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Simulation of head and neck 
cancer oxygenation and doubling 
time in a 4D cellular model with 
angiogenesis
Jake C. Forster   1,2, Michael J. J. Douglass1,2, Wendy M. Harriss-Phillips1,2 & Eva Bezak1,3

Tumor oxygenation has been correlated with treatment outcome for radiotherapy. In this work, the 
dependence of tumor oxygenation on tumor vascularity and blood oxygenation was determined 
quantitatively in a 4D stochastic computational model of head and neck squamous cell carcinoma 
(HNSCC) tumor growth and angiogenesis. Additionally, the impacts of the tumor oxygenation and 
the cancer stem cell (CSC) symmetric division probability on the tumor volume doubling time and 
the proportion of CSCs in the tumor were also quantified. Clinically relevant vascularities and blood 
oxygenations for HNSCC yielded tumor oxygenations in agreement with clinical data for HNSCC. The 
doubling time varied by a factor of 3 from well oxygenated tumors to the most severely hypoxic tumors 
of HNSCC. To obtain the doubling times and CSC proportions clinically observed in HNSCC, the model 
predicts a CSC symmetric division probability of approximately 2% before treatment. To obtain the 
doubling times clinically observed during treatment when accelerated repopulation is occurring, the 
model predicts a CSC symmetric division probability of approximately 50%, which also results in CSC 
proportions of 30–35% during this time.

While tumors are typically more vascularized than normal tissue, hypoxia will still arise in many tumors due to 
heterogeneity in the vascularity and depleted levels of blood oxygenation that occur when blood moves slug-
gishly through constricted and malformed vessels1, 2. Radiotherapy is a primary treatment modality for head 
and neck squamous cell carcinoma (HNSCC) and tumor oxygenation has been correlated with treatment out-
come3–5. Another key factor influencing the treatment outcome is the rate of tumor regrowth during treatment. 
Radiotherapy is typically delivered over several weeks (an example of a conventional fractionation schedule for 
the treatment of HNSCC with X-rays is 2 Gy fractions, 5 days/week over 6 weeks), and after a certain time (the 
“kick-off time”) the tumor initiates accelerated repopulation6–8. One of the key mechanisms responsible for accel-
erated repopulation is reportedly an increase in the symmetric division of cancer stem cells (CSCs). CSCs make 
up only a small proportion of the tumor cells9, but each has the potential to regenerate the tumor and must be 
inactivated to achieve 100% local tumor control probability.

In previous work, a computational model was developed that simulates HNSCC tumor growth10. This is a 
4D cellular model that includes the simulation of tumor angiogenesis. In the first part of the current work, this 
model was used to quantitatively map tumor properties, such as vascularity and blood oxygenation, to tumor 
oxygenation descriptors, such as the proportion of hypoxic cells, the mean cellular pO2 and the necrotic volume. 
By constraining the vascularity and blood oxygenation to values that have been clinically observed in HNSCC, 
values of tumor oxygenation descriptors were obtained for HNSCC and compared with clinical data.

In the second part of the work presented here, the effect of tumor oxygenation on the tumor volume doubling 
time for HNSCC was quantitatively assessed. The effect of the CSC symmetric division probability on the dou-
bling time was also explored. The CSC symmetric division probability also affects the proportion of CSCs in the 
tumor and this relationship was investigated. Finally, doubling times and CSC proportions were compared with 
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clinical data for HNSCC. While tumor irradiation was not simulated, tumor growth kinetics during accelerated 
repopulation were obtained by increasing the CSC symmetric division probability.

Methods
The tumor growth model.  Simulations of HNSCC tumor growth were performed using a computational 
model that was developed in-house using Matlab (version R2017a, The MathWorks, Inc.) and has been previously 
described10. The flow chart in Fig. 1 outlines the spatial and temporal features of the model and how they are 
related. Briefly, each tumor cell is modeled as an ellipsoid and packed into randomized positions in 3D space with-
out overlap (Fig. 2a). The tumor grows over time by cell division, wherein a cell upon reaching the end of its cell 
cycle time (CCT) divides into two daughter cells, consequently pushing neighbouring cells outward towards the 
tumor periphery. A hierarchy of cell types is simulated, including CSCs, three generations of transit cells (T1-3)  
and differentiated cells (Fig. 2b). The probability for CSCs to undergo symmetric division (i.e., divide into two 
CSCs as opposed to one CSC and one transit cell) is set by the user. The sloughing of differentiated cells, which is 
characteristic of epithelial tissue, is also simulated.

