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Abstract

Brain-computer interfaces (BCIs) aim to restore independence to people with severe motor 

disabilities by allowing control of a cursor on a computer screen or other effectors with neural 

activity. However, physiological and/or recording-related nonstationarities in neural signals can 

limit long-term decoding stability, and it would be tedious for users to pause use of the BCI 

whenever neural control degrades to perform decoder recalibration routines. We recently 

demonstrated that a kinematic decoder (i.e. a decoder that controls cursor movement) can be 

recalibrated using data acquired during practical point-and-click control of the BCI by 

retrospectively inferring users’ intended movement directions based on their subsequent 

selections. Here, we extend these methods to allow the click decoder to also be recalibrated using 

data acquired during practical BCI use. We retrospectively labeled neural data patterns as 

corresponding to “click” during all time bins in which the click log-likelihood (decoded using 

linear discriminant analysis, or LDA) had been above the click threshold that was used during real-

time neural control. We labeled as “non-click” those periods that the kinematic decoder’s 
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retrospective target inference (RTI) heuristics determined to be consistent with intended cursor 

movement. Once these neural activity patterns were labeled, the click decoder was calibrated using 

standard supervised classifier training methods. Combined with real-time bias correction and 

baseline firing rate tracking, this set of “retrospectively labeled” decoder calibration methods 

enabled a BrainGate participant with amyotrophic lateral sclerosis (T9) to type freely across 11 

research sessions spanning 29 days, maintaining high-performance neural control over cursor 

movement and click without needing to interrupt virtual keyboard use for explicit calibration tasks. 

By eliminating the need for tedious calibration tasks with prescribed targets and pre-specified click 

times, this approach advances the potential clinical utility of intracortical BCIs for individuals with 

severe motor disability.

Keywords

Brain-Machine Interface (BMI); Amyotrophic lateral sclerosis (ALS); Spinal cord injury (SCI); 
Stroke; augmentative and assistive communication (AAC); adaptive classification

Introduction

Brain-computer interfaces (BCIs) aim to restore independence for people with severe motor 

disabilities, including people whose disability prevents control of traditional assistive 

devices, by decoding movement intention directly from neural activity. Intracortical brain-

computer interfaces have recorded clinically useful signals in humans over years. Their use 

has been demonstrated in controlling computer cursors1–4, communication interfaces5,6, 

multi-dimensional reach-and-grasp movements7–11, and most recently, surface functional 

electrical stimulation of the person’s own arm muscles12.

However, because of physiological and/or recording-related nonstationarities in neural 

signals6,13–19, these proof-of-concept demonstrations have largely been limited to periods of 

tens of minutes to hours at a time. High-quality neural control can be restored using decoder 

calibration routines in which the user is asked to move the cursor to prescribed targets so 

that neural activity patterns can be re-mapped to movement intention20, but it would be time-

consuming and impractical to require users to pause practical use of the BCI to perform 

decoder recalibration routines whenever neural control degrades6.

We recently demonstrated computational methods that can keep a decoder calibrated for 

longer periods, despite underlying signal nonstationarities, by using data acquired during 

practical point-and-click control of the BCI. Retrospective target inference (RTI)-based 

decoder calibration updates the mapping from neural activity to intended movement by 

retrospectively inferring, after each selection the user makes on the screen, that his or her 

intended cursor movement during the preceding trajectory was directly toward that selected 

target. By combining this method with adaptive tracking of the statistics of the neural 

features used for decoding and adaptive correction for biases in the decoded output, we have 

shown that people with tetraplegia are able to type freely using a neurally controlled virtual 

keyboard for long periods of time (~hours, and for one participant, across multiple days) 

with no degradation in typing rate despite neural signal nonstationarities6.
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The click decoder, however, did not have an analogous method for self-calibration and it 

faced similar nonstationarity challenges. The robustness of the radial keyboard21 to 

accommodate imperfect click decoding helped the previous study’s participant maintain 

high typing rates despite the decline of click decoding quality in the final sessions of her 

multi-day self-calibration series6 (Fig. 1). With a more general user interface, an unreliable 

click signal could make the BCI frustrating to use, as accidental selections would need to be 

corrected and intended selections might not be registered. Furthermore, unreliable click 

decoding would also present a problem for RTI calibration of the kinematic decoder, 

because the heuristics underlying data selection for RTI calibration rely upon intentional on-

screen selections6.

