, single-nucleotide variants (SNVs), and small inser-

tions and deletions (indels).1–13 These studies, especially

those focused on simplex cohorts (single affected individ-

ual within a family), have revealed a significant contribu-

tion of de novo mutations implicating hundreds of inde-

pendent loci in ASD risk. However, the full complement

of ASD risk factors and mechanisms have yet to be fully

elucidated.

Postzygotic mutations occur after fertilization of the

embryo. Depending on their timing and cell lineage, these

mutations may be found in the soma, resulting in somatic

mosaicism, or the germ cells, resulting in gonadal

mosaicism. Mutations occurring during early embryonic

development can result in both types of mosaicism.14 For

simplicity, we will refer to these mutations generally as

postzygotic mosaic mutations (PMMs), because in most

cases their contribution to the germline is unknown.

In addition to the well-known role of somatic mutations

in cancer, PMMs have been firmly implicated in several

neurodevelopmental/brain disorders including epilepsy,
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cortical malformations, RASopathies, and overgrowth

syndromes.15–21 Pathways underlying some of these syn-

dromes, e.g., PI3K/ATK/mTOR and RAS-MAPK, are also

implicated in syndromic and nonsyndromic ASD.

The mosaic nature of these mutations can make

them difficult to identify with current clinical testing,

even when targeting specific genes, leading to no diag-

nosis, misdiagnosis, or misinterpretation of recurrence

risk.16,22 It has also been hypothesized that sporadic condi-

tions may be caused by PMMs at loci where germline mu-

tations are embryonic lethal.23 Importantly, when and

where mutations occur in development can have a dra-

matic effect on the phenotypic presentation as exemplified

by PIK3CA-related overgrowth spectrum (PROS).15,24

Moreover, recent data have suggested that even low-level

mosaicism (�1% in affected tissue) can be clinically signif-

icant, as shown in the affected skin/brain of individuals

with Sturge-Weber syndrome (MIM: 185300).25

In previous work focusing on discovering germline de

novo mutations (GDMs) in simplex ASD families, we were

surprised to validate 4.2% of de novo mutations as likely

mosaic in origin, including nine PMMs and two gonadal

mosaic mutations (from a total 260 mutations), suggesting

that mosaic mutations might be a common and under-

recognized contributor to ASD risk.2 A similar observation

has beenmade from de novomutations identified in whole-

genome sequencing from simplex intellectual disability
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(ID) trios.26 However, the mutation calling approaches

used previously were tuned to detect GDMs.

Here, we systematically evaluate the role of PMMs in

ASD by leveraging a harmonized dataset12 of existing

whole-exome sequences (WES) from a well-characterized

cohort of �2,300 families—the Simons Simplex Collection

(SSC), including parents, probands, and unaffected sib-

lings. Our goal was to answer several fundamental ques-

tions. (1) What are the rates of PMMs (detectable in whole

bloodDNA) in children and do they play a role in ASD risk?

(2) What are the rates of PMMs in parents and how often

are these events transmitted to offspring? (3) Do the target

genes of GDMs and PMMs in individuals with ASD over-

lap? To answer these questions, we first re-evaluated all pre-

viously published de novo mutations using a binomial

approach and found evidence that 11% of SNVs and 26%

of indels called with methods intended for germline

mutation detection show allele skewing consistent with

mosaicism. We then developed a systematic method for

identifying, specifically, SNVs that are likely PMMs from

WES (or other next-generation sequencing [NGS] data),

which integrates calls from complementary approaches

and extensive validation data.

We recalled genotypes on the SSC cohort and estimate

that 22% of de novo SNVs are, in fact, PMMs arising in

children. Unexpectedly, the strongest signal for mutation

burden in probands was observed for synonymous

PMMs. Furthermore, synonymous PMMs occurring in pro-

bands are enriched for mutations predicted to impact

splicing. Evidence of missense PMM burden in the full

cohort was not observed; however, burden signal did

increase in subsets of the cohort without germline muta-

tions, which is strongest in genes that are intolerant to

mutations. Parental mosaic mutations occurred at a higher

rate and were frequently transmitted to children. Nonsy-

nonymous (NS) PMMs were identified in high-confidence

ASD/ID risk genes and candidate risk genes involved

with chromatin remodeling or neurodevelopment. Over-

all, these findings suggest that future studies of PMMs in

ASD and related disorders are warranted.
Material and Methods

Family Selection and Sequence Data
We obtained the initially published1,2,4,5,11 and harmonized re-

processed12 WES data from 2,506 families of the Simons Simplex

Collection (SSC).27 Harmonized data are available from NIMH

Data Archive (NDAR: 10.15154/1169193) or SFARI base. Informed

consents were obtained by each SSC recruitment site, in accor-

dance with their local institutional review board (IRB). Oregon

Health & Science University IRB approved our study as human

subjects exempt because only de-identified data was accessed.

Exome libraries were previously generated from whole-

blood (WB)-derived DNA and captured with NimbleGen EZ

Exome v.2.0 or similar custom reagents (Roche Nimblegen) and

sequenced using Illumina chemistry at one of three centers:

Cold Spring Harbor Laboratory (CSHL), University of Washington
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(UW), or Yale University School of Medicine. Where individuals

had been sequenced bymultiple centers, the library with the high-

est mean coverage was included in the harmonized reprocessed

dataset (N. Krumm, personal communication).12

We selected 24 family quads (‘‘pilot 24’’) for initial methods

development that had WES independently performed by all three

centers.11 WES data were merged and then reprocessed to match

the harmonized dataset.12 We then expanded to a cohort of 400

additional independent quad families (‘‘pilot 400’’) with high

median WES coverage, also requiring proportionate distribution

across the three centers (Yale, 193; CSHL, 118; UW, 89). The full

SSC harmonized reprocessed dataset12 contained 2,366 families,

of which 1,781 are quads and 585 are trios (Table S1), after

removing samples with known Mendelian inconsistencies or

contamination issues (N. Krumm, personal communication).

One hundred and two families with individuals showing elevated

GDM or PMM calls were excluded post variant calling (Supple-

mental Material and Methods, Figure S1). The cohort used in

the downstream analyses included 2,264 families, of which

1,698 are quads and 566 are trios. Additional families with low

joint coverage values were removed depending on the minimum

coverage requirement for analyzing variants of differentminimum

allele fractions (AF) (see Supplemental Material and Methods).
Evaluating Potential Mosaic Mutations in Previously

Published De Novo Calls
Reported de novo mutations for the SSC were evaluated

(Table S2).1,2,4,5,11,12 Allele counts from prior analysis were used

where available (N. Krumm, personal communication) and other-

wise extracted on a quality-aware basis from mpileups of the cor-

responding WES using a custom script (samtools mpileup -B -d

1500 j mPUP -m -q 20 -a count). Reported mutation calls that had

no variant reads from the quality-aware mpileup data were

excluded. We focused our analysis on exonic and canonical in-

tronic splice site regions (52 base pairs [bp]). Mutations were

considered putative PMMs if significantly skewed from the hetero-

zygosity expectation of 0.5 AF for autosomal and X chromosome

sites of females (binomial p % 0.001). Sex chromosome sites of

males were evaluated under a hemizygous expectation. Robust-

ness of the data was evaluated using additional filters for observed

AF (5%–35%, 10%–35%, 10%–25%, or corresponding hemizygous

values) or at more strict deviations from the binomial expectation

(p % 0.0001). The observed rates of AF skewed de novo mutations

were compared with expected null distributions of randomly

sampled rare inherited variants by simulation (Supplemental

Material and Methods).
Raw Variant Calling and Annotation
SNVs were recalled on individual samples using VarScan 2.3.2,

LoFreq 2.1.1, and our in-house script mPUP (SupplementalMaterial

and Methods). All caller outputs were combined at the individual

level and used to generate family-level variant tables. Variants were

annotated with ANNOVAR (03/22/15 release, see Web Resources)28

against the following databases: RefSeq genes (obtained 2015-12-

11), segmental duplications (UCSC track genomicSuperDups, ob-

tained 2015-03-25), repetitive regions (UCSC track simpleRepeat,

obtained 2015-03-25), Exome Aggregation Consortium (ExAC)

release 0.3 (prepared 2015-11-29), Exome Sequencing Project (ESP)

6500 (prepared 2014-12-22), and 1000 Genomes Phase 3 version

5 (prepared 2014-12-16). Annotation tracks did not include added

flanking sequences. Population frequency databases were obtained
ber 7, 2017



fromtheANNOVARwebsite. Initially, variantswithAFs significantly

below 50% (binomial p % 0.001) were considered putative PMMs.

For putative transmitted parental PMMs, which also had skewed

AFs inchild(ren),werequireda significantdifferencebetweenparent

and child AF (Fisher’s exact p % 0.01), with child AF > parental AF.

Only PMM (child or parental) or GDM calls were considered for

validation.
smMIP Design, Capture, and Sequencing
Three to four independent smMIPs were designed against candi-

date variant sites using the 11-25-14 release of MIPGEN29 and a

custom in-house selection script (Supplemental Material and

Methods). The selected smMIPs were divided into pools with

roughly equal numbers (Table S3). Single strand capture probes

were prepared similarly to previous approacheswithmodifications

(Supplemental Material and Methods).29 DNA samples prepared

from WB (entire pilot 24; 78 families pilot 400) and lymphoblas-

toid cell lines (LCLs) (entire pilot 24) were obtained from the

SSC through Rutgers University Cell and DNA Repository (Piscat-

away, NJ). Probe captures and PCRs to append sequencing

adaptors and barcodes were performed as previously described

with minor modifications.30

Purified capture pools were then combined together for

sequencing with NextSeq500 v2 chemistry (Illumina). Overlap-

ping reads were merged and aligned using BWA 0.7.1. For each

unique smMIP tag, the read with the highest sum of quality scores

was selected to serve as the single read for the tag group. Valida-

tion outcomes were compared across WB and LCL data (where

available) (Table S4).
Establishing a Systematic PMM Calling Pipeline
We iteratively developed best practices and heuristics through

multiple rounds of validation and model development (Supple-

mental Note: Model Development and Material and Methods).

Initial evaluation and smMIP validation was performed on the

higher-depth pilot 24 dataset (Figures S2–S8, Supplemental Note:

Model Development andMaterial andMethods). An initial logistic

regression model was trained on the pilot 24 resolutions, using

only calls validated as true PMMs or false positives in the smMIP

data. Candidate model predictors were derived from WES data

(Supplemental Material and Methods).

