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consideration of gut–brain interactions may be important 
for treatment regarding the determination of target weight, 
rapidity of weight gain, refeeding methods and composi-
tion of the diet which might all be of importance to improve 
long-term outcome of one of the most chronic psychiatric 
disorders of adolescence.
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Introduction

The Hippocratic concept of positive health dates back to 
the fifth century B.C. and postulates that adequate nutri-
tion is an important component of a long and healthy life 
[1]. Nutrition comprises macronutrients (carbohydrates, 
proteins and fat) and micronutrients (vitamins and miner-
als) to supply energy and enable an organism to grow and 
function properly. Although most people consider sufficient 
and balanced eating as a basic drive to maintain well-being, 
anorexia nervosa (AN) is characterized by insufficient food 
intake and poor diet, which lead to a significantly low body 
weight and severe danger to the individual’s health. Addi-
tionally, patients with AN suffer from severe weight pho-
bia; in many but not all cases, there is a lack of recognition 
of the seriousness of the illness [2].

Some 30 years ago, the aetiology of AN was explained 
by a psychosomatic family model [3, 4]. Herein, nutritional 
rehabilitation and weight gain were not considered to be 
of primary importance to the healing process. Today, it is 
well-known that a higher body mass index (BMI) at the 
end of treatment correlates with a better overall outcome 
[5] and that a normalization of body weight is necessary 
to prevent severe somatic sequelae such as osteoporosis 
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and infertility [6, 7]. Moreover, it is well-established that 
weight gain is a potent agent against comorbid mental dis-
orders of AN, especially depression [8, 9].

Most mental disorders emerge by an interaction between 
a person’s biological disposition and environmental influ-
ences, i.e. by an interaction of “nature” and “nurture”. In 
AN, the latter is to be taken literally. In animals and healthy 
individuals, eating is both a motivating and appetitive 
behaviour that is highly reinforced and rewarded by certain 
neurocircuits in the brain (for a review, see [10]). How-
ever, this “core eating network” [10] seems to be severely 
affected in patients with eating disorders, especially AN. 
These individuals seem to process food cues differently in 
comparison to healthy eaters, exhibit decreased anticipation 
of food taste and often show strong regulatory responses 
enabling control and restraint of food intake [10]. However, 
it remains unclear whether these changes are primary in 
origin, and thus a cause of the eating disorder, or whether 
they appear during the illness as secondary effects.

There is emerging evidence of important links between 
the gut microbiome and the CNS, which might be depicted 
as “a gut feeling for the brain” [11] (for a review, see [12]). 
Humans sustain a symbiotic relationship with the micro-
biome in their gut, which consists of approximately 1014 
cells; thus there are ten times more bacteria than cells in the 
average human body [13]. The highest bacterial concentra-
tions are found in the colon with approximately 1012 per 
gram [14]. We supply our microbiota with food, and they 
compensate us with important health benefits in relation to 
digestion, growth and defence against pathogens [11, 15].

We have recently learned that malnutrition and long-
term dieting have a substantial and reproducible effect on 
the gut microbiome and its impact on the brain, which is 
likely related to the development of psychopathology and 
psychiatric disorders [15]. There is growing evidence that 
the gut microbiome also plays an important role in the 
development and persistence of eating disorders, especially 
AN [16].

Among all age groups, less than 50% of patients with 
AN fully recover [17], and the mortality risk is the high-
est of all psychiatric disorders [18]. Medication has a very 
limited, if any role in the treatment of AN, and psychother-
apeutic interventions are only moderately effective (for a 
review, see [19]). To make progress in treatment, a more 
“brain-directed therapy” [20] is likely necessary to over-
come this often disabling disease.

Thus, the aim of this article is to present recent findings 
on the gut–brain interaction that may be of relevance to the 
pathophysiology of eating disorders, and for AN in particu-
lar. In part because this research is still at an early stage, 
several results are contradictory, and most findings are 
based on animal models that may not be easily transferred 
to humans. While we do not fully review all substantial 

aspects of gut–brain interaction for weight regulation or 
psychiatric disorders, our assessment aims to focus on the 
influences of malnutrition, the process of refeeding and 
their presumable impact on the course of AN. “Nutritional 
medicine” and microbiota-modulating strategies may be 
promising determinants of the healing process and outcome 
of AN.