In previous studies, unsupervised classifier adaptation has been shown to improve the 

performance of discrete classifiers22–24 by tracking the drifting statistics of the neural 

signals corresponding to each class and/or by updating the selection of neural features to use 

for subsequent decoding. Using error-related neuronal signals as a semi-supervisory signal 

for adaptive classification23,25 has been shown in simulation and in offline studies to 

improve classification further, even when those error signals are not perfectly reliable.23 

Here, we demonstrate that data acquired during practical use of a point-and-click BCI can be 

used to create “retrospectively supervised” (RS) classifier training labels for adaptive click 

decoder calibration without the need for a separately decoded error signal. Analogously to 

RTI kinematic decoder calibration, we retrospectively inferred which periods of neural 

activity were most likely to have reflected an intention to click based on the decoded click 

signal itself, and used that inference to provide training labels for classifier recalibration. A 

preliminary version of this study was previously presented in abstract form26.

Combined with our previously published methods for self-calibration of the kinematic 

decoder6, RS click decoder calibration helped a BrainGate participant with ALS (T9) to 

maintain high-quality point-and-click neural control across 11 free-typing sessions spanning 

29 days despite neural signal nonstationarities, without needing to interrupt use of the virtual 

keyboard with explicit calibration tasks. By eliminating the need for daily calibration tasks 

with prescribed targets, this set of “retrospectively labeled” self-calibration approaches 

brings BCIs a step closer to restoring independence to individuals with severe motor 

disability.

Methods

Participant

The participant in this study (T9) is a right-handed man, 52 years old at the start of the study, 

with ALS with a functional scale rating (ALSFRS-R) of 8. He retains speech, breathes with 

the assistance of a mechanical ventilator, and has very limited limb and hand movement. He 

was enrolled in a pilot clinical trial of the BrainGate2 Neural Interface System 

(www.clinicaltrials.gov/ct2/show/NCT00912041; “CAUTION: Investigational device. 

Limited by federal law to investigational use”) and implanted with two 1.5 mm 96-channel 

intracortical silicon microelectrode arrays (Blackrock Microsystems) in the dominant 

hand/arm knob area of motor cortex27 approximately 4 months before the start of this 

research, as described previously28.
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Signal acquisition

Neural activity was detected by the two 96-channel silicon microelectrode arrays, and 

transmitted via a cable attached to a percutaneous connector during each 2-3 hour recording 

session. Signals were analog filtered (4th order Butterworth with corners at 0.3 Hz and 7.5 

kHz) and digitized at 30 kHz by a 96-channel NeuroPort Neural Signal Processor 

(Blackrock Microsystems). These signals were fed to custom software written in Simulink 

(Mathworks) for pre-processing and decoding.

For pre-processing, signals were downsampled to 15 kHz and then common-average 

referenced29. Namely, the mean signal across the 60 channels with the lowest noise 

distribution on each array, identified from a single 30-sec “reference” recording at the start 

of the first session, was computed and subtracted in real time from all channels’ signals on 

that array. In 20 ms segments, signals were buffered for 4 ms to avoid edge effects, and then 

non-causally band-pass filtered for action potentials (spikes) using a 4th order Butterworth 

filter with corners at 250 and 5000 Hz30. The extracted signals were compared to an 

amplitude threshold set at -3.5 times the standard deviation of the filtered signals on each 

channel13,30–32. The rate of these threshold-crossing events and the total signal power in the 

spike band were computed for each channel and used as separate candidate features for 

decoding (see decoder calibration sections below for details). For ease of interpretation, we 

will refer to the combined set of neural features as multi-unit neural activity.

Research session design

In the first session of the multi-day series (Fig. 2A), a standard set of closed-loop directional 

and click decoders were first calibrated using prescribed targets: mean-subtracted neural 

activity was mapped to movement intentions that were inferred to be directly toward the next 

highlighted target in an open-loop and then closed-loop center-out-back task20. In closed-

loop neural control, intended movements were decoded from the incoming neural activity 

and translated in real time into the movement of the cursor using a steady-state Kalman 

filter3,33,34. A linear discriminant analysis (LDA) classifier running in parallel with the 

Kalman filter was used to decode intended clicks2,4.

After the decoders were calibrated using these standard calibration tasks, the task was 

switched to a neurally controlled point-and-click QWERTY communication interface21 (Fig. 