Angiogenesis is modeled reflecting a connected and chaotic tumor vasculature that grows out with the cells 
(Fig. 2c,d), with blood vessels represented by consecutive discrete vessel units. Tumors can be grown with differ-
ent vascularities which are quantified by the relative vascular volume, RVV. Cellular pO2 is modeled dynamically 
as a function of distance from the nearest vessel using a diffusion equation (Table 1), with key parameters being 
the blood oxygenation, p0, and the distance from vessels to the onset of necrosis (the necrosis distance, ND). 
The tumor vascularity (RVV) and the blood oxygenation (p0 and ND) affect the amount of hypoxia in the tumor 
(Fig. 2e,f). Hypoxic cells have longer CCTs and cells that become necrotic are gradually resorbed by the tumor. 
Table 1 summarises the main parameters of the model and their values for HNSCC.

Simulations entail the following. First, a unique 3D mesh of non-overlapping cell/vessel unit positions is gen-
erated using Monte Carlo methods. The cell density reached is 2 × 108 cells/cm3. A connected network of blood 
vessels is then generated. As a result, a selection of the mesh positions are designated as vessel unit positions. A 
unique vasculature is generated each time using Monte Carlo methods. The vasculature is chaotic and tortuous, 
representative of tumor vasculature1, 2. As the tumor grows larger, the vasculature grows out by activating more of 
the vessel unit positions. Mesh positions that are not designated as vessel unit positions are cell positions, mean-
ing tumor cells may occupy them during tumor growth simulation.

Once a blood vessel network has been generated and prior to tumor growth simulation, the oxygen tension 
at each cell position is determined and used to calculate the CCT. Cells push one another around when a cell 
divides, a differentiated cell is lost or a necrotic cell is resorbed. When a cell changes position, it retains its age 
(the time since it last divided), but its CCT changes to the CCT at its new position. When the age of the cell equals 
its position dependent CCT, it divides. When a cell divides, it pushes a neighbouring cell outward towards the 
tumor periphery, causing a chain of cell movement outward, making room for the additional daughter cell. Thus, 
one daughter cell occupies the position where the parent cell used to be, and the other daughter cell occupies an 
adjacent position.

The daughter cells are always one generation more differentiated than the parent cell (CSC → T1 → T2 → 
T3 → differentiated), except in the case of CSC symmetric division. A differentiated cell loss frequency of 80% is 
simulated to model the natural cell death of these cells, i.e., apoptosis. When a cell becomes differentiated, after 
a time equal to the CCT, there is an 80% likelihood that the differentiated cell is removed from the tumor. If it is 
not removed, it remains for another period of time equal to the CCT, then there is again an 80% likelihood that 

Figure 1.  Main features of the HNSCC tumor growth model. Adapted with permission from ref. 10.
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it is removed, and so on. When a differentiated cell is removed, there is a chain of cell movement inward to fill 
the vacant position. The same occurs when a necrotic cell is resorbed from the tumor, which occurs when its age 
reaches the necrotic cell resorption time (Table 1).

For a more in-depth description of the computational model methods, please refer to ref. 10.