Communication pathways between the gut 
microbiome and the brain

The gut is the most heavily bacterially colonized area 
of the human body, with greater bacterial numbers in the 
colon than in the upper intestine (see above), in addition 
to differences in composition between the bacteria in the 
gut lumen and those near the mucus layer [21]. One of the 
most important “tasks” of the gut microbiome is contribut-
ing to the protection of the intestinal barrier, which must 
prevent the passage of pathogenic microorganisms and 
toxic substances into systemic circulation. Certain periods 
of life seem to involve particular vulnerability to changes 
in gut permeability, e.g. early life and old age [22]. There 
are several pathways by which changes in the intestinal 
barrier might impact brain homeostasis, particularly neu-
roendocrinological alterations, neurotransmission, neuro-
genesis and neuroinflammation, either by direct passage 
to the brain or by the vagus nerve, which acts as the main 
pathway from the lumen of the gut to the nucleus solitarius 
in the medulla oblongata [11].

Neuroendocrinological pathways—Hypothalamic–
Pituitary–Adrenal (HPA)‑axis

In animal models and human studies, the experience of 
stress is linked to an increase in the permeability of the 
intestinal barrier, which might be mediated by—among 
other factors—hypothalamic hormones, especially CRH 
[22]. Acute stress increases gastrointestinal and blood–
brain barrier permeability through the activation of mast 
cells, which express high-affinity receptors for CRH [15]. 
Conversely, in germ-free (GF) rodents, higher levels of 
ACTH and CRH are observed after exposure to stress 
compared to conventionally colonized animals, suggesting 
that the gut microbiome contributes to the downregulation 
of the HPA-axis. Notably, this effect appears dependent 
on specific bacterial taxa, as only certain species such as 
Lactobacillus salivarius were able to attenuate the stress 
response [11].

In humans, even relatively small acute stress situa-
tions such as public speaking are followed by an increase 
in intestinal permeability, although only in those who also 
respond with elevated cortisol levels [23].
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AN is associated with elevated serum, urinary and sali-
vary cortisol levels in the acute state, as well as with a lack 
of cortisol suppression on overnight dexamethasone and 
dexamethasone suppression-CRH stimulation testing [24, 
25]. Thus, it may be hypothesized that AN-specific aberra-
tion of the HPA-axis could contribute to the dysfunction of 
the intestinal barrier that is observed in an animal model of 
AN (see below, [26]).

Neurotransmission

It is increasingly recognized that gut microorganisms 
have a notable effect on the development and regulation 
of peripheral and central serotonergic function, especially 
in the hippocampus. Yano et  al. [27] propose a model 
in which products of microbial fermentation, e.g. short-
chain fatty acids (SCFA, see below) and bile acids (see 
below), directly act on enterochromaffin cells, and thus 
promote the release of serotonin, which influences gastro-
intestinal mobility and platelet function. GF mice display 
depressed levels of serotonin in plasma compared to con-
ventionally raised mice [28, 29]. However, they display 
less anxiety- and depression-like behaviour than naturally 
raised mice [30, 31]. Anxiety and depression are closely 
linked to disturbed serotonin metabolism [32]. In contrast 
to the findings by Wikoff et al. [28] in plasma extracts of 
GF mice, significantly increased hippocampal levels of 
5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic 
acid (5-HIAA), the main metabolites of serotonin, were 
found in developing GF mice compared to naturally raised 
mice. A sustained absence of microorganisms in these ani-
mals was observed to induce a 1.3-fold increase in 5-HT, 
which compares to that induced by antidepressants such as 
SSRIs (for a review, see Clarke [33]). This increase appears 
to be sex-specific as it was only found in developing male 
GF mice. The reasons for this sex difference are not well 
explored, but are probably linked to the menstrual cycle 
and the influence of oestrogen on the serotonergic system. 
Notably, elevated levels of 5-HT are maintained when these 
mice are colonized with a normal microbiota later in life, 
which also demonstrates that the early life period plays an 
important role in configuring the gut–brain interaction [33].

