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ASYMPTOTIC ROBUSTNESS STUDY OF THE POLYCHORIC CORRELATION
ESTIMATION

Shaobo Jin and Fan Yang-Wallentin

UPPSALA UNIVERSITY

Asymptotic robustness against misspecification of the underlying distribution for the polychoric cor-
relation estimation is studied. The asymptotic normality of the pseudo-maximum likelihood estimator is
derived using the two-step estimation procedure. The t distribution assumption and the skew-normal distri-
bution assumption are used as alternatives to the normal distribution assumption in a numerical study. The
numerical results show that the underlying normal distribution can be substantially biased, even though
skewness and kurtosis are not large. The skew-normal assumption generally produces a lower bias than the
normal assumption. Thus, it isworth using a non-normal distributional assumption if the normal assumption
is dubious.

Keywords: underlying distribution, asymptotic covariancematrix, non-normality, pseudo-maximum like-
lihood.

1. Introduction

Structural equation models (SEMs) are widely used in social sciences to model latent struc-
tures. Typically, normal distributions are assumed for both latent variables and error terms. How-
ever, observed measures in surveys are often ordinal. For example, a five-point Likert scale is
commonly used in psychometric studies. Conceptually, categorical data should not be incorpo-
rated into a SEM by assuming they are continuous. There have been numerous advances in the
literature on SEMs with respect to analysing ordinal data as they are. The observed ordinal data
are usually assumed to be counterparts of some underlying continuous distributions. A typical
choice of the underlying distributions is the standard normal distribution. Olsson (1979) stud-
ied the one-step maximum likelihood estimator (MLE) and the two-step MLE of the polychoric
correlation coefficient. All parameters (i.e. thresholds and polychoric correlation) are estimated
simultaneously for the one-step MLE, whereas the thresholds are estimated from the marginals
and the polychoric correlation is computed based on the threshold estimates for the two-stepMLE.
Olsson showed that under the normality assumption, the one- and the two-step MLEs produce
similar polychoric correlation estimates and similar variance estimates. Jöreskog (1994) derived
the estimator of the asymptotic covariance matrix of the polychoric correlation estimators for the
two-step maximum likelihood procedure (for a more compact expression, see Christoffersson &
Gunsjö, 1996, and related references).

The underlying normality assumption is questionable. For example, the underlying normality
assumption in the Life Orientation Test dataset (Scheier &Carver, 1985) was rejected byMaydeu-
Olivares (2006). In yet another example, income is commonly used in the socio-economic status
studies (e.g. Chateau, Metge, Prior, & Soodeen, 2012; Hodge & Treiman, 1968; Scharoun-Lee,
Adair, Kaufman, & Gordon-Larsen, 2009). A Pareto distribution is classically used to model
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income (Arnold, 2008). Using a normal distribution to model income is dubious because the
income is bounded by a lower limit. The question regarding income, however, is commonly
categorized in a questionnaire: for example, see the National Longitudinal Study of Adolescent
Health dataset (Carolina Population Center, 2009) used by Scharoun-Lee et al. (2009). Thus,
“income" is an ordinal indicator with a non-normal underlying distribution. The consequences
of violating the underlying normality assumption have been investigated (e.g. Flora & Curran,
2004; Lee & Lam, 1988; Quiroga, 1992). Flora and Curran (2004) generated non-normal data
from the Fleishman–Vale–Maurelli method (Fleishman, 1978; Vale & Maurelli, 1983) in which
a standard univariate normal random variable is polynomially transformed to introduce skewness
and kurtosis. The authors found that the polychoric correlation estimates are only slightly biased
when the underlying distribution has a skewness of 0.75 or 1.25 and a kurtosis of 1.75 or 3.75.
They found, however, that the polychoric correlation is not robust against extreme underlying non-
normality (e.g. skewness = 5 and kurtosis = 50). Lee and Lam (1988) generated non-normal data
from an elliptical t distribution and an elliptical contaminated normal distribution and noted that
the polychoric correlation estimates based on the normality assumption are fairly robust against
non-normal underlying distributions. The study of Quiroga (1992) was conducted using non-
normal data from an underlying bivariate skew-normal distribution and from the Fleishman–Vale–
Maurelli method. The author also suggests that the polychoric correlation estimator is robust to
non-normality. These studies share two features in common. First, they assume that the underlying
distribution is normal to investigate the effect of underlying non-normality. So, a non-normal
distribution assumption has not been systematically studied. Second, they are simulation studies.
To our knowledge, there are no robustness studies on polychoric correlations from a theoretical
standpoint.