We next evaluated pilot 400 quad families (Figures S9–S12).

Based on results from the initial validations, for all putative

parental transmitted PMMs, we required more significant skew

in parental AF (binomial p % 0.0001), significant difference be-

tween parent and child AF (Fisher’s exact p % 0.01), and child

AF > parental AF (Figure S8). All putative PMMs scoring < 0.2 in

the initial logistic regression model were excluded. Validations us-

ing smMIPs were conducted on calls from 78 of the pilot 400 fam-

ilies. All initial validation-positive calls, from both pilot sets, were

then subjected to an additional manual review of the WES and

smMIP alignments to flag potentially problematic sites prior to

modeling.

A refined logistic regression model was trained based on the pi-

lot 400 validation data (Supplemental Material and Methods,

Figure S9). We further evaluated this refined model, applying the

same filtering parameters as the training set, using the pilot 24

validation calls, which had been selected prior to any modeling

or validations.

A third set of calls was evaluated from both pilot sets that had

not previously been validated due to data missingness in popula-
The American
tion frequency datasets (Supplemental Note: Model Develop-

ment). To better separate germline from mosaic calls based on

our empirical validations, 90% binomial confidence intervals

(CI) (Agresti-Coull method) for the variant AFs derived from the

WES data were calculated using the R binom package. Based

upon the distribution of germline resolutions in these data, puta-

tive PMMs were re-classified as germline if the upper bound of

their observed AF was R0.4 (95% CI, one-tailed) (Figure S10).

Additionally, calls were excluded that annotated as segmental

duplication regions/tandem repeat finder (SD/TRF) sites or

mPUP-only calls as they had a significantly higher false positive

and smMIP probe failure rate (Figure S11). Putative PMMs passing

filters from this third set of calls were scored with the refined

logistic regression model and excluded from validations if they

scored < 0.26. We retroactively applied our refined filtering

scheme to all validation calls in order to develop a harmonized

set of high-confidence resolutions and evaluated sensitivity and

PPVof the refinedmodel (Figure S12). Variants with a refined logis-

tic model score R 0.518 were included for additional analyses.
Cohort Variant Calling and Burden Analysis
Variants were called from all WES data in the harmonized reproc-

essed dataset and filtered with our best practice filtering scheme

(Supplemental Material and Methods). To improve PPV for true

PMMs, we required all variants be supported by at least five variant

reads and present in no more than two families throughout the

cohort (Figure S11). Eight variants were removed that had skewed

AFs in both the child(ren) and parent. We defined our high-

confidence dataset as those variants with AF R 5% (based on the

AF upper 90% CI) and 453 minimum joint coverage in all family

members (Table S5).

For burden analysis, five minimum variant AFs thresholds were

evaluated (5%, 7.5%, 10%, 12.5%, 15%). For each AF threshold,

we determined the minimum total depth (1303, 853, 653,

503, 453) at which we had approximately 80% binomial proba-

bility to observe five or more variant reads (Figure S13). A variant

was included for each subanalysis if its AF upper 90% CI met the

minimum AF and if it met minimum coverage requirements in

all family members. For each AF burden analysis, the total number

of jointly sequenced bases at or above each depth threshold in

each family was determined. Based on these joint coverage values,

families in the 5th percentile or lower were excluded; in the 1303

analysis the bottom decile was excluded (Figure S14).

Mutation burden and in the unique autosomal sequence was

determined by first calculating the rate of mutation in each indi-

vidual by summing all SNVs within a given functional class or

gene set, e.g., for missense variants, and dividing by the total num-

ber of jointly sequenced bases (diploid, 2n) meeting theminimum

coverage thresholds. Rates of mutation were then compared be-

tween groups (probands versus siblings or fathers versus mothers)

using, as appropriate, paired or unpaired nonparametric rank

tests. To control for multiple comparisons, we used the Benja-

mini-Yekutieli approach,31 which allows for dependent data

structures, setting a false discovery rate (FDR) of 0.05. Families of

tests were defined based on the dataset and mutation functional

class (Supplemental Material and Methods).

To calculatemean population rates for each group of individuals

(e.g., probands) for plotting and extrapolating variant counts to

a full-coverage exome, all SNVs within a given functional class

or gene set were summed and divided by the total number of

jointly sequenced bases (diploid, 2n) for all families meeting the
Journal of Human Genetics 101, 369–390, September 7, 2017 371



minimum coverage thresholds. Poisson 95% confidence intervals

for mean rates were estimated using the Poisson exact method

based on the observed number of SNVs.

Subcohort burden analyses were performed by separating fam-

ilies based on whether or not probands had previously identified

GDMs in published call sets.1,2,4,5,11,12,32 Mutations with no read

support or flagged as potentially mosaic from our initial analysis

of published de novo calls were removed (binomial p % 0.001).

Two levels of disruption were considered: whether probands had

germline de novo likely gene disrupting (LGD) mutations, which

we define as SNVs, indels, or de novo CNVs that affect at least

one gene (germline LGD list); or alternatively, whether probands

had any germline de novo NS SNVs or indels (any germline NS

list). The probands with any germline NS list is inclusive of pro-

bands with germline LGDs.

Burden in genes that show evidence of selection against new

mutations was evaluated using the recently updated essential

gene set,33 which contains human orthologs of mouse genes asso-

ciated with lethality in the Mouse Genome Database;33,34 and the

ExAC intolerant dataset, which denotes the probability of a gene

being loss-of-function intolerant.35
Analysis of PMM Properties
The AF distributions between children and parents PMMs were

compared by Wilcoxon-rank sum test using the high-confidence

dataset. To determine the fraction of parental PMMs that may be

attributed to lack of grandparental data, variant calls were regener-

ated from the non-merged reprocessedWES data12 for the pilot 24/

400 families applying the same refined logistic model and final fil-

ters, but ignoring family data. The observed bimodal AF distribu-

tions were fit to normal mixed models using R package mixtools,

function normalmixEM(), which defined two Gaussian distribu-

tions. Calls were separated into two discrete sets. G1 was defined

by themean plus or minus two standard deviations of the leftmost

Gaussian model (lower AFs, m1 ¼ 0.09, s1 ¼ 0.046). G2 included

the remaining higher AF calls. The fraction of calling remaining

in each set after applying transmission filters was calculated and

used to estimate the number of variants expected to remain in

the parents if the grandparental generation was available.

Splice site distances for variants were annotated using Variant

Effect Predictor (see Web Resources). The absolute value of the

shorter of the two distances between donor or acceptor site was

chosen as the distance to nearest splice site. Potential impacts of

synonymous mutations on splicing were evaluated using Human

Splice Finder (HSF) v.3.0 and SPANR alpha version (see Web Re-

sources).36,37 For HSF, the multiple transcript analysis was used

with default settings and results were extracted fromHTML format

outputs with an in-house script (Table S6). Variants contained

within multiple overlapping transcripts with disparate calls were

manually filtered based on whether transcripts were coding or

had complete stop/start information in the UCSC genome browser

(Feb. 2009; GRCh37/hg19). SPANR analysis was performed with

default settings and splice altering variants defined as described

previously (5% > dPSI percentile or dPSI percentile > 95%).
Gene Set Enrichment
Five different gene set lists that have previously been evaluated us-

ing de novo mutations,11 including an updated version of the

essential gene list,34 were downloaded from GenPhenF (see Web

Resources) and thenmapped to gene symbols based on our RefSeq

ANNOVAR annotations. To determine enrichment, we took a
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similar approach as previously described, using the null length

model.11 However, we calculated joint coverage for all genes

within a set as well as all the genes outside of that set (across the

cohort) and used this value to estimate the expected proportion

of mutations (p). Since more than one gene can overlap any

genomic position, all genes impacted were counted in this anal-

ysis. For example, if a mutation or genomic position overlapped

a gene within the set and outside of the set, it was counted

twice. Gene set enrichment was evaluated using a binomial test

in R binom.test(x, n, p), where x ¼ number of genes impact within

set, n ¼ total number of genes impacted, and p ¼ expected mean

based on joint coverage.

Genome-wide gene rankings generated from two previous

studies33,38 were used to determine whether genes targeted by

missense or synonymous mutations in probands showed enrich-

ment for ASD candidate gene rankings. The LGD intolerance

ranking is based on the load of LGD mutations observed per

gene.33 The LGD-RVIS is the average rank between LGD and

RVIS (another measure of constraint) scores.33,39 ASD association

rankings are the results of a machine learning approach that

uses the connections of ASD candidate genes within a brain-spe-

cific interaction network to predict the degree of ASD association

for every gene.38

Intersection of PMMs with Previously Published GDMs
Degree of overlap of GDMs and PMMs for different functional clas-