Figure 2.  HNSCC tumor growth model. (a) Tumor cells are modeled as non-overlapping ellipsoids in 
randomized positions in 3D. (b) Cell kinetics for the different types of cells in an example simulation. (c,d) The 
tumor in the example simulation after 3 days and 202 days of growth. Vessel units are shown in red, normoxic 
cells in black, hypoxic cells (pO2 < 10 mmHg) in green and necrotic cells in brown. Vessel units “string” together 
to form whole vessels that undergo branching in a chaotic fashion. Tumor cells close to vessels are normoxic, 
cells further from vessels are hypoxic and cells pushed further than ND from a vessel become necrotic. This 
example simulation started with approximately 70 CSCs and ended with RVV = 0.4%, using p0 = 40 mmHg, 
ND = 180 µm and CSC symmetric division probability = 2%. (e,f) Sections of tumors with the same 
vasculature structure but different blood oxygenation (via p0 and ND) ((e) p0 = 60 mmHg and ND = 220 µm; (f) 
p0 = 30 mmHg and ND = 120 µm). (e,f) were adapted with permission from ref. 10.
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Study of tumor oxygenation.  The HNSCC tumor model was used in this work to quantify how the vas-
cularity (RVV) and the blood oxygenation (p0 and ND) affect the tumor oxygenation. Noting that HNSCC exhibit 
RVV from 2–10%11, 12, p0 from 20–100 mmHg11, 13 and ND from 80–300 µm14, 15, three combinations of (p0, ND) 
were considered, namely (20 mmHg, 80 µm), (40 mmHg, 180 µm) and (100 mmHg, 300 µm), depicting scenar-
ios of poor, moderate and high blood oxygenation, respectively. In each case, the model input parameter RVV0 
(which would be equal to the tumor RVV if the tumor grew with spherical symmetry, but due to preferential 
growth along the vessels, RVV ends up larger than RVV0) was varied from 0–10% in 1% increments (for the 
(20 mmHg, 80 µm) combination, RVV0 values of 0.25% and 0.5% were also used), yielding values of tumor RVV 
from 0–16%. The tumor RVV was determined at the end of the growth simulation as the ratio of the number of 
vessel units to the number of living cells + necrotic cells + vessel units (×100%). Tumor growth simulations 
began with approximately 70 CSCs and ended with a final tumor diameter of 1 mm (104–105 cells). A CSC sym-
metric division probability of 50% was used in the tumor oxygenation study for fast computations, since this 
affects the doubling time and CSC proportion but does not greatly affect the tumor oxygenation.

The tumor oxygenation at the end of the growth simulation was evaluated using several different descriptors. 
The hypoxic proportions HP10, HP5, HP2.5 and HP1 were determined, which were the proportions of living cells 
with pO2 <10, 5, 2.5 and 1 mmHg, respectively. The mean and median cellular pO2 in living cells were also calcu-
lated. The volume proportion of necrosis (necrotic volume) was evaluated as the ratio of the number of necrotic 
cells to the number of living cells + necrotic cells + vessel units (×100%).

Study of tumor growth rate and CSC proportion.  The HNSCC tumor model was then used to explore 
the effects of tumor oxygenation and CSC symmetric division on the doubling time and the CSC proportion. The 
doubling time, Td, in the final days (in “tumor time”) of the tumor growth simulation was evaluated as follows. Let 
N(t) denote the number of living and necrotic cells in the tumor at time t. Then the average slope, k, of the curve 
lnN vs t in the final few days of the simulation was used to calculate the final doubling time according to:

=T kln2/d

The effect of tumor hypoxia and necrosis on doubling time was observed in the simulations from the tumor 
oxygenation study. Since these simulations all used a CSC symmetric division probability of 50%, the relative 
variation in the doubling time was reported.

To investigate the effects of the CSC symmetric division probability on the doubling time and the CSC pro-
portion, CSC symmetric division probabilities of 2%, 5%, 10%, 25%, 50%, 75% and 100% were simulated for the 
two extremes of HNSCC tumor oxygenation. The most oxygenated case was RVV = 10%, p0 = 100 mmHg and 
ND = 300 µm and the most hypoxic case was RVV = 2%, p0 = 20 mmHg and ND = 80 µm. In order to achieve 
approximately these RVVs, the model parameter RVV0 was set to 8.2% and 0.75% respectively. Again, the sim-
ulations began with approximately 70 CSCs and ended with a final tumor diameter of 1 mm. Three simula-
tions (n = 3) were conducted for each value of CSC symmetric division probability for both well oxygenated and 
severely hypoxic cases (with the exception of the severely hypoxic case with CSC symmetric division probability 
10%, for which n = 4 was used). The CSC proportion was calculated as the ratio of the number of CSCs to the 
number of living cells (×100%). The doubling times and CSC proportions were plotted using the mean value of 
the 3 (or 4) simulation runs and with error bars corresponding to the standard error of the mean (SEM). Prism 
(version 7, GraphPad Software, Inc.) was used to determine whether statistical significance had been reached.