A recent study in patients with major depression demon-
strated that patients differed from normal controls in either 
a predominance of some potentially harmful gut bacteria 
or a reduction of beneficial bacterial groups [34]. Further, 
a large evaluation of medical record-based data in the UK 
showed that repeated use of antibiotics was associated with 
a significant increase in depressive and anxious symptoms 
[35].

It is suspected that the serotonergic system is severely 
altered in AN. During the active state of the illness, patients 
have a significant reduction in CSF-5-HIAA in comparison 

to healthy controls; in long-term weight-restored patients, 
CSF-levels of 5-HIAA are elevated, which is generally 
related to disorders of anxiety and obsession [36]. A dys-
function of the serotonergic system involving 5-HT-recep-
tors and 5-HT-transporters in AN was also confirmed by 
brain-imaging studies (for a review, see [37]). However, 
medications targeting serotonergic dysfunction, such as 
SSRIs, are not proven effective in AN (for a review, see 
[38]).

Neurogenesis

Brain-derived neurotrophic factor (BDNF) is a nerve 
growth factor known to influence neuronal development, 
increase synapse plasticity especially in the hippocampus, 
and confer protection against stress-induced damage [39]. 
BDNF function is linked to mood, stress tolerance and cog-
nitive function such as memory. Recent animal research 
suggests that the gut microbiome may influence the expres-
sion of BDNF in the brain, although the mechanism is 
not yet clear [11]. Prolonged administration of antibiotics 
results in a reduction [40], while pre- or probiotics (see 
below) seem to enhance hippocampal BDNF levels [41, 
42]. In the absence of gut bacteria, the expression of BDNF 
in male mice is lowered in comparison to conventionally 
colonized mice, while it is increased by prebiotic feeding 
[43].

We are unaware of any studies on the association 
between the microbiome and BDNF in humans.

In AN, BDNF levels are reduced in acutely ill patients 
[44], but increase with short-term weight gain [45]. Thus, 
it could be hypothesized that diet-associated changes in 
the microbiome contribute to different stage-related levels 
of BDNF in the brains of AN patients, which might also 
influence cognitive functioning (e.g. psychomotor speed) 
[45]. Möhle et  al. [46] directly showed that neurogenesis 
in the hippocampus was reduced in mice after antibiotic 
treatment, which resulted in impaired memory functions, 
whereas probiotic intake completely restored neurogenesis 
and memory functions. However, it remains to be demon-
strated whether similar phenomena occur in humans.

Neuroinflammation

The intestinal barrier normally prevents pathogenic micro-
organisms from spreading into systemic circulation. How-
ever, the so-called “leaky gut” (increased intestinal permea-
bility) might facilitate the transfer of potentially pathogenic 
members of the microbiota (i.e. “pathobionts”), metabo-
lites, toxins or lipopolysaccharides from the gut lumen to 
the lamina propria and on to the mesenteric lymph nodes, 
from which they may reach systemic circulation, especially 
in the case of an aberrant immune response [12, 15, 47]. 
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This phenomenon was observed both in animal models 
for depression [48] and in depressed humans [47]. Once 
in circulation, the bacteria and other gut luminal contents 
stimulate the output of pro-inflammatory peripheral and 
central cytokines, the latter influencing neuronal function. 
Enhanced levels of IgA- and IgM antibodies against bac-
terial lipopolysaccharide, the structural component of the 
external membrane of Gram-negative bacteria, are observed 
in depressed patients, especially in those with chronic dis-
orders [49]. However, it is not yet clear what comes first; 
increased gut permeability could induce mucosal inflam-
mation followed by systemic inflammation; conversely, 
systemic inflammation could disturb intestinal barrier func-
tion, thus leading to an increased bacterial translocation 
and fuelling of systemic inflammation [12].