ses between probands and siblings was determined using Fisher’s

exact test. Both the high-confidence and burden (15%-453) data-

sets were evaluated. Our high-confidence risk gene set was curated

using the 27 ASD genes reported by Iossifov et al. and 65 ASD

genes reported by Sanders et al. (FDR% 0.1)11,32 as well as 94 genes

enriched for GDMs in developmental disorders from theDecipher-

ing Developmental Disorders study.40 Combined, the high-confi-

dence risk gene sets includes 139 unique genes.
Results

Reanalysis of Previously Reported De Novo Mutations

We began by analyzing the existing set of previously

reported exonic or canonical intronic splice site de novo

mutations in the SSC.1,2,4,5,11,12 We evaluated 5,076 SNVs

(probands, 2,996; siblings, 2,080) and416 small indels (pro-

bands, 273; siblings, 143) (Table S2). Variants had a mean

depth of 77.53. We found an excess of mutations with

observedAFs lower than expected for germline events using

a binomial threshold of 0.001 (Figures 1A–1D; Table S7).We

evaluated the likelihood of this excess specifically within

the autosomal sequence by simulating a null distribution

from rare inherited SNVs (Supplemental Materials and

Methods; Figure 1B; Table S7). For autosomal de novo

SNVs, we observed that 305/2,893 (11%) of affected pro-

band calls and 191/1,993 (10%) of unaffected sibling calls

show evidence of being PMMs. In contrast, we never

observed the same degree of skewing of calls with lower

AFs for rare inherited SNVs (simulation means: probands,

2.8%; siblings, 2.9%; p < 0.0001, by simulation). A higher

potential PMM rate is observed in sites that annotated

as SD/TRF loci, 55/231 (24%) in probands and 28/144

(20%) in siblings (p ¼ 0.0166 and 0.41, respectively, by
ber 7, 2017
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Figure 1. Re-Evaluation De Novo Mutations in the Simons Simplex Collection (SSC)
(A–D) Histograms showing the allele fraction distributions of previously published autosomal de novo or rare inherited variants in
the SSC.
(A) Published de novo SNVs (n ¼ 2,893) show an elevated number of low allele fraction calls that are potentially PMMs (left tail).
(B) Representative histogram from a random sampling of 2,893 published autosomal rare inherited SNVs. The number of low allele frac-
tion calls is substantially fewer compared to de novo SNVs (left tail).
(C) Published de novo indels (n ¼ 268) show an elevated number of low allele fraction calls (left tail) that are potentially PMMs as well as
an overall shifted distribution.
(D) Representative histogram from a random sampling of 268 published rare inherited indels. Similar to SNVs, the number of low allele
fraction calls is substantially fewer compared to de novo indels (left tail).
(E) Schematic showing an overview of our systematic approach to developing a robust PMM calling pipeline and applying it to the SSC.
Key analyses and display items are indicated. Abbreviations: Trans calls, calls showing evidence of transmission from parent to child;
SD/TRF, segmental duplications/tandem repeats; AF, allele fraction; CI, confidence interval; and DPALT, Q20 alternative allele depth.
(F) Venn diagram showing the intersection of previously published de novo mutations initially flagged as potentially PMMs (binomial
p% 0.001) and our PMM calls after applying final filters. Numbers in parentheses are calls remaining after applying an AF 5%-453 joint
coverage threshold. *Our pipeline identified an additional 37 calls (29 from Iossifov et al.11 and 8 from Krumm et al.12), which overlap-
ped the published calls flagged as potentially mosaic but were re-classified as likely germline based on their AF CIs. Note: Krumm et al.12

dataset only reported newly identified calls and therefore does not intersect the Iossifov et al.11 dataset.
simulation). These SD/TRF sites are knowntobemoreprone

to false PMM calls due to uncertain mapping of WES reads.

However, these SD/TRF loci represent only 9% of the called

mutations and thushave amodest effect on the overall rate.

We observed a similar rate of potential SNVPMMs (8%–9%)
The American
when applying a range of additional AF cutoffs (5%–35%,

10%–35%, 10%–25%), more strict binomial deviations

(p % 0.0001), or both, suggesting that these are robust

estimates. In sharp contrast, we did not observe an excess

of calls with higher than expected AFs (Table S7).
Journal of Human Genetics 101, 369–390, September 7, 2017 373



For indels, we also observed a large number of potential

PMMs exceeding the binomial expectation (Figures 1C and

1D; Table S7), with more variability overall between pro-

bands and siblings (57/268 [22%] versus 48/140 [35%],

respectively, p ¼ 0.005, two-sided Fisher’s exact). For rare

inherited indels, we never observed the same degree of

skewing of calls with lower AFs (simulation means: pro-

bands, 6%; siblings, 17%; p < 0.0001, by simulation)

(Figure 1D; Table S7). Similar to SNVs, we found an eleva-

tion in the rate for SD/TRF loci (probands, 7/18 [39%]; sib-

lings, 9/16 [56%]; p ¼ 0.0003 and < 0.0001, respectively,

by simulation). However, the percent PMM estimates

were less robust, compared with SNVs, when applying

additional AF cutoffs, more strict binomial deviations, or

both. For example, the overall PMM rates using the stricter

binomial threshold reduced to 40/268 (15%) for probands

and 33/140 (24%) for siblings (p ¼ 0.045, two-sided

Fisher’s exact), which nevertheless still exceeded the null

expectation (p < 0.0001, by simulation) (Table S7). We

observed no de novo indels with significantly deviated

higher AFs.

From validation data previously reported or available for

a subset (63/545) of the predicted mosaic calls, which

included Sanger and NGS data, we found that 39/63

(62%) calls showed strong evidence of allele skewing

(Table S2). These data argue that the majority of these calls

are bona fide PMMs but that systematic approaches tuned

to detecting PMMs are still needed.

Developing a Systematic Mutation Calling Framework

We sought to perform a systematic analysis of PMMs with

methods specifically geared toward SNVmosaicmutations,

which do not require a matched ‘‘normal’’ tissue data com-

parison (Figure 1E). Moreover, we expected a large number

of suspected PMM calls to be false because of random sam-

pling biases, mapping artifacts, or systematic sequencing

errors. Therefore, we worked to build a robust calling

framework that would integrate different approaches

and could be empirically tuned based on validation data.

We first evaluated several standalone (single sample) SNV

mosaic mutation callers, including Altas2,41 LoFreq,42

Varscan2,43 and a custom read parser (mPUP) using simu-

lated data containing artificial variants at 202 loci. Based

on their complementary performances at different depths

and AFs, we selected Varscan2, LoFreq, and mPUP for

further evaluation (Tables S8 and S9).

We took advantage of the fact that 24 quad families

(96 individuals) had WES independently generated by

three centers, providing an opportunity to empirically

evaluate these methods on a combined remapped and

merged high-depth WES dataset (merged pilot 24: average

mean coverage 2083) (Figures S2B and S14A). We obtained

high-confidence validation data from at least one DNA

source using smMIPs and Illumina sequencing for 645/

902 (72%) of the predicted PMM and 56/63 (84%) of the

GDM sites (Figure S3; Table S4). Not surprisingly, we found

that the majority of the PMMs predicted by a single variant
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caller were false positives (345/347, 99%), whereas those

called by at least two other approaches had a better PPV

(162/298, 54%) (Figure S7). In addition, a small number

of PMMs (13%) were in cis with existing heterozygous

polymorphisms. PMM alleles tracked with specific haplo-

types but were absent from a number of overlapping reads,

strongly suggesting that these are bona fide postzygotic

events (Figure S4). We further found that for transmitted

variants, we could eliminate most of the mischaracterized

calls that validated as parental germline by requiring a

more significant binomial deviation and performing a

Fisher’s exact test of the read counts from the parent-child

pair (Figure S8). Some of these transmitted variants showed

consistently skewed AFs that transmitted in a Mendelian

fashion, suggesting that they are systematically biased

(Figure S5).

Using these pilot 24 validation data, we constructed an

initial logistic regression model (Supplemental Material

and Methods). We then applied this initial logistic regres-

sion model and additional filters for ambiguous trans-

mitted sites to an independent set of 400 quad families

(Material and Methods, Figure S9). We performed smMIPs

validation onWBDNA samples from 78 of these quads and

obtained high-confidence validation data on 1,388/1,754

sites.

Based on manual inspection of the WES and smMIP

alignment data, we identified additional features associ-

ated with poor prediction outcomes or problematic

genomic regions, including multiple mismatches within

the variant reads and presence in multiple families (Figures

S6, S11A, and S11B). We added filters based on these fea-

tures to the pilot 400 validation set and built a refined lo-

gistic regression model (Figure S9). The model performed

well in 3-way cross validations with sensitivity estimated

at 92% and PPV at 80% (threshold 0.26) (Figure S12A).

To further evaluate this model, we rescored the pilot 24

validation sites with and without additional filters (Mate-

rial and Methods). Importantly, these calls were selected

and validated prior to model development, giving an inde-

pendent set of data to evaluate performance. These data

performed better than the training data (after removing

mPUP only calls), likely due to the increasedWES coverage

of the pilot 24 samples with sensitivity of 94% and PPV of

83% (threshold 0.26) (Figures S12C and S12D).

We identified additional heuristics that enabled further

distinction between true mosaic calls and calls that vali-

dated as germline. We observed that calls validating

germline tended to have higher observed WES AFs. We

calculated the 90% binomial CI (95% one-sided) for the

observed AF as a potential complement to the observed sig-

nificant binomial deviations. We found that the vast ma-

jority—112/113 (99%)—of validated PMM calls had upper

CI bounds that remained below 0.4, while bounds for the

majority of true germline calls—25/33 (76%)—fell above

this threshold (Figure S10). In addition, we observed that

a significant fraction of the false positive calls exceeding

our logistic score threshold (5/26 [19%]) were annotated
ber 7, 2017



Table 1. PMM Counts in Children across Different Allele Fraction
and Coverage Thresholds

syn mis nonþsplice Total

Best Practice Filters

Quads Pro 94 195 20 309

Sib 62 203 15 280

Trios Pro 26 63 6 95

Total Pro 120 258 26 404

AF 5%-453 High Confidence

Quads Pro 58 131 12 201

Sib 42 133 10 185

Trios Pro 22 53 6 81

Total Pro 80 184 18 282

Total germlinea Pro 246 704 73 1,023

Sib 186 431 26 643

AF 15%-453 Burdenb

Quads Pro 24 65 5 94

Sib 20 66 5 91

Jointly covered
bases: 24.5

Trios Pro 8 30 0 38

Total Pro 32 95 5 132

Jointly covered
bases: 9.7

AF 12.5%-503 Burdenb

Quads Pro 32 67 5 104

Sib 16 80 6 102

Jointly covered
bases: 22.3

Trios Pro 12 31 2 45

Total Pro 44 98 7 149

Jointly covered
bases: 8.9

AF 10%-653 Burdenb

Quads Pro 38 63 6 107

Sib 20 76 4 100

Jointly covered
bases: 16.7

Trios Pro 12 31 1 44

Total Pro 50 94 7 151

Jointly covered
bases: 6.8

AF 7.5%-853 Burdenb

Quads Pro 31 56 6 93

Sib 18 66 5 89

Jointly covered
bases: 11.4

Table 1. Continued

syn mis nonþsplice Total

Trios Pro 11 28 4 43

Total Pro 42 84 10 136

Jointly covered
bases: 4.7

AF 5%-1303 Burdenb

Quads Pro 20 35 4 59

Sib 12 35 2 49

Jointly covered
bases: 5.1

Trios Pro 10 18 5 33

Total Pro 30 53 9 92

Jointly covered
bases: 2.0

Abbreviations are as follows: AF, allele fraction; Pro, proband; Sib, sibling; syn,
synonymous; mis, missense; non þ splice, nonsense and canonical splicing.
Bases in billions. Mutations with other annotations not shown.
aGermline de novo mutations identified using our pipeline.
bPMMs in sex chromosomes were excluded in this set.

The American
as SD or TRF sites (Figures S11C and S11D). Moving for-

ward, we chose to remove these SD/TRF sites and re-classify

mosaic versus germline status based on the AF binomial CI.