Equipment.  Simulations were performed on the Phoenix cluster at the University of Adelaide16 using as many 
as 12 cores and 10 GB of RAM.

Data availability.  The data that support the finding of this study are available from the corresponding author 
upon reasonable request.

Input parameter Values Type References

Cell (and blood vessel) diameter 14–20 µm Distribution 11, 36, 37

RVV 2–10% Single value 11, 12

Oxygen tension =
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Distribution 38, 39

p0 20–100 mmHg Single value 11, 13

ND 80–300 µm Single value 14, 15

CCT under normoxia 33 ± 5.9 h (Gaussian) Distribution 40, 41

CCT adjustment factor with hypoxia y e(pO ) 1 1 82
0 2pO2= + . − . Distribution 40, 42, 43

Hypoxia-induced quiescence pO2 < 1 mmHg Single value 44–46

Necrotic cell resorption time 3–6 days depending on local necrotic volume Distribution 47, 48

CSC symmetric division probability ~2% pre-treatment, possibly >50% during 
accelerated repopulation Single value 6–8, 30, 40

Differentiated cell loss frequency 80% Single value 40, 41

Table 1.  Tumor growth model input parameters and values for HNSCC.
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Code availability.  The code used to analyze the data is available from the corresponding author upon rea-
sonable request. The code used to perform tumor growth simulations has not been made publicly available at this 
time.

Results
The effects of tumor vascularity and blood oxygenation on tumor oxygenation.  With increasing 
tumor vascularity (RVV) and increasing blood oxygenation (p0 and ND), the hypoxic proportions and necrotic 
volume decreased, while the mean and median cellular pO2 increased (Figs 3 and 4). According to clinical data, 
HNSCC exhibit RVV from 2–10%11, 12, p0 from 20–100 mmHg11, 13 and ND from 80–300 µm14, 15. With these con-
straints, the tumor growth model predicted values of HP1 from 0–29%, HP2.5 from 0–42%, HP5 from 0–65%, HP10 

Figure 3.  Variation of hypoxic proportions with tumor vascularity for (a) poor blood oxygenation 
(p0 = 20 mmHg and ND = 80 µm), (b) moderate blood oxygenation (p0 = 40 mmHg and ND = 180 µm) and (c) 
high blood oxygenation (p0 = 100 mmHg and ND = 300 µm).
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from 0–86%, mean cellular pO2 from 4.4–65.2 mmHg, median cellular pO2 from 2.9–67.5 mmHg and necrotic 
volume from 0–15% for HNSCC.

For poor blood oxygenation (p0 = 20 mmHg and ND = 80 µm), there was necrosis present even at 10% RVV. 
Note that the same hypoxic proportion could arise from different combinations of RVV, p0 and ND. For example, 
(RVV, p0, ND) combinations of (11.8%, 20 mmHg, 80 µm), (2.7%, 40 mmHg, 180 µm) and (0.4%, 100 mmHg, 
300 µm) each yielded a HP5 of 20%.

The effects of hypoxia and CSC symmetric division on the tumor growth rate and the CSC pro-
portion.  The doubling time decreased with increasing tumor vascularity (RVV) and increasing blood oxygen-
ation (p0 and ND) (Fig. 5a). For HNSCC (RVV = 2–10%, p0 = 20–100 mmHg, ND = 80–300 µm), the doubling 
time increased by a factor of 3 from well oxygenated tumors to the most hypoxic tumors. The doubling time was 
considerably affected, even without the presence of necrosis, by low cellular pO2 effects such as increased CCTs 
and cell quiescence (Fig. 5b,c).