2B). The participant was asked to type whatever he wished for the next 30 minutes, at 

whatever pace he was comfortable with (including taking the time to consider his wording 

whenever needed, etc.), and to let us know if he wished to take an extended break before the 

30 minutes elapsed. After the first typing block (which lasted the full 30 minutes), a set of 

“retrospectively labeled” (RL) decoders (i.e. both an RS click decoder and an RTI kinematic 

decoder) were calibrated on the neural data acquired during typing6. Then the participant 

was asked to continue typing when he was ready, now using these RL decoders for neural 

control. The RL decoders were updated after every block of free typing using a sliding 

window spanning the most recent 20-60 minutes of typing. Each session after the first was 

initialized with the previous session’s last RL decoders, thereby bypassing standard decoder 

calibration on all sessions after the first.
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Adaptive feature mean tracking and bias correction

As previously described6, the effects of nonstationarities in feature baseline rates and 

standard deviations were mitigated by recursively updating the estimate of each channel’s 

mean rate and standard deviation during the rest periods between blocks of neural control,35 

using an exponentially decaying sliding average with a 240 sec time constant. During typing 

periods, these estimated baseline rates and standard deviations were used to z-score the 

neural features prior to kinematic decoding. To mitigate the effects of nonstationarities in 

feature statistics on cursor movement during typing blocks, any residual velocity bias was 

iteratively estimated and subtracted out by computing an exponentially weighted running 

mean of all decoded velocities whose speeds exceeded a predefined threshold, set to the 66th 

percentile of the decoded speeds estimated during the most recent filter calibration, as 

previously described6. To mitigate the effects of nonstationarities on click decoding during 

free-typing, feature statistics continued to be updated using the same recursive method35 

prior to being sent to the click decoder during free-typing periods.

Standard Kalman filter calibration

To initialize the kinematic decoder in the first of the eleven sessions, the participant was 

asked to imagine moving a mouse on a tabletop plane with his right hand to move the cursor 

to targets presented one at a time in an 8-target radial center-out task. First, a 2-minute open-

loop block was used to initialize the Kalman filter, and then five 3-minute closed-loop 

blocks with decreasing levels of error attenuation (0.8, 0.6, 0.4, 0.2, and 0) were used to 

refine it, as described in6,20. As in these previous studies, this “standard” Kalman filter was 

updated after each center-out block under the assumption that the person was attempting to 

move the cursor directly toward each target, and only the first 3 sec of each trajectory (after 

a 0.3 sec delay) were used for calibration in an effort to reduce contamination of the neural 

signals by error correction. These intended direction vectors (all unit length) were regressed 

against the corresponding baseline-subtracted neural activity to obtain the tuning model and 

noise covariance matrix. Only the 80 features with the highest modulation depth36 were used 

in the decoder. Features were chosen from all spike power features and the subset of 

threshold crossing features whose mean rates fell between 1 and 1,000 Hz, and which were 

not previously found to have excessive noise (as judged by root-mean-square signal 

amplitude).

RTI Kalman filter calibration

The methods for RTI calibration of the Kalman filter are described in detail in6. In brief, the 

participant’s intended movement direction during typing was retrospectively inferred to have 

been directly toward the next self-selected target, during time periods heuristically inferred 

to correspond to movement intention: 1) only the last 5 seconds preceding each target 

selection were used for calibration; 2) only those time bins in which the cursor moved closer 

to the next selected target were used for calibration; and 3) times during which the cursor 

was within a small distance (~1 cm) or temporal window (500 ms) of the target were not 
used for calibration (the neural activity was likely influenced by the person’s upcoming 

attempt to generate a click). Similar to closed-loop calibration with prescribed targets, these 

intended direction vectors were regressed against the corresponding baseline-subtracted 
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neural activity to obtain the tuning model and noise covariance matrix20. Neural features 

were selected anew at every RTI calibration: as with standard Kalman filter calibration, out 

of the features whose rate and noise characteristics met the above criteria, only the 80 

channels with the highest modulation depth36 were used in the decoder.