An increased risk for autoimmune disorders is observed 
in AN, especially for those involving the gastrointestinal 
tract (see below, [50]).

Short‑Chain Fatty Acids (SCFAs) with neuroactive 
qualities

Short-chain fatty acids mainly represent the product of 
fermentation of partially digestible and non-digestible car-
bohydrates, namely dietary fibre, by the microbiome [51]. 
The most important SCFAs are acetic acid, propionic acid 
and butyric acid, which can act as “signalling molecules” 
and affect the physiology of the host organism, such as 
influencing the ph-level of the colon, controlling the gut 
transit time, metabolizing glucose and modifying appe-
tite and energy homeostasis [11, 52–54]. SCFAs are also 
able to cross the brain–blood barrier and impact neural cir-
cuits [55]. They are involved in regulating the expression 
of neuropeptides, such as PYY and ghrelin [56] and are 
associated with antidepressant effects in animal models via 
higher concentrations of BDNF.

Starvation and the gut microbiome

Mouse models provide evidence that the transfer of 
microbiota from genetically or nutritionally induced 
obese mice to GF mice can lead to obesity and associated 
metabolic disturbances in the host animals [57, 58]. In 
contrast, kwashiorkor is a severe form of acute malnutri-
tion often observed in developping countries that is prob-
ably worsened by a protein-deficient diet. It was recently 
shown that the consequences of this type of malnutrition 
are affected by the gut microbiome and vice versa [59]. 
Frozen bacterial species from children with kwashior-
kor could be transplanted into GF mice; the combination 
of the transplanted kwashiorkor species with the Afri-
can diet produced significant weight loss in these mice 

associated with severe metabolic disturbances. Although 
symptoms of kwashiorkor could be alleviated by better 
nutrition, symptoms returned when the African diet was 
re-implemented.

Starvation-induced changes in the gut microbiome were 
also found in an acute and chronic starvation animal model 
using activity-based anorexia (ABA), which is the most 
widely utilized rodent model of AN simulating weight loss 
by food restriction and hyperactivity with the help of access 
to a running wheel (e.g. [60]). After the ABA mice lost a 
substantial amount of weight (approximately 20%), a histo-
logical investigation of the colon revealed decreased thick-
ness of the muscularis layer and significantly increased 
permeability of the colon [26]. These alterations observed 
in an animal model for AN suggest that intestinal barrier 
dysfunction provoked by starvation might also contribute to 
the pathophysiology of AN. In contrast, in an earlier study 
of AN patients by Monteleone et  al. [61], a decrease in 
intestinal permeability was found. However, the authors of 
this earlier study used the administration of an oral sugar 
solution of Lactulose/Mannitol excreted in the urine for 
their testing, which mainly examines the permeability of 
the small intestine [62]. In the study of ABA mice by Jesus 
et al. (2014), the permeability of the colon assessed by his-
tological analysis was increased. Moreover, the amount of 
the oral dose of the sugar absorption test excreted in the 
urine does not only depend on the permeability of the intes-
tinal mucosa, but also on other factors, such as gastric emp-
tying, intestinal transit time and renal clearance [62], all of 
which may be disturbed in AN.

In addition, several studies demonstrated an increase 
in intestinal permeability during exercise, which is found 
in the majority of patients with AN, and also represents a 
basic mechanism in the ABA model [63].

A disturbed gut barrier function was also found in other 
disorders associated with malnourishment and in volun-
teered fasting subjects [64, 65].