We conducted a third set of validations on PMM and

GDM calls not previously evaluated (Supplemental Note:

Model Development) in the pilot cohorts using these

new filtering parameters and model scores (Figures S12E

and S12F). We observed that across all test sets (excluding

training data), both sensitivity and PPV converged at a

logistic score of 0.518 (sensitivity 0.83, PPV 0.85). At this

score threshold, 21/22 (95%) of mosaic predictions that

validated as true variants were confirmed as mosaic in

children (all test sets). We chose to use this more stringent

score threshold for our subsequent burden analysis. In

addition, we removed calls with less than five variant allele

reads as these disproportionately contributed to false calls

(Figure S11E).

Evaluation of Mutation Rates and Burden in Children

with ASD

Using this approach, we recalled SNVs in the SSC, in both

children and parents, from the existing harmonized re-

processed WES data (average mean coverage 893).12 We

identified 687 total PMMs originating in the children

from 1,699 quads and 567 trios passing SNV QC metrics

(Tables 1 and S5). We re-identified 3,445/4,198 previously

published SNV GDMs, which were not flagged as poten-

tially mosaic, and 1,064 novel calls, i.e., not included in

the published call set. Applying our high-confidence call

set criteria (5% minimum AF and 453 joint coverage) re-

sulted in 470 PMMs, of which 332 were not part of the

published de novo mutation calls (Figure 1F and Table 1).

Of the 452 previously published SNV GDMs that we

initially flagged as potentially mosaic, 233 were called by
Journal of Human Genetics 101, 369–390, September 7, 2017 375
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Figure 2. Rates and Burden of SNV PMMs in the Simons Simplex Collection (SSC)
(A–C) Rates and burden analyses of PMMs in quad families of the SSC. Mean rates with 95% Poisson CIs (exact method) are shown.
(A) Nonsense/splice PMM rates are similar and not evaluated further given their low frequency.
(B) Missense PMMs show no evidence of burden in probands from quad families.
(C) Synonymous PMMs show an unexpected burden in probands from quad families. Significance determined using a two-sided
Wilcoxon signed-rank test. *FDR < 0.05 using the Benjamini-Yekutieli approach.
(D) Analysis of synonymous PMMs at AF 12.5%-503 in the full SSC and subcohorts.Mean rates with 95% Poisson CIs (exactmethod) are
shown for combined probands (quadþ trio families) and unaffected siblings. Abbreviations are as follows: SSC subcohorts all, all families
within the cohort passing quality criteria; Has Germline LGD, denotes whether or not proband in family has a LGD GDM or gene
disrupting de novo CNV; Has Any Germline NS, denotes whether or not proband in family has any NS GDM (includes the LGD set).
Significance determined using a two-sided Wilcoxon rank sum test. *FDR < 0.05 using the Benjamini-Yekutieli approach.
our approach (196 as mosaic), of which 157 remained in

our high-confidence call set (138 as mosaic, 19 as re-classi-

fied germline) (Figure 1F). Likewise, applying the high-con-

fidence call set criteria reduced the GDM count to 1,677, of

which only 10 were novel. Compared to our analysis of

previously published de novo SNVs, we observed a higher

fraction of mosaic mutations among the de novo calls in

children, 470/2,147 (22%), consistent with increased

sensitivity of our mosaic targeted approach (Table 1).

The burden of PMMs in individuals affected with ASD

compared to their unaffected siblings may differ based

on embryonic timing, as an early embryonic mutation

would contribute more substantially to postembryonic tis-

sues. Therefore, we evaluated burden across the entire SSC

cohort at several defined minimum AFs, as a surrogate for

embryonic time, and corresponding joint family coverage

thresholds (AF-COV): 5%-1303, 7.5%-853, 10%-653,

12.5%-503, and 15%-453 (Figure S13 and Table 1).

We first examined the mutation burden of the unique

autosomal coding regions in quad families exclusively as

they provided a matched set of child samples (Material

andMethods). Within our 15%-453GDM calls, we recapit-

ulated the previously observed mutation burdens for

missense (p ¼ 0.003, one-sided Wilcoxon signed-rank test

[WSRT]) and nonsense/splice (p ¼ 0.00025, one-sided

WSRT)mutations and lackof burden for synonymousmuta-

tions, demonstrating that previous findings are robust to

removing potential PMM calls. Given the low number of

nonsense/splice mutations (Figure 2A), we restricted our

mosaic burden analyses to synonymous and missense
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PMMs. We did not observe burden signal for missense

PMMs within the cohort of quad families (Figure 2B).

Unexpectedly, we observed an increased burden of synony-

mous PMMs in probands (Figure 2C). The signal was

strongest in the 12.5%-503 subanalysis with probands hav-

ing twice asmanymutations (32 inprobandsor 7.2310�10/

base pair versus 16 in siblings or 3.6 3 10�10/base pair, p ¼
0.0024, two-sidedWSRT, FDR< 0.05). This trend continued

for the three lower AFwindows, but these did not exceed an

FDR of 0.05. We extrapolated the observed mean per

base rates to the full unique autosomal RefSeq exome

(31,854,496 bases/haplotype, including canonical splice

sites) in order to calculate the average differential between

probands and siblings, similar to the analysis performedpre-

viously forGDMs.11Basedonthe12.5%-503data,we found

that probands had a rate of 0.046 synonymous PMMs per

exome and siblings 0.023, suggesting that 50% of proband

synonymous PMMs contribute to ASD risk. The differential

between probands and siblings was 0.023, which translates

to 2.3% of simplex case subjects in the overall cohort

harboring a synonymous PMM related to ASD risk.

We next combined the data from quad and trio-only (fa-

ther, mother, proband) families to increase the number of

mutations and conducted an exploratory analysis of muta-

tion rates in subsets of the full cohort. Since a large fraction

of the SSC has germline mutation events that are likely

contributory,8,11,44 we reasoned that grouping families by

presence or absence of proband GDMs of different severity

(LGD/disruptive CNV versus any NS) might improve our

ability to detect any PMM signal that might be present.
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Figure 3. Rates and Burden of Missense PMMs in Subcohorts and Gene Sets
For all plots, the 15%-453 burden call set was used andmean rates with 95% Poisson CIs (exact method) are shown. Abbreviations are as
follows: SSC subcohorts: All, all families within the cohort passing quality criteria; Has Germline LGD, denotes whether or not proband
in family has a LGD GDM or gene disrupting de novo CNV; Has Any Germline NS, denotes whether or not proband in family has any NS
GDM (includes the LGD set). Significance determined using a one-sided Wilcoxon rank sum test. No comparisons met a FDR < 0.05
using the Benjamini-Yekutieli approach.
(A) Splitting by subcohort shows trends for increased missense PMM burden in families where probands do not have reported germline
mutations.
(B) Evaluating mutations specific for the essential gene set shows stronger proband burden in the without any germline LGD subcohort.
(C) Similarly, evaluating mutations specific for the intolerant gene set shows stronger proband burden without any germline LGD or
without any germline NS subcohorts.
Basedon the12.5%-503data in familieswithout agermline

LGD,weobserved synonymous burden signal similar to the

full cohort. However, the full cohort data did not meet the

FDR threshold using the less powerful unpaired test data.

In contrast, for the families without any reported NS

GDMs, we observed a dramatic depletion of synonymous

PMM events in the unaffected siblings, with a proband to

sibling rate ratio of 10 (p ¼ 0.0038, two-sided Wilcoxon

rank-sum test [WRST], FDR < 0.05) (Figure 2D). In this

group without NS GDMs, this equates to 0.038 synony-

mous PMM events per proband exome and 0.004 per

sibling exome (differential of 0.034), suggesting that 89%

of this mutation class contributes to ASD risk.

Next, we examined missense PMMs using the two

cohort subgroupings at the 15%-453 threshold. We

observed a non-significant trend toward burden of

missense PMMs in probands for families either without

any LGD GDMs (rate ratio 1.28) or without any NS

GDMs (rate ratio 1.49) (p ¼ 0.085 and p ¼ 0.076, respec-

tively, one-sided WRST) (Figure 3A). It has now been

well documented using several approaches that LGD

GDMs in probands show enrichments for genes that are

highly conserved/intolerant to LGD mutations.11,44,45

We reasoned that missense PMMs relating to ASD risk

could also show similar enrichments. We selected two

intolerant gene sets, an updated set of essential genes
The American
(n ¼ 2,455)34 and the recently published ExAC intolerant

set (n ¼ 3,232).35 These subanalyses showed increased

effect sizes, but none of these results exceeded a FDR

of 0.05. For both essential and ExAC intolerant sets,

we observed similar trends for enrichments of missense

PMMs in probands (rate ratios 1.4, p ¼ 0.093 and

p ¼ 0.13, respectively, one-sided WRST).

When combining these two approaches, which subdi-

vide the cohort and gene targets, we saw the strongest

effects. In the subset of families without LGD GDMs, we

saw a stronger effect for both essential and ExAC intolerant

genes (rate ratios 2.1 and 2, p¼ 0.034 andp¼ 0.025, respec-

tively, one-sided WRST). We observed similar results when

restricting to quad only families. Missense PMMs in essen-

tial genes occur at a rate of 0.022 events per exome in pro-

bands who do not have a LGD GDM and at a rate of 0.031

for intolerant genes (0.011 and 0.015 for siblings, respec-

tively, differentials 0.011 and 0.016). The families without

any NS GDMs showed the largest effect in the ExAC intol-

erant set (ratio 2.6, p ¼ 0.047, one-sided WRST) but similar

rates to the full cohort in the essential gene set (ExAC:

0.033 events per proband, 0.013 per sibling, 0.02 differen-

tial). Based on these differentials, we estimate that 1%–2%

of probands without LGD or NS GDMs have a missense

PMM in an essential/intolerant gene potentially contrib-

uting to risk. Adjusted to the full cohort, this gives a range
Journal of Human Genetics 101, 369–390, September 7, 2017 377



Table 2. PMM Counts in Parents across Different Allele Fraction
Coverage Thresholds

syn mis nonþsplice Total

Best Practice Filters

Nontrans Fa 259 543 54 856

Mo 266 570 41 877

Trans Fa 21 41 1 63

Mo 12 37 0 49

AF 5%-453 High Confidence

Nontrans Fa 196 418 40 654

Mo 199 405 35 639

Trans Fa 19 32 1 52

Mo 7 33 0 40

AF 15%-453 Burdena

Nontrans Fa 114 261 19 394

Mo 130 267 15 412

Trans Fa 19 32 1 52

Mo 6 31 0 37

Jointly Covered Bases: 34.2

AF 12.5%-503 Burdena

Nontrans Fa 126 276 22 424

Mo 130 281 18 429

Trans Fa 16 30 1 47

Mo 6 30 0 36

Jointly Covered Bases: 31.2

AF 10%-653 Burdena

Nontrans Fa 121 229 18 368

Mo 110 229 19 358

Trans Fa 11 23 1 35

Mo 4 20 0 24

Jointly Covered Bases: 16.7

AF 7.5%-853 Burdena

Nontrans Fa 90 177 19 286

Mo 92 180 19 291

Trans Fa 5 15 1 21

Mo 2 13 0 15

Jointly Covered Bases: 16.1

AF 5%-1303 Burdena

Nontrans Fa 53 110 15 178

Mo 49 101 9 159

Trans Fa 3 4 0 7

Mo 1 5 0 6

Abbreviations are as follows: AF, allele fraction; Fa, father; Mo, mother; syn,
synonymous; mis, missense; non þ splice, nonsense and canonical splicing.
Bases in billions. Mutations with other annotations not shown.
aPMMs in sex chromosomes were excluded in this set.
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of 0.8%-1.3% of probands harboring amissense PMM in an

essential/intolerant gene potentially related to ASD risk.