Standard click decoder calibration

To initialize the click decoder in the first session, the participant was asked to imagine 

clicking by pressing a mouse button with his right index finger when cued to do so during 

the same center-out blocks as Kalman filter calibration6. Clicks were cued after each return 

to the center target by changing the color of the center target for 1 second while the cursor 

remained centered on it. In the final center-out block, the participant was asked to neurally 

click on every target (including the center and all peripheral targets) using this initial 

decoder. To label this click-acquire block’s neural data for purposes of updating the LDA 

classifier, the participant was assumed to have been attempting to click whenever the cursor 

was on the active target, and was assumed not to be attempting to click during cursor 

movement periods. To account for the limitations of this assumption (sometimes there was a 

temporal misalignment between the cursor being on target and T9’s attempted clicks, as 

evident from the LDA log-likelihood trace), we relabeled the data from these center-out 

blocks prior to decoder calibration using a k-means clustering approach with cluster means 

seeded from the original class labels. Both the clustering and decoding were performed on 

the projection of the data in principal component space.

The click decoder was calibrated on all of the data acquired during the standard calibration 

tasks using LDA37 to separate the mean-subtracted multi-unit activity observed during 

intended click periods from those observed during intended cursor movements in the 

calibration data. The top 80 features (or principal components, in the case of the standard 

click decoders), ranked by sensitivity index (d’), were included in the click decoder. Neural 

features were chosen from all spike power features and the subset of threshold crossing 

features whose mean firing rates fell between 1 and 500 Hz and that were not previously 

found to have excessive noise. The click log-likelihood threshold was set to a value that had 

been found in previous sessions to reliably separate click from non-click, and remained at 

that setting for all sessions. In the blocks in which neural clicks were decoded (in the last 

center-out block and all typing blocks), multi-unit activity was averaged over the previous 

400 ms, which was empirically found (over the course of multiple previous sessions with 

T9) to provide a good tradeoff between responsiveness of click on the one hand, and a clean 

separation between click and non-click on the other. A click was generated in a given 20 ms 

bin if the click log-likelihood computed from that multi-unit activity exceeded the click 

threshold (but was below threshold in the previous 20 ms bin).

Retrospectively Supervised (RS) click decoder calibration

For click decoder calibration using data acquired during practical BCI use, we 

retrospectively labeled neural data patterns as corresponding to “click” during all time bins 

in which the decoded click log-likelihood had been above the click threshold that was used 

during real-time neural control (this was our best estimate of the neural activity most likely 

to have corresponded to intended click). The periods that our kinematic decoder’s RTI 
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heuristics determined to be intended cursor movement periods (as described in reference6) 

were retrospectively labeled as “non-click.” Figure 3 shows an example of how these RS 

heuristics are applied using kinematic and click data acquired during free-typing.

Once the neural data were labeled using this set of RS heuristics, both RL decoders were 

calibrated using the same methods as described above. As with RTI calibration, feature 

selection was recomputed anew at every RS decoder calibration: among those features 

whose rates and noise characteristics fell within the above criteria, the 80 spike power 

features with the highest d’ in the new set of RS calibration data were selected for click 

decoding.

Neural signal nonstationarities

Feature statistics and LDA coefficients over time—To illustrate the nonstationarity 

of the neural signals across this series of sessions, we extracted for each block in each 

session the feature means and standard deviations that were used for z-scoring at the start of 

each block (Fig. 4A, left 2 panels). These feature statistics had been computed in real time 

during the rest period preceding that block, using a recursively-defined exponential estimate 

with a 240 sec time constant6. The LDA decoder coefficients (Fig. 4A, right panel) were 

obtained from the decoders that had been used in the same blocks and sessions. Although 80 

channels were used for decoding in each block, for simplicity, these plots only show the 

channels that were common across all decoders from all blocks and all sessions (thus, the 

true degree of nonstationarity was even greater than is visible from these figures). The 

feature statistics and LDA coefficients from the first typing block of the first session used 

principle components rather than raw neural features for decoding; thus, the first block’s 

data is also not shown here.

Offline reconstruction of the click log-likelihood signal using the original 
decoder—Using the click decoder from last block of the 1st session, we reconstructed 

offline the log-likelihood signal from 100 sec of that same block, and of a 100 sec snippet 

from the 3rd block of the last session, with and without an updated estimate of the means and 

standard deviations for z-scoring prior to offline decoding (Fig. 4B). As previously 

described, means and standard deviations had been updated in real time using an 

exponentially decaying sliding average with a time constant of 240 sec6,35; here, we show 

what the log-likelihood trace would have looked like without mean tracking or RS 

recalibration, and what it would have looked like using the means and variances from the 

start of the block but without RS recalibration.