Previous studies in AN

Until now, our knowledge of the relevance of the gut 
microbiome for the symptomatology of AN is scarce. Very 
few studies investigated the composition of the intesti-
nal microbiome during the acute and recovered states of 
AN. A single culture-based case study of an AN patient at 
admission identified 11 previously unknown bacterial spe-
cies [66], whereas a study of 25 patients with AN found a 
reduced number of total bacteria and obligate anaerobes 
[67]. Armougom et al. [68] compared the gut microbiome 
in obese individuals, healthy controls (HC) and AN patients 
and found an increased amount of Methanobrevibacter 
smithii in AN [68].
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The first longitudinal results from AN were presented 
by Kleiman et  al. [69], who analysed the faecal microbi-
ome in a small number of female, mostly adult AN patients 
collected at admission (n = 16) and discharge after weight 
gain (n = 10) and compared it to HC samples. Weight loss 
at admission was of medium severity. At discharge patients 
(who could be reassessed twice) were still at a rather low 
weight. In comparison to HC, patients with AN displayed 
significantly reduced alpha diversity (describing the within-
sample diversity) in the state of a low BMI. After weight 
gain, there was an increase in alpha diversity, although it 
remained lower than in HC [69]. Notably, differences in 
overall diversity and the abundances of individual bacterial 
groups were significantly associated with eating disorder 
psychopathology and depression scores, a finding consist-
ent with the results of other studies showing associations 
between the gut microbiome and behaviour (e.g. [34]).

In a very recent German study from the University of 
Tuebingen [70], the results of Kleiman et al. [69] were for the 
most part confirmed in their much larger sample of 55 individ-
uals, which were predominantly adults with a mean BMI of 
approximately 15 kg/m2. Although alpha diversity was lower 
in AN patients than in HC at admission, the difference was not 
statistically significant. Furthermore, as already observed in 

the study by Kleiman et al. [69], there was again a significant 
increase in alpha diversity in AN patients after weight gain. 
Nevertheless, AN patients’ microbiome after weight gain still 
resembled that of patients at the beginning of treatment more 
than that of HC in terms of beta diversity (inter-individual var-
iability). However, BMI was still very low (mean BMI 17.7) at 
the second assessment point, so that the effect of a more nor-
malized body weight could not be investigated. Importantly, 
the abundances of individual taxonomic groups differed sig-
nificantly between AN patients and HC, which included an 
increase in mucin-degraders (e.g. Verrucomicrobia and Bifido-
bacteria) and a decrease in butyrate-producers (e.g. Roseburia 
spp.) in AN patients. Mucin-degraders feed on mucus cover-
ing the intestinal wall and potentially contribute to the “leaky 
gut” identified in the ABA animal model of AN (39) men-
tioned above. Moreover, the authors analysed the production 
of short-chain fatty acids (see above) before and after weight 
gain. The concentration of the sub-group of branched-chain 
fatty acids, a product of protein fermentation, was increased 
in AN, although total SCFA production did not differ. They 
further note that branched-chain fatty acids can have negative 
effects on host physiology, e.g. by impacting PYY-releasing 
cells, and even psychopathology, e.g. by increasing depressive 
symptoms [70, 71].
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Fig. 1   Interaction between the gut microbiome and the brain. While 
food is one of the main influencing factors of the gut microbiome, 
the microbiome in turn is an important influencing factor of body 
weight. Multiple interactions link the microbiome with the brain: 
Gut originating fatty acids (SCFA´s), serotonin, brain-dervied neuro-
trophic growth facotr (BDNF), nervus vagus stimulation and inflam-
matory cytokines appear to impact the brain via various pathways and 

infuence mood and memory function. In turn, brain originating cor-
ticotropin-releasing hormone (CRH), adrenocorticotropic hormone 
(ACTH) and cortisol influence the gut and its microbiome. In AN, a 
“leaky gut” seems to increase transfer of microbiotal antigens into the 
systemic circulation, further increasing inflammation and influencing 
interactions with the brain, potentially also affecting mood and mem-
ory function
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As the peak onset of AN is in adolescence [72], the 
effect of young age and pubertal changes on the microbi-
ome should be explored. An influence of age on the micro-
biome was just below the significance threshold in the 
study by Mack et al. [70]. However, only 11 subjects were 
below the age of 18, including five below the age of 16, 
and profound hormonal changes, which might influence the 
development of the microbiome [73], emerge between the 
age of 12 and 15 years. Thus, it might be important to build 
on the results by Mack et al. [70] and also study younger 
adolescents (Fig. 1).