Parental PMM Rates and Transmission

Wealso identified PMMs arising in the SSCparents (Table 2;

Figure S4). We identified 1,293 nontransmitted (654 in

fathers and 639 in mothers) and 92 transmitted (52 in

fathers and 40 in mothers) total PMMs in our high-confi-

dence call set. For transmitted mutations, which by defini-

tion require the postzygotic mutation contribution to both

soma and germline, we required a stricter deviation from

the binomial expectation based on empirical validation

data (p % 0.0001). The overall PMM rates were similar

between fathers and mothers (Figure S15). Comparing

children and parents in the high-confidence call set, we

found the PMM rate to be 2.6-fold greater in the SSC

parents relative to their children. However, we suspect

that some fraction of this elevated ratemay be due to biases

in filtering out transmitted sites that show false mosaic

signal, as we do not have the previous generation, i.e.,

grandparents, to compare to as we do for the children.

Therefore, we looked at variants in a subset of the cohort

and determined the fraction of variants remaining in

children before and after applying transmission filters.

Using this rate, we estimated the number of PMMs

expected to be filtered from the parental calls based on

transmission. We estimate that 40% of our parental PMM

calls are in excess of what is expected and likely attributed

to incomplete filtering (Figure S16). Applying this correc-

tion reduces the parental excess PMM rate to only 1.6-

fold greater. Based on the children, two-thirds of filtered

calls appear to be systematically biased as they are skewed

in both generations. The remaining one-third of calls

are skewed in only a single generation with AFs > 20%,

suggesting that they are likely stochastic events.

The increased rate of PMMs in parents compared to

children is in line with previous observations that PMMs

accumulate with age.46,47 We also observed an overall

trend toward an increase in the rate of PMMs with parental

age for both sexes (Figure S17A). The rate of PMMs mark-

edly increases after age 45 and there is a significant differ-

ence in rate between parents younger than 45 as compared

to those 45 and older (mothers-rate ratio 1.2, p ¼ 0.04;

fathers-rate ratio 1.3, p ¼ 0.01, one-sided WRST)

(Figure S17B). We also saw that the number of individuals

with multiple PMMs (adjusted for coverage differences)

within a given age range increased as well (Figure S17C).

Recent studies have also demonstrated a rise in PMMs in

particular genes that result in aberrant clonal expansions

(ACEs) that are specific to blood cells.47–50 We did not

find strong evidence for enrichment of PMMs in 42

genes with recurrent ACE-associated mutations from three

studies of hematopoietic clonal expansion (parents-obs: 9,

exp: 6.6, p ¼ 0.17; children-obs: 5, exp: 2.3, p ¼ 0.07;

two-sided binomial).48–50 However, among the parents

we did find recurrent nontransmitted PMMs in two of

the most frequently mutated ACE-related genes, DNMT3A
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(four nonsense and one missense) and TET2 (two

missense). These PMMs did occur in relatively older indi-

viduals for our cohort, 45–50 years old. Two missense

PMMs in TET2 were also observed in the children.

Within the 453 joint coverage data, we found that 7%–

10% of parental PMMs were transmitted to one or more

children depending on the minimum AF threshold (high

confidence 5% versus burden 15%) (Table 2). Moreover,

in our high-depth validation data with final filters applied,

we found that 1/164 GDM predictions showed evidence of

low AF in parental DNA, which was not detected by WES

(Table S4). We also identified six obligate mosaics given

their de novo presence in two offspring, i.e., gonadal mosaic

mutations (Table S5).Within the quad families of our high-

confidence call set, we did observe skewing of transmission

to siblings (18 to both, 39 siblings, 22 probands), suggest-

ing that as a class, transmitted mosaic mutations are not

associated with ASD within this cohort. However, individ-

ual mutations at ASD risk loci may still be relevant to the

disorder.

Properties of PMMs

Using the high-confidence call set (Table S5), we examined

whether general properties of PMMs differed between

parents and children and how mutational mechanisms

compare with GDMs. We found that AF distributions of

PMMs between parents (fathers andmothers), and likewise

between children (probands and siblings), were similar;

therefore, we combined parental calls and child calls,

respectively (Figure 4). Nontransmitted parental PMMs

have a distinct AF distribution, which is bimodal, and

significantly different from both transmitted parental

PMM and child PMM distributions (nontransmitted

parental versus transmitted, p¼7.07310�14,nontransmit-

ted parental versus children, p ¼ 2.99 3 10�14, two-sided

WRST, FDR < 0.05). Similar to how we empirically

separated germline and mosaic calls in children, we calcu-

lated the confidence intervals of the parental PMM AFs

(Figure S18).We found that the vastmajority of transmitted

PMMs had AF CIs in excess of 10% (92/94 [98%]), suggest-

ing early embryonic origin for PMMs within this AF range

and consequently the largest risk for transmission.

The mutational spectra and signatures of GDMs and

PMMs were similar (Figure S19). For both GDMs and

PMMs, the relative frequency of mutations within trinu-

cleotides showed strongest correlation with previously

described51 cancer signature 1, followed by 6 (Figures

S19B and S19C). Signature 1, which is characterized by

spontaneous deamination of 5-methylcytosine, is indica-

tive of endogenous mutational processes and associated

with all cancer types.51 Signature 6 is associated with

defective DNA mismatch repair.51

Potential Impact of Synonymous PMMs on Splicing

A possible mechanism for synonymous variants contrib-

uting to ASD risk would be by disrupting splicing. Exonic

splice-affecting variants are preferentially localized near
The American
existing canonical splicing sites, i.e., the starts or ends

of exons.52,53 Therefore, we calculated the absolute mini-

mum distances of all synonymous PMMs and GDMs to

their closest splicing site (Figure 5). We found the proband

synonymous PMM distribution to be shifted toward

splicing sites compared to both sibling and parental synon-

ymous PMM distributions (p ¼ 0.017 and p ¼ 0.008,

respectively, two-sided WRST, FDR < 0.05), while the

sibling distribution was similar to the parental (p ¼
0.601, two-sided WRST). We observed a similar shift to-

ward splice sites for GDMs in probands as compared to sib-

lings (p ¼ 0.005, two-sided WRST, FDR < 0.05).

We further evaluated potential effects of synonymous

mutations on splicing computationally using HSF, which

utilizes a collection of different splicing prediction ap-

proaches.36 HSF reported significantly more instances of

putative splice altering mutations for proband synony-

mous PMMs (70/78) when compared to siblings (25/41)

(p ¼ 0.0005, odds ratio, 5.506, 95% CI 1.946–16.836,

two-sided Fisher’s exact) (Table S6). Synonymous GDMs

showed no enrichment (proband 188/235 versus sibling

137/177, p ¼ 0.544, odds ratio, 1.168, 95% CI 0.726–

1.879, two-sided Fisher’s exact). When restricting to

synonymous PMMs that occur within 50 bp of the start

or end of an exon, where splicing regulatory elements are

enriched,54 we observed a stronger enrichment (proband

45/53 versus sibling 5/12, p ¼ 0.00378, odds ratio, 7.53,

95% CI 1.618–38.861, two-sided Fisher’s exact). We did

not observe a similar enrichment for proband synonymous

GDMs near splice junctions. To assess the robustness of

HSF findings, given the high call rate of splice-altering var-

iants, we removed the two most frequently called matrices

and reclassified variants. We still observed an enrichment

of proband synonymous PMMs predicted to alter splicing

(all variants: proband 53/79, sibling 18/41, p ¼ 0.019,

odds ratio, 2.60, 95%CI 1.20–5.66; within 50 bp: probands

34/50, sibling 5/15, p ¼ 0.033, odds ratio, 4.25, 95% CI

1.24–14.5, two-sided Fisher’s exact).

To independently assess splice altering variant enrich-

ment, we applied a recently reported machine-learning-

based approach, SPANR.37 SPANR requires a variant to be

within 100 bp from an exon start or end site and be located

within an exon flanked by an exon on either side, which

limited our analysis to 68 proband and 29 sibling PMMs.

SPANR reported a significant enrichment of splice-altering

synonymous PMMs in probands (proband 15/68 versus

sibling 1/29, p ¼ 0.03, odds ratio, 7.81, 95% CI 1.09–

344.8, two-sided Fisher’s exact). Similarly, proband PMMs

remained enriched for splice-altering variants (though

not significantly) when restricting to mutations within

50 bp of a canonical splice site (proband 14/46, sibling

1/13, p ¼ 0.15, odds ratio 5.13, CI 95% 0.64–239.9,

two-sided Fisher’s exact).

Gene Set Enrichment

We applied a similar approach as Iossifov and colleagues to

look for enrichments of PMMs within different gene sets
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Figure 4. Mosaic Variant Allele Fraction Distributions
For all plots, all PMMs from the 5%-453 high-confidence call set were used.
(A) Distribution of allele fractions for variants in probands combined (quad þ trio families).
(B) Distribution of allele fractions for variants in siblings.
(C) Distribution of allele fractions for germline variants in children that were transmitted from mosaic parents.
(D and E) Distribution of allele fractions for variants in mothers that were not (D) and were (E) transmitted to children.
(F and G) Distribution of allele fractions for variants in fathers that were not (F) and were (G) transmitted to children.
(H) Combined data plotted as kernel density curves. Parental transmitted are significantly shifted toward a higher allele fraction than
nontransmitted or child mosaic variants. Children have a significantly different distribution than parental nontransmitted. Significance
determined using a two-sided Wilcoxon rank sum test. *FDR < 0.05 using the Benjamini-Yekutieli approach.
using our high-confidence dataset.11 Using expected values

generated from joint coverage for the cohort, we examined

whether our PMMs/GDMs showedmore or fewermutations
380 The American Journal of Human Genetics 101, 369–390, Septem
than expected independently for probands and siblings.