Typing rate assessment metrics and statistics

Selections per minute—Typing rate was quantified using the number of selections per 

minute (SPM), regardless of the number of characters that resulted from those selections or 

of the number of backspaces. We assumed that each selection was intentional, unless 

informed otherwise by the participant. Note that, in previous studies, including the T6 multi-

day self-calibration study6 whose results are reproduced and expanded upon in Fig. 1, we 

used backspaces to inform us of accidental selections, and thus subtracted the number of 

backspaces from the total number of characters typed (yielding “correct selections per 
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minute,” or CSPM). However, this backspace heuristic did not apply well to the current 

study’s participant, T9, as Participant T9 frequently backspaced through long phrases to 

make changes or correct misspellings that he later identified in earlier parts of his text (even 

though each selection was deliberate when originally typed and during the backspacing). 

Thus, in the present study, we considered both his previously typed text and his backspaces 

to be intentional, and report total SPM instead. To assess the quality of click decoding, we 

also report his false click rate and lag to click after each target entry, as defined below.

False click rate—In addition to reporting typing rate under the assumption that each 

selection was intentional, we also report a “false click rate” for each block, defined as the 

percentage of clicks in that block that occurred in inactive locations on the keyboard 

(including spaces between the available buttons, along the outside edges of the keyboard, 

inside the typed-text window, etc.). This metric provides a lower estimate of the true false 

click rate, as traditionally defined (the rate of unintentional clicks), because some 

unintentional clicks might also have occurred on active buttons and thus been counted as 

intentional selections. However, the false click rate as defined here is some static percentage 

of the true false click rate (because the relative amount of space on the keyboard that is 

inactive remains constant over time); thus, it is a useful relative measure that can be used to 

assess changes in click quality over time.

Lag to click—As an additional relative measure of click quality, we also report for each 

click in all blocks and all sessions the amount of time that the cursor had been on the target 

that was eventually clicked before the click was decoded.

Correlation coefficients and p-values—Pearson’s sample correlation coefficient r was 

used to test for significant changes in the above metrics over time across all sessions, and to 

measure the relationships among them (see Fig. 5). For measures reported per block 

(selections per minute, false click rate), the timestamps used to test for a significant linear 

relationship with time was the onset of the block (relative to the start of the first typing block 

of the first session). For the measurement reported per click (lag to click), timestamps were 

the actual time of each individual click (relative to the start of the first typing block of the 

first session). P-values for all Pearson correlation coefficients (r) were obtained by 

comparing the measured r to a null distribution obtained by shuffling the true pairings 

pseudorandomly 1,000,000 times.

Results

To test whether this suite of self-calibration methods (mean tracking, bias correction, and 

RTI decoder calibration6, along with the new RS click decoder calibration) allowed for 

stable neural control across multiple days of practical BCI use, we conducted a multi-day 

study in which Participant T9 free-typed across a series of sessions using a virtual QWERTY 

keyboard adapted from5. The first typing block of the first session was the only one that used 

a standard decoder calibrated with presented targets; after that, the decoders were calibrated 

exclusively using the previous 20-60 min of typing data. T9 was able to type whatever he 

wished across 11 sessions spanning about 1 month, without the need for any instructed-

target calibration tasks after the decoders were initialized on the first day.
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Consistent with previous reports,6,17 the recorded neural signals in this study were 

nonstationary, both within and across sessions (Fig. 4A). Based on offline analysis, these 

nonstationarities would have degraded the quality of click decoding by the last session if a 

static decoder had been used to decode the same neural signals that were actually obtained 

(Fig 4B). Without updating neural feature statistics for z-scoring, by the last session, the 

click log-likelihood ratio would have climbed ~90 orders of magnitude higher than the click 

threshold, which would likely have resulted in constant false clicking. Consistent with 

previous reports,22,23 updating the estimates of feature statistics helped keep the decoded 

log-likelihoods in the expected range, but the distinction between decoded click and non-

click was larger using the fully statistics-tracked and RS-recalibrated decoder that was 

actually used online.

Despite these neural signal nonstationarities, RS calibration succeeded in maintaining 

decoding quality without the need for explicit calibration tasks after day 1. There was no 

significant decline in typing rate (r = −0.15; n = 33; p = 0.20) or increase in false click rate (r 
= 0.08; n = 33; p = 0.33) across time in this series of sessions (Fig. 5A, top 2 panels). 