The doubling time decreased with increasing probability of CSC symmetric division probability (Fig. 6a). The 
mean doubling time was 2.6–3.3 times larger for the most hypoxic tumors than for well oxygenated tumors of 
HNSCC across all values of CSC symmetric division probability. The difference in doubling time between severely 
hypoxic and well oxygenated conditions was significant (p-value < 0.05 using unpaired t-test with Welch’s correc-
tion) at every value of CSC symmetric division probability.

The CSC proportion increased with CSC symmetric division probability (Fig. 6b). The mean CSC proportion 
was 1–1.14 times larger for the most hypoxic tumors than for well oxygenated tumors across all values of CSC 
symmetric division probability. The difference in CSC proportion between severely hypoxic and well oxygenated 
conditions was significant (p-value <0.05 using unpaired t-test with Welch’s correction) at every value of CSC 
symmetric division probability except 2%.

A CSC symmetric division probability of 2% yielded a mean ± SEM doubling time of 44.5 ± 0.8 days (n = 3) 
for well oxygenated tumors and 129 ± 16 days (n = 3) for the most hypoxic tumors. The CSC proportion was 
approximately 6% in each case (6.11 ± 0.01% (n = 3) and 6.3 ± 0.2% (n = 3) respectively). An increase in the CSC 
symmetric division probability to 50% yielded a doubling time of 2.28 ± 0.03 days (n = 3) for well oxygenated 
tumors and 6.3 ± 0.6 days (n = 3) for the most hypoxic tumors. The CSC proportions were 30.49 ± 0.06% (n = 3) 
and 34.8 ± 0.3% (n = 3) respectively.

Figure 4.  Variation of (a) mean cellular pO2 and (b) necrotic volume with tumor vascularity for poor, moderate 
and high blood oxygenation.
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Discussion
Several studies have reported pO2 measurements in human HNSCC using invasive polarographic needle elec-
trodes. The results from some of these studies are collated in Table 2. Since accessing a tissue block from the 
HNSCC primary tumor can be difficult, these studies often took measurements from sufficiently large lymph 
node metastases originating from a primary HNSCC. The table also lists measurements of necrotic volume in 
HNSCCs, as assessed by CT scan or MRI. The results from the current study are included at the bottom for 
comparison.

The values of median pO2, mean pO2, HP2.5, HP5 and HP10 produced by the tumor growth model using RVV 
from 2–10%, p0 from 20–100 mmHg and ND from 80–300 µm are in line with these clinical measurements. This 
assists in model validation since these values for RVV, p0 and ND are based on clinical data for HNSCC. The 
clinical tumor oxygenation data overall indicate well oxygenated tumors are rare and lower values of RVV, p0 and 
ND are typical.

Figure 5.  Relative variation in the doubling time with (a) tumor vascularity and (b) HP10. (c) Variation in the 
necrotic volume with HP10.
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The clinical studies sometimes reported large values of necrotic volume outside the range produced by 
the tumor growth model. This is likely because the clinical studies observed macroscopic regions of necrosis. 
Macroscopic necrosis occurs when tumors become large and whole macroscopic regions of the tumor lose blood 
supply. The tumor growth model only produced necrosis at the microscopic scale (between distant blood vessels) 
in the sub-clinical sized tumors used in this study.

Pre-treatment doubling times of HNSCC have been obtained in studies that measured tumor growth while 
patients waited for treatment. Jensen et al.17 found that in the time between diagnostic scan (MR or CT) and 
treatment planning CT scan (median 28 days, range 5–95 days), the median doubling time was 99 days (range 
15 to > 234 days) for 61 patients with HNSCC. Waaijer et al.18 found that in the time between diagnostic and 
treatment planning CT scans (mean 34 days), the mean doubling time was 96 days (range 21–256 days) in 13 
patients with oropharyngeal SCC. Murphy et al.19 found that in the time between diagnostic (MRI or CT) and 
planning or interval CT scan (median 35 days, range 8–314 days), the median doubling time was 94 days (range 
16–6931 days) in 85 oropharyngeal SCC. These average clinically measured pre-treatment doubling times are 
similar to those produced by the presented tumor growth model under moderately hypoxic conditions and with 
a CSC symmetric division probability of approximately 2% (recall the doubling times obtained with the tumor 
model using 2% CSC symmetric division averaged 45 days for well oxygenated tumors and 130 days for severely 
hypoxic tumors).