Gut permeability, inflammation and anorexia 
nervosa

A relationship between immune-mediated disorders and 
the gut microbiome is the subject of recent discussion. The 
microbiome stimulates the release of cytokines and other 
inflammatory mediators [11]. A “leaky gut”, which can be 
provoked by starvation and increases in mucin-degrading 
bacteria, is characterized by antigens traversing the intesti-
nal wall, infiltrating systemic circulation, and thus contrib-
uting to a chronic low-grade inflammation presumed to be 
present in AN. Interestingly, autoantibodies against neuro-
peptides associated with appetite and stress regulation have 
been identified in AN [74, 75]. Moreover, a Finnish study 
conducted between 1995 and 2010 with a large eating-dis-
order cohort (n = 2342) demonstrated an elevated risk for 
autoimmune diseases in these patients [50]. According to 
their dataset assessing 30 autoimmune diseases, the most 
frequent were of endocrinological and gastroenterological 
origin. The lifetime risk (OR) of patients with an eating 
disorder (all diagnoses) to also suffer from an endocrino-
logical disease, mostly diabetes mellitus type 1, was more 
than twice as high (OR 2.4) as for HC, while the risk of 
suffering from a gastroenterological disease was nearly 
twice as high (OR 1.8). The highest rates were found for 
an association with Crohn’s disease (OR 3.09). In other 
previous studies, pro-inflammatory cytokines were shown 
to be increased in acute AN, although they mostly returned 
to normal after nutritional rehabilitation [76] (meta-analy-
sis by Solmi et al. [77]). However, they may play a pivotal 
role in primarily chronic courses. In a recent case report of 
a young woman with co-existing Crohn’s disease and AN, 
the latter was much improved by the prescription of anti-
TNF-alpha treatment [78].

Similar to a putative role in irritable bowel syndrome, 
increased gut permeability might also be associated with 
gastrointestinal complaints frequently occurring in acute 
and chronic AN [79, 80]. However, in the study by Mack 
et al. [70], gastrointestinal symptoms improved, but did not 

completely alleviate with weight gain, although microbial 
richness increased.

Implications for treatment

As discussed above, there is substantial evidence for altera-
tions of the gut microbiome in eating disorders, especially 
AN. These new insights might lend support for new thera-
peutic targets in this often chronic disorder, such as defin-
ing the right target weight, modifications of the refeeding 
process and the composition of the diet, non-bacterial die-
tary supplements and possibly the future use of pre- or pro-
biotics (see below).

Target weight

Although restoration of a healthy body weight is an impor-
tant goal in the treatment of AN, there is no empirically 
derived agreement on the definition of an appropriate tar-
get weight (for a review, see [81]). However, with regard 
to body mass index (BMI), the gut microbiome plays an 
important role. Million et al. [82] analysed the association 
between the gut microbiome and body weight and found 
that the proportion of certain bacteria was significantly cor-
related with BMI. They compared four bacterial species in 
the following four weight classes: obese, overweight, lean 
and anorectic individuals. The abundance of Lactobacil-
lus species was positively correlated with BMI, while Bifi-
dobacterium animalis, Methanobrevibacter smithii and 
Escherichia coli were negatively correlated with BMI. 
Thus, given the differences observed in previous studies 
of AN (i.e. an increase in mucin producers and decrease in 
SFA-producers, [70]), it might be possible that the compo-
sition of the gut microbiome could be used to help deter-
mine individualized target weights for patients (e.g. in the 
context of a restoration of bacterial community structure).

Refeeding and composition of diet

Refeeding practices in AN are mostly based on mainstream 
clinical or expert opinions—there is little empirical evi-
dence for a healthy weight regimen in affected individu-
als. While European clinicians usually start patients on a 
low-calorie diet to avoid the so-called refeeding syndrome, 
American practitioners are less cautious and suggest a 
much higher calorie supply even at the beginning of refeed-
ing (for a review, see [81]).