Furthermore, across all blocks from all sessions, higher false click rates corresponded to 

lower typing rates (Fig. 5B, left panel; r = −0.54, n = 33; p < 0.001), validating SPM as a 

useful relative measure of typing rate and further supporting the assertion that click 

decoding quality is an important factor in point-and-click BCI performance.

To assess whether the responsiveness of click decoding changed over time, we measured for 

all clicks across all sessions how long it took the click to be decoded after the cursor entered 

the target that was eventually clicked (“lag to click”; Fig. 5A, bottom panel). There is a 

significant linear decrease in lag to click across the whole session series (r = −0.028; n = 

7827; p < 0.01). One possible explanation is that click decoding becomes more responsive 

because it improves over time with RS recalibration (i.e. the non-click state and the click 

state become more distinct, resulting in a decrease in both false positives and false 

negatives). However, this interpretation is inconsistent with the finding that the false click 

rate does not decrease over the same period. Another possibility is that click decoding 

simply becomes more sensitive across time; i.e. the click signal moves closer to the click 

threshold so that both intentional and unintentional clicks are more easily generated. 

However, this interpretation is not consistent with the finding that false click rate does not 

increase over time. The fact that lag to click and false click rate are not significantly 

correlated (Fig. 5B, rightmost panel; r = -0.073; n = 33; p = 0.34) further helps to rule out 

both of these possible interpretations. Thus, the decrease across sessions in the lag between 

target entry and click is likely attributable to the participant learning, with practice, to 

initiate his click neural activity earlier, perhaps predictively as he’s approaching each desired 

target.

With the caveat that T9’s use of backspaces is not necessarily indicative of an accidental 

selection having been made (as described in Methods), we also assessed whether the 

percentage of backspace events (defined as a series of consecutive backspaces) changed over 

the course of these sessions. We found that there was a non-significant trend toward fewer 
backspace events over time (r = −0.271067; n = 33; p = 0.060; data not shown), which is 

also consistent with click decoding quality remaining high across the series of sessions.
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Though we did not collect any formal metrics of user satisfaction, we welcomed any 

subjective impressions that the participant spontaneously shared about his neural control 

quality. Some notable excerpts of his verbal feedback included the following: (1st session, 1st 

typing block; slang replaced by asterisks): “We’re kicking **** and taking names!”; (2nd 

session, 1st typing block, having skipped the standard center-out calibration task that he was 

used to doing at the beginning of each session): “Amazing. Absolutely amazing! No radial 

8!”; (11th session, 3rd typing block): “Wow, this filter is really good!”

Discussion

This study replicates and extends a previous study in which we demonstrated methods to 

keep the kinematic (velocity) decoder calibrated using data acquired during practical point-

and-click control of the BCI.6 Here, we have extended these methods for self-calibration to 

the click decoder, and have shown that these methods enabled a participant with tetraplegia 

to type freely using a neurally controlled virtual keyboard for hours a day, across 11 sessions 

spanning 29 days, with no degradation in typing rate despite neural signal nonstationarities. 

Though we did not perform a series of sessions with T9 in which RS click recalibration was 

turned off, our offline analysis reconstructing the state log-likelihood that would have been 

obtained using the first session’s decoder on the last session’s neural data suggests that 

feature tracking and RS recalibration were important for maintaining high click decoding 

quality.

In the previous multi-day self-calibration study with T6,6 the virtual typing was done in a 

radial keyboard,5 which by design is robust to high false click rates (if kinematic decoding 

quality remains high) because the inactive zone in the center of the keyboard allows any 

accidental clicks that occur en route to the desired target to be ignored. In the current study, 

a QWERTY keyboard was used, which is more sensitive to degradation in click decoding 

quality because false clicks that occur en route to the desired target are more likely to cause 

accidental selections that need to be corrected. This was a deliberate choice, as we aimed to 

model a more general point-and-click use case in which false selections are likely to require 

subsequent correction. Despite this increased sensitivity to false clicks and a similar degree 

of signal nonstationarity as in the previous study6, the typing rate and click decoding quality 

in the present study was maintained across 11 self-paced typing sessions. Furthermore, the 

false click rate (measured by proxy as the % of clicks that occurred in inactive zones of the 

QWERTY keyboard) did not increase significantly across time in this study, reinforcing the 

value of RS click calibration in maintaining the quality and robustness of neural control 

during practical BCI use.