In the current work, a CSC symmetric division probability of 2% yielded a proportion of CSCs in the tumor 
of approximately 6% for all HNSCC tumor oxygenation levels. Methods have been established for identifying 
CSCs in HNSCC. For example, cells that express markers such as ALDH1, CD133 and CD44 exhibit CSC-like 
properties, while others do not9, 20–24. Cells that efficiently efflux Hoechst 33342 dye, termed side-population (SP) 
cells, are also CSC-like25, 26. Chinn et al.27 reported a mean CD44high content of 10.8% (range 0–84.5%) for 40 
patient-derived primary HNSCCs. In 10 human oral SCC tissue samples, Zhang et al.28 found CD133+ content 
of 1–3%. Lu et al.29 identified approximately 2.1% SP cells in 7 human primary HNSCC samples, and all SP cells 
were also CD133+. The CSC proportion of 6% obtained by the tumor growth model using 2% CSC symmetric 
division, is close to these clinical estimates for HNSCC pre-treatment and results from other models (e.g. 5.9% 
from Marcu & Marcu30).

Figure 6.  Variation of (a) doubling time and (b) CSC proportion with CSC symmetric division probability for 
severely hypoxic tumors (mean ± SD RVV = 2.2 ± 0.2% (n = 22), p0 = 20 mmHg, ND = 80 μm) (blue) and well 
oxygenated tumors (mean ± SD RVV = 10.5 ± 0.6% (n = 21), p0 = 100 mmHg, ND = 300 μm) (red) of HNSCC.
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Tumors respond to treatment by undergoing accelerated repopulation. In an analysis of 5 clinical trials con-
taining a total of 2653 patients, Pedicini et al.31 using an analytical/graphical method arrived at a best estimate of 
3.5 days (95% CI 3.1–3.9 days) for the doubling time of HNSCC during radiotherapy. The loss of asymmetric divi-
sion by CSCs is believed to be a key mechanism behind accelerated repopulation6–8, 30, 32, 33. In the tumor growth 
model, a CSC symmetric division probability of 50% yielded doubling times from 2.3 to 6.1 days, depending 
on the tumor oxygenation, which are in line with the estimate by Pedicini et al. A 50% CSC symmetric division 
probability yielded CSC proportions from 30–35% in the current work. To the authors’ knowledge, there are no 
clinical studies in the literature that measured the CSC proportion in HNSCC in patients during accelerated 
repopulation. In the model by Marcu & Marcu30, the CSC proportions obtained were higher than in the current 
work for the same CSC symmetric division probability. For example, in their work, 10%, 20% and 30% symmet-
ric division yielded 25%, 35% and 45% CSCs, respectively (recall in the current work, 10% and 25% symmetric 
division yielded approximately 9% and 15% CSCs, respectively). Conversely, the CSC proportions were slightly 
lower in the HYP-RT model by Harriss-Phillips et al.33 than in the current work. In that model, 30% symmetric 
division yielded just 10% CSCs. Most in vitro studies of various cancer types show a 3–5 times increase in CSCs 
post single irradiation24.

Conclusion
The current work established how the tumor oxygenation varies with vascularity and blood oxygenation, how the 
doubling time varies with tumor oxygenation and CSC symmetric division probability, and how the CSC propor-
tion varies with CSC symmetric division probability in a 4D cellular model of HNSCC tumor growth. The dou-
bling time varied by a factor of ~3 from well oxygenated tumors to the most severely hypoxic tumors of HNSCC. 
A CSC symmetric division probability of 2% yielded clinically relevant doubling times and CSC proportions for 
HNSCC before treatment, while a value of 50% produced the doubling times observed in the clinic for HNSCC 
undergoing accelerated repopulation. This 50% probability yielded CSC proportions from 30–35%.