Our GDM dataset showed similar enrichments or lack

thereof to previous reports (Table 3). In probands, we found
ber 7, 2017



A B C D 

Figure 5. Distance to Nearest Splice Site for Synonymous PMMs
For all plots, all synonymous PMMs from the 5%-453 high-confidence call set were used. Splice site distances were calculated as absolute
minimum distance to nearest canonical splice site.
(A) Distribution of distance to nearest splice site in probands combined (quad þ trio families).
(B) Distribution of distance to nearest splice site in siblings.
(C) Distribution of distance to nearest splice site in combined parents (quad þ trio families).
(D) Combined data plotted as kernel density curves. Proband distribution is significantly shifted toward the canonical splice sites
compared to both parents and siblings. Significance was determined using a two-sided Wilcoxon rank sum test. *FDR < 0.05 using
the Benjamini-Yekutieli approach.
enrichment (1.8-fold) for missense PMMs intersecting

chromatin modifiers (p ¼ 0.043, two-sided binomial) and

depletion of missense PMMs in embryonically expressed

genes (p ¼ 0.024, two-sided binomial). Interestingly,

missense GDMs showed no evidence of enrichment or

depletion for these gene sets, while LGD GDMs have previ-

ously been shown to be enriched.11

Recently, several groups have taken different approaches

to generate genome-wide ASD candidate risk gene rankings

and predict novel gene targets.33,38 These approaches

have largely been validated on LGD GDMs. We explored

whether our high-confidence PMM calls showed any shift

in ASD candidate gene rankings for probands compared

with their unaffected siblings (Table S10). We evaluated

rankings based on gene mutation intolerance (LGD

rank, LGD-RVIS average rank)33 or based on a human

brain-specific gene functional interaction network (ASD as-

sociation).38 At the population level, we found only non-

significant increases inLGD-RVIS rankings forproband syn-

onymous and essential missense PMMs in the subcohort

of families without any proband NS GDMs (p ¼ 0.029 and

p ¼ 0.073, one-sided WRST). We also observed no signifi-

cant shifts in rankings for missense GDMs.

Intersecting Proband Mosaic and Germline Mutation

Gene Targets

To determine whether germline and mosaic mutations

in probands share common target genes, we intersected

missense PMMs from the high-confidence call set and

the burden subset (15%-453) with the re-classified pub-

lished GDM calls. We observed no enrichment of proband

missense PMMs with genes that are targets of sibling

GDMs of any type. However, we did find an apparent
The American
enrichment of genes that are targets of proband missense

GDMs within proband missense PMMs from the burden

call set (proband: 25/100; sibling: 9/69, p ¼ 0.042, OR,

2.222, 95% CI 0.904–5.582, one-sided Fisher’s exact), sug-

gesting that some common ASD risk targets for mosaic and

germline mutations.

In addition, we intersected all predicted NS PMMs

(our high-confidence call set plus re-classified published

[unique CDS]) with 139 genes that have reached high-

confidence levels for their risk contribution for ASD and/

or developmental disorders.11,32,40 In probands, 12/496

PMMs intersect (8 missense, 4 LGD) while only 4/354

PMMs intersect in siblings (3 missense and 1 LGD). The

novel, i.e., not published in the GDM call set,11,12 proband

events included missense PMMs in CHD2 (MIM: 602119,

GenBank: NM_001042572.2; c.272A>G [p.Glu91Gly]),

CTNNB1 (MIM: 116806, GenBank: NM_001098209.1;

c.1127G>A [p.Arg376His]), KIF1A (MIM: 601255,

GenBank: NM_001244008.1; c.655G>A [p.Ala219Thr]),

and KMT2C (MIM: 606833, GenBank: NM_170606.2;

c.14416C>G [p.Arg4806Gly]) (Table 4). We also identified

a novel missense mutation in SCN2A (MIM: 182390,

GenBank: NM_001040142.1; c.3370A>T [p.Ser1124Cys])

that was transmitted to the proband from the mother. Our

SNV PMM pipeline re-identified published de novo calls

that we re-classified as likely mosaic events, including

KANSL1 (MIM: 612452, GenBank: NM_001193465.1;

c.729A>C [p.Gln243His]),KAT2B (MIM: 602303,GenBank:

NM_003884.4; c.1151�1G>A [splicing]), INTS6 (MIM:

604331, GenBank: NM_001039937.1; c.1789C>T

[p.Arg596Ter]), SYNGAP1 (MIM: 612621, GenBank:

NM_006772.2; c.3055C>T [p.Arg1019Cys]), and TBL1XR1

(MIM: 608628, GenBank: NM_024665.4; c.845T>C
Journal of Human Genetics 101, 369–390, September 7, 2017 381



Table 3. Enrichment of Missense Germline and Postzygotic Mutations in Gene Sets

Total No. of Genes

Mis GDM (Pro) Mis GDM (Sib) Mis PMM (Pro) Mis PMM (Sib)

701 426 177 129

Set p Genes in Seta Obs Exp p Obs Exp p Obs Exp p Obs Exp p

Chromatin 0.0372 388 32 26.1 0.230 20 15.8 0.303 12 6.6 0.043 2 4.8 0.247

Embryonic 0.1433 1,797 114 100.5 0.178 60 61.1 0.835 16 25.4 0.024 25 18.5 0.103

Essential 0.1967 2,402 160 137.8 0.036 83 83.7 0.903 41 34.8 0.256 24 25.4 0.825

PSD 0.0701 879 58 49.1 0.183 35 29.9 0.346 17 12.4 0.183 14 9.0 0.167

FMRP 0.1005 775 100 70.3 4 3 10�4 57 42.7 0.036 20 17.8 0.53 13 12.9 1.000

453 joint coverage, 5% AF call set. Variants in sex chromosomes excluded. Expected (Exp) and p values obtained from two-sided binomial test, based on gene
length model (p). Abbreviations are as follows: Obs, observed; Mis GDM, missense germline de novo mutation; Mis PMM, missense postzygotic mutation;
Pro, proband; Sib, sibling; PSD, post synaptic density associated genes; FMRP, fragile X mental retardation protein-associated genes.
aTotal number of genes differs from full lists as we used only genes that we were able to map to our gene symbol annotations and genes on sex chromosomes were
excluded.
[p.Leu282Pro]) (Table 4). Only the KANSL1 and INTS6

PMMs met the high confidence 453 joint coverage

criteria. Mosaic re-classified indels included DIP2A

(MIM: 607711, GenBank: NM_001146114.1; c.1646_

1652dup7 [p.Leu552ValfsTer34]) and GIGYF1 (MIM:

612064, GenBank: NM_022574.4; c.1140_1156del17

[p.Thr381ArgfsTer13]) (Table 4). With the exception of

probands with the CHD2 and DIP2A PMMs, none of these

other probands have NS GDMs in other strong risk genes.

Among the remaining NS PMMs, we found seven muta-

tions in genes overlapping proband LGDGDMs (sibling NS

GDM count % 1) (Table 4). Of particular interest are novel

nonsense PMMs in BAZ2B (MIM: 605633, GenBank:

NM_013450.2; c.3868C>T [p.Arg1290Ter]), UNC79

(MIM: 616884, GenBank: NM_020818.3; c.6208C>T

[p.Arg2070Ter]), and USP15 (MIM: 604731, GenBank:

NM_001252078.1; c.813T>G [p.Tyr217Ter]). BAZ2B is

part of the bromodomain gene family involved in chro-

matin remodeling.55 UNC79 works in concert with

UNC80 to regulate the excitability of hippocampal neu-

rons through activation of sodium channel NALCN.56

USP15 is a deubiquitinase that plays many roles across

the cell including modulating immune response through

TGF-b and NF-kB pathways.57

Ten of the remaining NS PMMs intersect gene targets of

missense GDMs (sibling NS GDM count % 2) (Table 4). Of

note are novel nonsense PMMs in the chromatin remodel-

ing factor SSRP1 (MIM: 604328, GenBank: NM_003146.2;

c.159G>A, [p.Trp53Ter]) and the membrane trafficking

protein VSP13D (MIM: 608877, GenBank: NM_015378.2;

c.10552C>T [p.Arg3518Ter]). Novel missense PMMs

included were DMXL2 (MIM: 612186, GenBank:

NM_001174116.1; c.3455A>G [p.Asp1152Gly]), SYNE1

(MIM: 608441, GenBank: NM_033071.3; c.2330C>T

[p.Ala777Val]), and CFAP74 (GenBank: NM_001080484.1;

c.1127G>A [p.Arg376Lys]).

Among the synonymous PMMs, we identified four

candidate genes based on known roles in neurodevelop-

ment, predicted creation of a new exonic silencing site,
382 The American Journal of Human Genetics 101, 369–390, Septem
and no other NS GDM events in ASD risk genes in the pro-

band: ACTL6B (MIM: 612458, GenBank: NM_016188.4;

c.360C>T [p.Ser120 ¼ ]), CCT6B (MIM: 610730,

GenBank: NM_001193529.1; c.885C>T [p.Ala295 ¼ ]),

FYN (MIM: 137025, GenBank: NM_002037.5; c.1051C>T

[p.Leu351 ¼ ]), and STMN1 (MIM: 151442, GenBank:

NM_001145454.1; c.219T>C [p.Ala73 ¼ ]). Notably,

ACTL6B is a neuron-specific component of the SWI/SNF

chromatin remodeling complex.58We also highlight a syn-

onymous PMM in COL5A3 (GenBank: NM_015719.3;

c.2460G>A [p.Ser820 ¼ ]) because it has a high likelihood

of impacting splicing by altering the wild-type 30 exonic
donor site, a missense PMM (GenBank: NM_015719.3;

c.3338C>T [p.Pro1113Leu]), and a LGD GDM are present

at this locus, and we found no other NS GDMs associated

with ASD risk in the proband. Taken together, these new

mosaic calls provide additional support for high-confi-

dence ASD risk genes and highlight candidates as potential

contributors to ASD risk.
Discussion

The aim of our study was to systematically evaluate exonic

PMMs in a large family-based SSC cohort and their poten-

tial role in ASD. Historically, PMMs, much like GDMs,

have been intractable to systematical genome-wide study.