According to the findings of the Kaye group [83], 
patients with the restricting type of AN need a higher 
quantity of calories to gain the same amount of weight 
as patients with the bulimic type. While this difference is 
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mostly ascribed to higher energy expenditure in patients 
with the restrictive type compared to those with the bulimic 
type, additional involvement of the gut microbiome is con-
ceivable. Indeed, Mack et al. [70] confirmed significant dif-
ferences in microbial community composition according 
to AN subtype. Binge/purge patients often have a higher 
premorbid body weight, which might be associated with 
a different composition of the gut microbiome. The lat-
ter is a key determinant of the transformation of bile acids 
to efficiently take up lipids, carbohydrates and fatty acids 
[84]. The microbiome of both obese mice and humans has 
an increased capacity to harvest energy from nourishment 
[57, 85–87]. Faecal samples transplanted to GF mice from 
obese humans led to increased body and fat mass accom-
panied with obesity-associated metabolic dysfunctions 
[58]. However, normalization of body weight and obesity-
related metabolic perturbations was achievable through co-
housing with lean mice (and hence, exposure to their gut 
microbes through coprophagy) combined with a diet rich 
in vegetables and fruit but low in saturated fats. Thus, one 
might speculate that augmenting gut microbial composi-
tion in combination with certain diets may have potential to 
improve weight restoration in AN.

The composition of the human microbiome has been 
linked to long-term dietary patterns, such as diets in 
Western (animal protein, sugar and fat) and Non-Western 
populations (plant-derived carbohydrates) [80, 88]. How-
ever, the human gut microbiome seems to respond rapidly 
to rigorous short-term macronutrient changes, whereby 
individual diet-driven changes can occur within 3–4 days, 
but reverse in a similar time frame [89]. In an impor-
tant study by David et al. [90], the authors compared the 
effects of a shift in macronutrient intake from usual eat-
ing habits to either an animal-based diet or a plant-derived 
diet. Changes in the composition of the gut microbiome 
occurred only one day after the new diet had reached the 
distal gut, but exclusively in the group on the animal-based 
diet, and the gut microbiome returned to its usual composi-
tion two days after this diet ended. Although there was no 
difference in alpha diversity between the two groups, beta 
diversity (difference in community structure between base-
line and diet) significantly changed in the animal-based 
food group. Notably, in contrast to the participants on the 
vegetarian diet, those on the animal-based diet showed 
significant weight loss, although caloric intake was simi-
lar in both groups. One of the most abundant phyla in the 
microbiota of the animal-based diet group was a bacterium 
with a high bile resistance (Bilophila wadsworthia), which 
is in accordance with our knowledge that a diet rich in fat 
results in higher bile acid production. In mice, growth of 
B. wadsworthia is stimulated by ingesting saturated fats 
from milk; it is important that the expansion rate of B. 
wadsworthia is also associated with the development of 

inflammatory bowel disease in these mouse models [90, 
91]. Thus, we may hypothesize that certain diets—also 
in humans—will contribute to the pathogenesis of bowel 
inflammation.

Why are these findings important for the treatment of 
AN? Before admission, anorexia nervosa patients often 
maintain a vegetarian diet low in fat and high in fibre [92]. 
After hospitalization, diet is often quickly changed to a 
high-calorie diet rich in carbohydrates and fat for nutri-
tional rehabilitation. Moreover, in cases of very severe 
AN, patients are sometimes tube-fed or are given oral liq-
uid supplements. Most oral liquid supplements, especially 
those suitable for tube feeding, are based on cow’s milk, 
e.g. an animal-based food product. Thus, within a very 
short time, we may strongly affect the gut microbiome of 
our patients without being aware of the consequences, such 
as the possible growth of inflammation-inducing bacteria. 
Although two studies investigated the impact of weight 
gain on the gut microbiota (see above, [69, 70]), none so 
far has explored the effect of the diet itself.