In future work, the tumor growth model will be extended to a radiotherapy simulation tool for both low 
and high LET beams. The cellular geometry will be imported into Geant434 and irradiated in Monte Carlo track 
structure simulations. Radiolysis will be simulated along the particle tracks. Ionisation events and generated •OH 
species will be clustered in the cell nuclei to predict the complexity and extent of DNA damage to each cell. The 
cellular pO2 will affect how efficiently •OH attack to the base of DNA is translated to strand breakage35. Irradiation 
will be simulated in fractions separated by time intervals, during which the tumor growth model will translate 
DNA damage to cell death while also regrowing the tumor.

Tumor site

Median pO2 
(mmHg) in the 
tumor

Mean pO2 (mmHg) in 
the tumor HP2.5 (%) HP5 (%) HP10 (%) Necrotic volume (%)

King et al.49 Metastastic cervical nodes 
from HNSCC — — — — —

mean ± SD 
19.09 ± 13.94 
(n = 106)

Kong et al.50 Primary HNSCC mean 14.0 (n = 82) — — — — —

Gagel et al.51 lymph node metastases 
from HNSCC

mean ± SD 
12.5 ± 10.3; range 
0.1–41.1 (n = 38)

mean ± SD 17.6 ± 7.3; 
range 8.8–36.0 
(n = 38)

mean ± SD 
29.3 ± 18.4; range 
0.0–58.5 (n = 38)

mean ± SD 
38.4 ± 18.1; range 
7.0–73.6 (n = 38)

mean ± SD 
48.9 ± 18.2; range 
13.0–78.7 (n = 38)

—

Nordsmark 
et al.3

Neck node metastases 
from HNSCC or primary 
HNSCC

median 9; range 
0–62 (n = 397) — median 19; range 0–97 

(n = 397)
median 38; range 
0–100 (n = 397) — —

Kuhnt et al.52 Primary HNSCC — — — — — mean ± SD 18 ± 30 
(n = 51)*

Gagel et al.53 neck lymph node 
metastases from HNSCC

mean 10.7; 95% CI 
of mean 5.2–16.1; 
range 0.4–22.4 
(n = 16)

mean 16.3; 95% CI of 
mean 12.1–20.5; range 
9.0–27.4 (n = 16)

mean 35.9; 95% CI of 
mean 24.1–47.6; range 
0.5–58.1 (n = 16)

mean 44.3; 95% CI 
of mean 34.0–54.5; 
range 27.6–66.5 
(n = 16)

mean 52.5; 95% CI of 
mean 42.2–62.9; range 
33.7–77.5 (n = 16)

—

Terris et al.54 cervical lymph node 
metastases from HNSCC — mean ± SD 20.8 ± 13.7 

(n = 50)*
mean ± SD 20.8 ± 25.7 
(n = 42) — — mean ± SD 

14.5 ± 11.2 (n = 42)

Brizel et al.55
Primary HNSCC or 
cervical lymph node from 
HNSCC

mean 4.5; range 
0–60 (n = 63)* — — — — —

Brizel et al.5
Primary HNSCC or neck 
node metastases from 
HNSCC

mean 11.2; range 
0.4–60 (n = 28) — — — — —

Nordsmark 
et al.4

Lymph node metastases 
from HNSCC (n = 34) or 
primary HNSCC (n = 1)

mean ± SD 
14.7 ± 10.8; 
median 14; range 
1–35 (n = 35)

—
mean ± SD 22 ± 24; 
median 15; range 0–95 
(n = 35)

mean ± SD 
35 ± 29; median 
29; range 0–100 
(n = 35)

— —

The current 
work range 2.9–67.5 range 4.4–65.2 range 0–42 range 0–65 range 0–86 range 0–15

Table 2.  Clinical data for tissue pO2 and necrotic volume in human HNSCC. *Mean ± SD of two or more sub-
groups were combined with appropriate error propagation.
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