However, NGS technologies have now made this class

of genomic variation accessible, genome-wide, at single-

base resolution. A number of recent reports have demon-

strated that PMMs are relatively common in both healthy

and neurodevelopmental disorder cohorts, including

intellectual disability, ASD, or general developmental

delays.2,26,46,59,60 However, how frequent and widespread

these events might be in early and/or late development

and how much risk they contribute to complex disorders

has yet to be fully elucidated.

We found evidence for 11% of SNVs and 26% of indels

previously reported as de novo mutations from the SSC
ber 7, 2017



WES data having AFs consistent with a PMM arising in the

child. This is in excess of our original observation of 3.5%

(9/260) of mutation events consistent with child PMMs,

using only 209 families.2 A similar analysis of de novo

mutations identified from whole-genome sequencing of

simplex ID trios validated 6.5% (7/107) as PMMs.26 We

reasoned that re-analyzing the WES data systematically

with approaches tuned to detect PMMs would reveal novel

mutations, especially those with lower AFs (<20%). We

developed a SNV calling approach to detect PMMs without

matched normal data but in the context of nuclear families

(Figure 1E). Using this approach, the rate of de novo SNVs

that are PMMs arising in children increased to 22%. Given

that the depth of sequence directly affects the observable

minimum mutation AF, we used varying AF-COV thresh-

olds (e.g., 15%-453, 5%-1303) to evaluate mosaic muta-

tion burden. Surprisingly, in the full cohort, we found

the strongest signal for PMM burden with synonymous

SNVs (Figure 2C). The distribution of proband PMMs

showed a significant shift in distance to nearest splice

site (Figure 5D). Moreover, proband synonymous PMMs

showed enrichments for splice altering predictions using

two independent approaches.

It has recently been shown that in some cancers, synon-

ymous mutations may have a modest enrichment in

oncogenes.52 Within 16 oncogenes, the signal was specific

to the mutations within 30 base pairs (‘‘near-splice’’) of the

exon boundary and showed gains of exonic splicing

enhancer (ESE) motifs and loss of exonic splicing silencer

(ESS) motif sequences. Conducting an analysis of the

intersection of ASD and schizophrenia WES GDMs and

regulatory elements, Takata and colleagues recently re-

ported an enrichment of near-splice synonymous GDMs

in ASD probands (odds ratio �2) and to a lesser extent

schizophrenia probands, relative to control subjects.53

Stronger signal in their initial ASD cohort was seen for sites

predicted to cause ESE/ESS changes, but reduced in a repli-

cation dataset (odds ratios 2.52 and 1.55, respectively). In

their analysis they compared the fraction of near-splice

or those also disrupting ESE/ESS sites mutations in case

versus control subjects (Fisher’s exact test), which does

not take into account coverage differences across individ-

uals/cohorts. We repeated our analysis of the distance to

splice site distributions for the high-confidence 453-joint

coverage SSC synonymous GDMs, finding them to be

significantly closer to splice sites in probands as compared

to siblings (p ¼ 0.005), similar to the PMM calls. However,

we observed no corresponding enrichment of splice-

altering variant predictions. Taken together, these data

are consistent with a possible role of synonymous postzy-

gotic mutations that functionally disrupt splicing regula-

tion in ASD.

While computational splice regulation predictions can

provide useful information at the population level, we

advise interpreting the effect of individual variants with

caution given the uncertainty of splice regulatory mecha-

nisms, cell-type-specific splicing patterns, limited training
The American
sets, and high reported false positive rates. For example,

HSF has a reported false positive rate of 43%.36 This is

due in part to the wide breadth of splicing signals it

attempts to capture. Additional functional validation of

these mutations using in vitro approaches, e.g., minigene

assays, or in vivo approaches, e.g., genome editing of cell

lines, is warranted.

From the synonymous PMMs predicted to impact

splicing, we identified a number of genes that have roles

in neurodevelopment and are associated with other ASD

risk genes. In particular, we highlight genes ACTL6B, a

member of the chromatin remodeler complex SWI/

SNF;58 CCT6B, a postsynaptic density gene recently impli-

cated in recessive intellectual disability;61 FYN, which en-

codes a non-receptor tyrosine kinase that is involved in

axon outgrowth;62 and STMN1, which encodes a microtu-

bule destabilizing protein that is involved in the regulation

of axon outgrowth.63 Also notable is COL5A3, which

encodes a scaffolding protein that is directly regulated

by ASD and Pitt-Hopkins (MIM: 610954)-associated gene

TCF4 (MIM: 602272).64 Individuals with duplications

that span COL5A3 have phenotypic characteristics similar

to those of TCF4-related syndromes including seizures,

facial dysmorphia, and developmental delay.64

We did not observe evidence of missense PMM burden

in the full cohort of ASD probands. This is perhaps not sur-

prising given the strong contribution of GDMs to ASD in

the SSC and that most de novo events will be missense

changes by chance, i.e., form most of the background

non-disorder-related mutations. Our sample size is too

small given their rate of mutations to fully evaluate

nonsense/splice PMMs as a separate class. Based on the dif-

ferential between probands and siblings, it has been re-

ported that LGD GDMs have a 40% likelihood of contrib-

uting to ASD (90% of loci with recurrent LGD), while the

likelihood for missense variants is �35%.11 We reasoned

that restricting our analysis to families without proband

germline mutations would increase our power to detect

any effect of missense PMMs, even though we would be

removing a significant fraction of families with germline

events unrelated to ASD. Indeed, if we subdivide the SSC

cohort into families that have or do not have a proband

LGD GDM/de novo CNVs, or, alternatively, any NS germ-

line mutation, we observed a difference emerging. This dif-

ference is strongest in the subset of genes predicted to be

essential/intolerant to mutation (Figures 3B and 3C).

Similarly, we also saw a further increase in synonymous

PMM burden in the subcohort without any reported NS

GDMs (Figure 2).

Freed and Pevsner recently reported on PMM burden in

probands and siblings in the SSC.59 While our two studies

used the same SSC datasets, we each used different compu-

tational and validation approaches. Restricting our com-

parison to SNVs at exonic/canonical splice sites, our 453

high-confidence call set contains 470 PMMs in children,

384 that are unique to our study. Their 203 final call set

contained 167 PMMs, 81 of which are absent from our
Journal of Human Genetics 101, 369–390, September 7, 2017 383



Table 4. Highlighted Mosaic Mutations in Candidate ASD Risk Genes

Person:Sex
NVIQ/
VIQ Gene Func

Gene
Lista

SSC Pro
GDM Counta

SSC Sib
GDM Counta

AF HGVSc HGVSp Pub Other Pub NS GDMLGD Mis LGD Mis

13073.p1:M 60/25 CHD2 mis HC11,32,40 3 0 0 0 14/125 (11%) NM_001042572.2; c.272A>G p.Glu91Gly N SYNGAP1:fs del

12139.p1:M 106/86 CTNNB1 mis HC40 1 1 0 0 8/103 (8%) NM_001098209.1; c.1127G>A p.Arg376His N GPBP1:mis

14687.p1:M 38/62 INTS6 ns HC40 0 0 0 0 13/54 (24%) NM_001039937.1; c.1789C>T p.Arg597Ter Y ATP2A1:mis

12028.p1:M 93/80 KIF1A mis HC40 0 1 0 1 29/250 (12%) NM_001244008.1; c.655G>A p.Ala219Thr N NA

11305.p1:M 35/60 KANSL1 mis HC40 0 0 0 0 40/126 (32%) NM_001193465.1; c.729A>C p.Gln243His Yb OR1S1:misc

11592.p1:M 109/122 KAT2B sp HC32 0 0 0 0 20/80 (25%) NM_003884.4; c.1151�1G>A – Yb NA

13897.p1:M 91/78 KMT2C mis HC32,40 1 1 0 0 8/115 (7%) NM_170606.2; c.14416C>G p.Arg4806Gly N CGGBP1:mis

13522.mo:Md 87/70 SCN2A mis HC11,32,40 2 4 0 0 11/50 (22%) NM_001040142.1; c.3370A>T p.Ser1124Cys N NA

14001.p1:M 63/38 SYNGAP1 mis HC11,32,40 1 1 0 0 18/74 (24%) NM_006772.2; c.3055C>T p.Arg1019Cys Yb NA

12335.p1:F 47/66 TBL1XR1 mis HC40 1 0 0 0 9/40 (22%) NM_024665.4; c.845T>C p.Leu282Pro Yb STK36:mis; SPATA32:mis

13012.p1:M 60/21 DIP2A fs ins HC11,32,40 1 0 0 0 34/164 (21%) NM_001146114.1; c.1646_1652dup7 p.Leu552ValfsTer34 Ye RELN:mis

11232.p1:M 68/91 GIGYF1 fs del HC32 2 0 0 0 15/65 (23%) NM_022574.4; c.1140_1156del17 p.Thr381ArgfsTer13 Ye NA

13694.p1:M 26/17 BAZ2B ns GLGD 1 0 0 1 9/163 (6%) NM_013450.2; c.3868C>T p.Arg1290Ter N NA

11411.fa:Md 67/51 COL5A3 mis GLGD 1 0 0 0 16/68 (24%) NM_015719.3; c.3338C>T p.Pro1113Leu N SNRK:mis; TSNARE1:mis

14051.p1:M 115/107 CTNNA3 mis GLGD 1 0 0 0 9/295 (3%) NM_001127384.1; c.152G>C p.Arg51Pro N SEC16B:mis; RFC5:mis

12120.p1:M 115/85 SPEN mis GLGD 1 1 0 0 15/58 (26%) NM_015001.2; c.4651G>A p.Glu1551Lys Y OR5J2:mis

14420.p1:M 101/80 SSPO mis GLGD 1 1 0 0 29/98 (30%) NM_198455.2; c.14150C>G p.Ala4717Gly Y SH3BP5L:mis; ZMIZ2:mis

14547.p1:M 95/60 UNC79 ns GLGD 1 0 0 0 9/106 (8%) NM_020818.3; c.6208C>T p.Arg2070Ter N UQCRC2:mis

12025.p1:M 96/69 USP15 ns GLGD 1 0 0 0 8/164 (5%) NM_001252078.1; c.813T>G p.Tyr271Ter N NA

12837.p1:M 92/89 BIRC6 mis GMIS 0 1 0 2 23/123 (19%) NM_016252.3; c.9578G>C p.Arg3193Pro Y SH3RF3:mis