In this study, high false click rates might be expected to artificially inflate the typing 

performance metric used in this study, selections per minute (SPM), because SPM only 

considers the total rate of (active) clicks without taking into account whether those clicks 

were intentional or unintentional. However, higher false click rates were correlated with a 

lower SPM in this study. Thus, false clicks did not appear to artificially elevate SPM, 

validating SPM as a useful relative measure of free-typing performance.
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We should note that the participant was not asked to type as quickly as possible, and 

sometimes took time during the typing blocks to consider what he wanted to write next, 

which decreased the apparent typing rate during the block and added some variability that 

might not have been present had the participant been asked to type as quickly as possible 

and/or was given prescribed text to copy. Thus, the typing rates presented here should not be 

interpreted to reflect optimized performance, but instead to provide relative typing 

performance metrics that allow the effect of relative click decoding quality to be assessed 

across blocks and sessions.

It is perhaps not immediately evident how using data for click decoder calibration could 

improve the click decoder when that data had already been decoded as click. One important 

factor is that the best features for click decoding were recomputed anew at every RS 

calibration, using more recent data. A second important factor is that, even when the same 

features are selected during a new RS calibration, their activity patterns in relation to desired 

click vs. non-click can change gradually over time (as shown by the means, standard 

deviations, and LDA coefficients changing over time in Fig. 4A). Each recalibration can thus 

improve subsequent click decoding by updating the features’ means, standard deviations, 

and classifier coefficients (reflecting their relative tuning along the click — non-click axis). 

A third factor is that the neural data labeled with “click” for RS decoder updates was not 

precisely aligned in time with the data that caused a click to be decoded during closed-loop 

neural control: each click was registered in real-time control as soon as the click log-

likelihood crossed threshold. However, the log-likelihood often remained above threshold 

for some time after each click occurred (i.e. until the participant registered that the click had 

occurred and stopped modulating his neural activity accordingly), and all of this above-

threshold neural activity was labeled as “click” for RS calibration. Even though this 

retrospectively supervisory signal may not be 100% reliable, it has been shown in previous 

studies that even a semisupervisory error signal that is only 80% reliable helps to improve 

subsequent decoding quality when used to select data for classifier recalibration23. Thus, the 

combination of these factors all likely contribute to the utility of RS decoder calibration, 

even though the data for calibration were taken from data previously used to decode click 

during real-time neural control.

In this study, the click decoder was a simple two-state LDA classifier2,4. However, these 

methods can be applied to any click decoding algorithm that turns a continuous signal (such 

as click log-likelihood, velocity or position in the click dimension of a continuous filter, etc.) 

into a binary signal (click vs. non-click). We also expect this method to extend naturally to 

multi-state and multi-stage decoders; for example, decoders that first detect whether the user 

actively intends to be using the BCI or resting38, and only allowing decoding of click during 

active BCI use. The click and kinematic decoder self-calibration methods can then 

automatically be applied only to periods of active BCI use. Given that these self-calibration 

methods are not tied to any specific kinematic decoder or classifier, they can continue to be 

applied as decoding algorithms continue to evolve.

By eliminating the need for daily calibration tasks with prescribed targets despite neural 

signal nonstationarities, this set of approaches brings BCIs a step closer to restoring 

independence to individuals with severe motor disability.
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Figure 1. False click rate affects typing throughput, from a prior study and participant
A. Top panels: typing rates in last 2 sessions of T6’s multi-day series, labeled with her trial 

day, as also shown in the last 2 panels of Fig. 6 in Jarosiewicz et al. (2015)6. The length of 

each bar corresponds to the duration of each typing block. CSPM = correct selections per 

minute, measured as the number of selections per minute minus the number of backspaces 

pressed6. Bottom panels: the approximate false (unintended) click rate during these same 

typing periods, defined as the percentage of all clicks that occurred in zones of the radial 

keyboard where clicks had no effect. For context, across all blocks in the sessions leading up 

to these two sessions, the mean (± SEM) of the CSPM was 21.05 ± 1.01, and the average 

false click rate was 12.56 ± 0.84. B. The relationship between false click rate and typing rate 

for each block of self-paced typing in these last 2 sessions. The decrease in typing rate was 

correlated with an increase in false click rate (r = −0.66, p < 0.05), suggesting that the decay 

in click decoding quality was a contributing factor in the decline of point-and-click typing 

performance.
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Figure 2. Research session setup
A. Timeline of research sessions. On day 1, decoders were initialized using a standard 

calibration task with prescribed targets, and then the participant used this standard set of 

decoders to begin free-typing. After 20 minutes of free-typing, the first set of retrospectively 

supervised (RS) decoders were calibrated. Thenceforth, RS decoders were recalibrated at 

each break using the last 20 – 60 minutes of typing data. Black arrowheads denote RS 

recalibrations. B. Photo of T9’s screen during the 2nd free-typing session in the series (his 

trial day 134). T9 chose to finish typing out the lines of a favorite poem (“If—” by Rudyard 