Pre‑ and probiotics

Gibson and Roberfroid [93] defined a prebiotic as a “non-
digestible food ingredient that beneficially affects the host 
by selectively stimulating the growth and/or activity of one 
or a limited number of bacteria in the gut”. Currently, the 
selectivity criterion is left out, and a prebiotic is defined as 
a “substance that induces the growth of microorganisms 
that contribute to the well-being of their host” (Wikipedia, 
assessed 7/7/2016 [94]; for a review, see [95]). The most 
well-known prebiotics to impact the gut–brain axis are 
fructans (such as inulins and oligofructose) and glucans 
(such as galacto-oligosaccharides) [11]. The latter have 
been demonstrated to improve intestinal barrier function 
in rodents [96]. More recently, substances such as pectins 
and milk oligosaccharides are also included among prebiot-
ics. It is hypothesized that metabolic function of the organ-
ism can be improved and low-grade inflammation reduced 
by altering the gut microbiome with the help of prebiotics 
[87].

Other studies suggest that prebiotics may be effective in 
the treatment of depressive or anxious states and cognitive 
function. Glucans and polydextrose were shown to reduce 
anxiety-related behaviour in rats [97] and to attenuate stress 
response in healthy adult probands [98].

A probiotic is defined as living component of the micro-
biota administered to humans or animals that are associ-
ated with health benefits for the host. In several studies, 
a reduction of intestinal permeability was reported, e.g. 
in pre-term infants, in children with atopic dermatitis and 
irritable bowel syndrome after application of probiot-
ics (for a review, see [12]). Möhle et al. [46] showed that 
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after severely reducing the gut microbiome with several 
antibiotics, neuropsychological deficits, such as learning 
impairments and reduced neurogenesis in the hippocam-
pus, could be induced in mice. These impairments could 
be reversed by orally administering an over-the-counter 
mix of probiotic bacteria. Although an effect of probiotics 
on depressive- and anxiety-like behaviour in mice has been 
observed [99], reports involving larger human samples are 
still lacking. Mazurak et al. [100] analysed the evidence of 
probiotic use in irritable bowel syndrome and criticised that 
studies suffer from heterogeneity in sample sizes, duration 
of treatment and concentration of probiotics. In a system-
atic review by Kristensen [101] including seven studies 
between 2013 and 2015, no significant effect of probiot-
ics on faecal microbiota composition in healthy adults was 
found when compared to placebo. Moreover, there are no 
studies on the benefit of pre- or probiotics in AN.

It is beyond the scope of this article to discuss the ben-
efit of pre- or probiotics in more detail. Sheridan and coau-
thors [102] assert that the type of malnutrition should be 
strictly defined and the target of the intervention should be 
specified before administering pre- or probiotics to under-
nourished patients. In addition, it should be kept in mind 
that there are differences in the type of malnutrition caused 
by famine, old age or somatic disorders in comparison to 
AN patients, who commonly ingest “healthy low caloric 
food” such as a vegetarian diet, which will most likely also 
result in different effects on the microbiome.

Conclusions

There is growing evidence that the gut microbiome plays a 
notable role in the emergence and development of somatic 
and psychological symptoms in AN. The consideration of 
microbe–gut–brain interactions as risk factors for the onset 
and perpetuation of AN and as a target for therapeutic inter-
ventions, will likely prove to be a significant shift in our 
scientific concept of the aetiology and treatment of eating 
disorders. Until now, there have been very few studies on 
the role of the intestinal microbiome in AN and other eat-
ing disorders. Accordingly, we are not aware of the conse-
quences of a diet rapidly changing in caloric content and 
composition. Future research should include continuous 
monitoring of the microbiome during nutritional rehabilita-
tion, weight gain and hormonal restoration far beyond previ-
ous assessments at only the beginning and end of treatment. 
Our knowledge on the effect of rapid weight gain, changes 
in macronutrients and target weight level on the microbi-
ome and consequent inflammation mechanisms is scant. 
Moreover, our insight into gut–brain interaction, especially 
in adolescent AN, is very limited. However, the exploration 
of gut–brain communication and its alteration, especially in 

the early stages of the disease in adolescence, may be par-
ticularly important for the prognosis of this often long last-
ing and disabling disorder.
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