13215.p1:M 69/87 CFAP74 mis GMIS 0 1 0 0 8/157 (5%) NM_001080484.1; c.1127G>A p.Arg376Lys N JUP:mis

11942.p1:M 44/62 DMXL2 mis GMIS 0 2 0 0 19/256 (7%) NM_001174116.1; c.3455A>G p.Asp1152Gly N NA

14248.p1:F 83/94 DNAH10 mis GMIS 0 2 0 0 13/125 (10%) NM_207437.3; c.3599G>A p.Arg1200His Y MYO1E:mis; ELAVL2:fs del;
ITGA2B:mis

11627.p1:M 100/83 DNAH17 mis GMIS 0 2 0 1 11/77 (14%) NM_173628.3; c.7979C>T p.Ser2660Phe Y RGMA:mis

11521.p1:M 101/128 MTUS1 ns GMIS 0 1 0 0 17/111 (15%) NM_001001924.2; c.707C>G p.Ser236Ter Y HERC2:misc

14168.p1:M 140/123 OBSCN mis GMIS 0 2 0 0 14/61 (23%) NM_001098623.2; c.18344G>A p.Arg6115Gln Y FCGBP:misc

11947.p1:M 33/28 SSRP1 ns GMIS 0 1 0 0 13/143 (9%) NM_003146.2; c.159G>A p.Trp53Ter N MDM2:mis; CCR7:mis

13793.p1:M 56/48 SYNE1 mis GMIS 0 2 0 1 13/225 (6%) NM_033071.3; c.2330C>T p.Ala777Val N PCDHB4:misc; SBF1:mis

(Continued on next page)
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The American
high-confidence calls. The majority of these absent calls

failed to meet our 453 threshold (67%) or was present in

families we excluded as outliers (30%). Our two criteria

for including variants for mutation burden analyses were

similar, but with several key differences. Most importantly,

they restricted their burden analysis to their PMM calls

that overlapped the previously published de novo datasets,

met 403 joint-coverage, and also included indel calls. Un-

like our study, they did not restrict their analysis to

different minimum AF-COV thresholds. They report the

burden of all classes of variants combined (e.g., synony-

mous, missense, LGD, and other) as significant. After cor-

recting for germline misclassification, they estimate that

5.1% of probands have PMMs related to ASD risk. More-

over, they found nominal contributions across all classes

of mutations.

Comparing our 453 PMM burden analysis to their data,

we similarly observed differences in synonymous muta-

tion rates. However, we did not observe higher missense

mutation rates among probands in the full cohort. These

differences are likely driven by our different computa-

tional approaches and our use of a larger number of

PMM calls unique to our pipeline (164/231). Freed and

Pevsner included 122 exonic/splice SNV calls in their

burden analysis, 55 of which were absent from our call

set. Again, the majority of these absent calls failed to

meet our 453 threshold (62%) or was present in families

we excluded as outliers (33%). With our approach, we es-

timate that PMMs as a group contribute to 3%-4% of sim-

plex ASD, with an �2% contribution from synonymous

mutations. Combined, our two analyses suggest that

exonic PMMs as a whole are likely contributing to ASD

risk in the SSC at rates similar to other classes of de novo

mutations.11,32

We found that probandmissense PMMsweremore likely

than sibling missense PMMs to intersect with genes that

are targets of proband missense GDMs (odds ratio �2). A

number of our novel nonsense PMMs in probands overlap-

ped genes with GDMs including BAZ2B, SSRP1, UNC79,

USP15, andVPS13D (Table 4). Consistent with our observa-

tion of enrichment of chromatin modifiers in proband

missense PMMs, we found that many of our PMMs over-

lapping genes with NS GDMs are also involved in chro-

matin regulation: e.g., BAZ2B, CHD2, COL5A3, KAT2B,

KMT2C, and SSRP1. Recent studies have found that ASD

risk genes are highly co-expressed during the mid-fetal

period of cortical development.65,66 Several PMMs inter-

sect genes that occupy the same co-expression modules,

which are significantly enriched for ASD risk genes. For

example, BIRC6 (MIM: 605638), DMXL2, OBSCN (MIM:

60861), SPEN (MIM: 613484), SSRP1, and UNC79 all

occupymodules 2 and 3, which peak between post concep-

tion weeks 10 and 22 and are enriched for chromatin mod-

ifiers/transcriptional regulators.65 COL5A3, KIF1A, SCN2A,

and SYNE1 are found in modules 13/16/17, which are

turned on later in development, after post conception

weeks 10, and are enriched for synaptic genes.65
Journal of Human Genetics 101, 369–390, September 7, 2017 385



Moreover, we found missense PMMs in some of the

highest-confidence ASD risk genes identified in the SSC

or other combined studies, for example: CHD2, CTNNB1,

KMT2C, SCN2A, and SYNGAP1 (Table 4).30,32,33,67 Interest-

ingly, small de novo deletions targeting CHD2, SYNGAP1,

CTNNB1, and KMT2C have been reported in the SSC as

well,32 demonstrating that new mutations of multiple

types and origins at these sites contribute to ASD risk.

Taken together, our data argue that proband PMMs and

GDMs target many common risk genes. Finally, mutations

in some of these genes are not restricted to ASD as these

genes have also been found to be disrupted in cohorts pri-

marily defined on diagnoses of epileptic encephalopathy,

ID, and congenital heart defects with additional fea-

tures.68–71 Understanding how mutations impact these

important genes that blur our diagnostic constructs will

be an important area of future research. These and other

data suggest that the creation of more broadly defined co-

horts and better integration of genetic studies of develop-

mental disorders are warranted.

We also performed our PMM analyses in the parental

data, identifying both nontransmitted and transmitted

PMMs. Transmitted PMMs are obligated to be present in

both the soma and the germline. Given the low number

of offspring of each parent, we cannot rule out the possibil-

ity that a fraction of the nontransmitted parental events

are also present in the parental germ cells. Our observed

postzygotic mutation rate is much higher in the SSC par-

ents compared to the SSC children. Moreover, the non-

transmitted PMM AFs have a bimodal distribution that is

distinct from both the child PMMs and parental trans-

mitted PMMs. There are several potential explanations

for the increased rate of mutation and AF differences. As

parents in this cohort were several decades older at time

of DNA collection, this increase could be explained by

the accumulation of PMMs in the blood, some of which

might drift to or be selected for higher AF. We found very

little evidence for enrichment of PMMs in genes related

to blood ACEs, except DNMT3A. The number of parents

with PMMs in ACE-related genes is < 1%, which is consis-

tent with estimates that ACE-associatedmutations occur in

fewer than 1% of individuals under 50 and do not begin

to rise until after 65.48–50 Our analysis on a subset of the

cohort suggests that�40% of the excess in nontransmitted

parental PMM calls could be explained by incomplete

filtering of recurrently biased and randomly skewed sites,

while the remainder are likely true events (Figure S16).

The parental transmitted PMM distribution closely resem-

bles the rightmost Gaussian of the nontransmitted distri-

bution, suggesting that this subset is still representative

of likely early embryonic events, a fraction of which are

also found in the germ cells. Recurrently biased sites are

likely to have higher AFs (>20%). Parental (or non-family

based) PMMs with AF that fall in this upper range that

are not clearly transmitted should be interpreted with

caution. However, importantly, Xie and colleagues report

this same bimodal distribution in a case-control study
386 The American Journal of Human Genetics 101, 369–390, Septem
of ACE, which did not benefit from transmission-based

filtering.49

Rahbari and colleagues recently performed whole-

genome sequencing on moderately sized pedigrees fol-

lowed by the identification and characterization of de

novo mutations in multiple children, spanning approxi-

mately a decade.46 In validating their de novo calls using

target capture and deep sequencing, they identified a num-

ber of mutations that were at low levels in the parental

blood-derived DNA. Importantly in contrast to our study,

PMMs were not directly identified in the parents and calls

with greater than 5% of reads showing the alternative

allele in a parent were excluded from the de novo call set.

Nevertheless, they found that 4.2% of apparent germline

mutations are present in the blood of parents at >1% AF.

However, the rate we observed in our high-confidence

smMIP validation data, of similar calls (without parental

WES signal), is 0.6% (1 out of 164). In our 453 WES data-

set, we found 0.66% of GDMs in children are also obligate

gonadal mosaic. Overall, our data support that at least

7%–11% (depending on the AF) of parental PMM events

are also present in the parental germ cells and can be trans-

mitted to the next generation. Together these two sets of

parental postzygotic mutations account for 6.8% of the

presumed de novo mutations in the children from our

high-confidence call set (Table S5). Importantly, many of

these events would be missed by de novo calling pipelines

that eliminate any sites with variant reads present in a

parent. This rate is higher than what has been recently re-

ported for de novo CNVs (4%).22 These findings have

important implications for recurrence risk and clinical

testing, which are still not widely appreciated.14,22,46,72,73

While the recurrence risk for de novomutations is generally

thought to be low (�1%), finding the presence of a muta-

tion, even at low levels, in a parent dramatically increases

this risk to a previously estimated >5%.46,72,73 The risk

may be dramatically higher for specificmutations, depend-

ing on their embryonic timing and distribution within the

germ cells.

We were limited by the availability of DNA from a single

peripheral blood source and WES data that is non-uni-

form. Future studies in this area would greatly benefit

from deep uniform whole-genome sequencing, access to

multiple peripheral and other tissue types of different

embryonic origin, and improved indel variant calling ap-

proaches. This could include brain tissue in cases of surgi-

cal resection to control intractable epilepsy. Moreover, we

strongly suggest that new efforts to establish autism brain

banks obtain peripheral DNA samples from the donor and

their parents. These DNA would greatly aid in the classifi-

cation of variant types, i.e., PMMs, GDMs, or inherited var-

iants, identified in bulk brain and single-cell sequencing

studies as well as help determine their likely embryonic

timing.

In summary, our data support the conclusion that

exonic postzygotic mosaicism contributes to the overall

genetic architecture of ASD, in potentially 3%-4% of all
ber 7, 2017



ASD simplex cases, and that future studies of mosaicism in

ASD and related disorders are warranted. We present a gen-

eral approach for identifying PMMs that overcomes many

of the inherent detection and validation challenges for

these events in family-based and unmatched samples.

The methods developed will allow continued discovery

of PMMs in future datasets, including unsolved genetic

disorders, and our findings have potential translational

implications for clinical detection, case management, in-

terventions, and genetic counseling.
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