Kipling39) that he had started typing on the previous day.
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Figure 3. Retrospectively supervised (RS) decoder calibration method, shown for a 
representative one-minute sample of data collected during T9’s virtual point-and-click typing 
(trial day 134)
A. RTI decoder calibration using data acquired during free-typing. Thin blue and green lines 

represent the cursor x and y-position over time, respectively (in screen units, where edges 

are represented as [-1 1]). Thick blue and green lines represent the x and y-positions of the 

retrospectively inferred targets6. Black and red asterisks in both Panel A and B represent 

time periods labeled as intended movement and intended click, respectively, for purposes of 

both RTI and RS decoder calibration. B. RS click decoder calibration using data acquired 

during free-typing. Thin blue line is the click log-likelihood, decoded using the LDA 

classifier. Black dashed line represents the click threshold. Intended movement periods were 

identified using the heuristics described in reference6 and summarized in Methods. Intended 

click periods were simply identified as periods during which the click log-likelihood was 

above click threshold, using the decoder that had been used in real time during that part of 

the collected data.
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Figure 4. Neural signal nonstationarities
A. Means (left panel) and standard deviations (middle panel) of the neural features (spike 

power) for the channels that were selected for use in the click decoder across all typing 

blocks and sessions. Means and standard deviations are capped at 100 for visualization; 

mean rates actually peaked at 113.57 and standard deviations at 2006.02 (in spike power/

sec). LDA click decoder coefficients (right panel) for the same blocks and sessions. (The 1st 

typing block of the 1st session used principal components of spike power as features for 

click decoding rather than spike power itself, so that block is skipped in these plots.) B. Top 

panel (“First session”): Real-time and offline reconstruction of the click log-likelihood 

signal using the click decoder from last block of the 1st session on the neural data from a 

small snippet of that same block (black trace = true log-likelihood obtained online; blue 
trace = offline reconstructed log-likelihood using the same decoder and neural data. Slight 

differences in these 2 traces are due to slight differences in real-time vs. offline z-scoring). 

Bottom panel (“Last session”): offline reconstruction of the click log-likelihood signal that 
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would have been obtained during a sample period of the last session if the click decoder 

from the end of the 1st session had been used with neither feature statistics tracking nor RS 

calibration (red trace), or with feature statistics tracking but no RS recalibration (blue trace). 

Black trace shows the true click log-likelihood that had been obtained online for this sample 

period from the last session, using the fully self-calibrated click decoder with both statistics 

tracking and RS recalibration enabled.
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Figure 5. Typing rates and false click rates in T9’s multi-day self-calibration sessions
A. Typing rates (top panel) and false click rates (middle panel) are shown for each block 

from all 11 multi-day self-calibration sessions, spanning approximately one month (breaks 

along the x-axis denote breaks between different sessions, each labeled above with T9’s trial 

day). There was no significant decline in typing rate or significant increase in false click rate 

over time across the series of sessions. The bottom panel shows, for each click in all blocks 

and all sessions, the delay between the cursor entering the target that was eventually clicked 

and the click being decoded. Lags to click are capped at 4 sec for visualization only 

(statistics were performed on the true lag values. The actual range of lags extended to 5.98 

sec; throughout the session series, 28 click lags were above this 4 sec cap). There was a 

significant decrease over time across all blocks and sessions in the lag to click (p = 0.0063). 

B. (Left) the relationship between false click rate and typing rate for each block of self-

paced typing across all sessions (each data point is one block). As for T6, the higher the 

false click rate, the lower the typing rate (p = 0.00045), providing further evidence that click 

decoding quality is an important factor in typing performance and validating the use of SPM 

as a good metric for relative typing performance. (Middle) the relationship between mean 

lag to click in each block and the typing rate for that block. There is no significant linear 

relationship between mean lag to click and SPM (p = 0.296). (Right) There is also no 

significant linear relationship between mean lag to click and false click rate (p = 0.34).
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