Because the polychoric correlation is not distribution-free, tests of the underlying normality
assumption are desired. For example, LISREL (Jöreskog & Sörbom, 1996) uses a likelihood ratio
test to assess underlying normality, which is equivalent to a Pearson χ2.Maydeu-Olivares, Forero,
Gallardo-Pujol, and Renom (2009) and Maydeu-Olivares and Joe (2005, 2006) introduced a
variant of the Pearson’sχ2 that ismore suitable for the two-stepMLEof the polychoric correlation.
LISREL (Jöreskog & Sörbom, 1996) also provides the root-mean-square error of approximation
(RMSEA) to assess the underlying normality assumption.

If the normality assumption fails, a new assumption of distribution is needed. Quiroga (1992)
studied a new underlying distributional assumption whose marginal distributions are weighted
averages of a univariate skew-normal distribution and a standard univariate normal distribution.
Through an empirical example, the author showed that the polychoric correlation estimates based
on the newassumption of distribution produce a smallerχ2 test statistic. The normality assumption
has also been criticized in the item response theory and alternative distributions have been studied
to account for the underlying non-normality (e.g. see Bolfarine & Bazán, 2010; Lucke, 2014;
Woods & Thissen, 2006).

The purpose of this paper is twofold. First, we study robustness against misspecification of the
underlying distribution from a theoretical perspective. The effect of distributionalmisspecification
under the two-step maximum likelihood procedure is investigated. Because the two-step MLE is
computationally easier (Olsson, 1979) and is implemented in LISREL, we focus only on the two-
step MLE for its simplicity and popularity. Second, the underlying distribution is not restricted
to a standard normal distribution. The t distribution and the skew-normal distribution are used as
alternatives in the present study. In particular, the skew-normal distribution has been applied in the
item response theory as an alternative to the normality assumption (e.g. see Azevedo, Bolfarine,
& Andrade, 2011; Bázan, Branco, & Bolfarine, 2006; Molenaar, 2015; Molenaar, Dolan, & de
Boeck, 2012; Santos, Azevedo, &Bolfarine, 2013). Because the underlying distribution cannot be
fully determined from ordinal data, we attempt to pinpoint potential alternatives for the bivariate
normal distribution assumption.
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The remainder of this paper is organized as follows. General theories are presented, followed
by numerical examples to illustrate our ideas. A brief conclusion ends the paper.

2. General Theory

Consider two ordinal variables U and V with mU and mV categories, respectively. The
classic polychoric correlation estimationmethod assumes that there are two underlying continuous
variables X and Y for U and V , respectively. The values of U and V are defined through X and
Y as

U = i ⇔ τi−1 < X ≤ τi i = 1, 2, . . . ,mU ,

V = j ⇔ ξ j−1 < Y ≤ ξ j j = 1, 2, . . . ,mV ,

where τ = (τ1, . . . , τmU−1)
′ and ξ = (ξ1, . . . , ξmV −1)

′ are thresholds such that

−∞ = τ0 < τ1 < · · · < τmU−1 < τmU = ∞,

−∞ = ξ0 < ξ1 < · · · < ξmV −1 < ξmV = ∞.

The true joint distribution function is denoted by F(x, y; ρ, ζ )with twomarginal distributions
F1(x) and F2(y), where ρ is the correlation coefficient and ζ is the vector of other parameters (e.g.
degrees of freedom, location, and scale parameters). The corresponding joint density function
is f(x, y; ρ) with marginal densities f1(x) and f2(y). Because the true distribution family is
unknown, we assume the underlying distribution to be H(x, y; ρ) with marginal distributions
H1(x) and H2(y). The joint density function is h(x, y; ρ) with marginal densities h1(x) and
h2(y), respectively. Conventionally, H(x, y; ρ) is taken to be the distribution function of a standard
bivariate normal distribution. The normality assumptionwill be relaxed in our study.We also allow
for different marginal distributions both in true underlying distributions and in the assumed ones.

2.1. Two-Step Estimation

2.1.1. Threshold Estimation Let ni j and pi j be the observed frequency and proportion, respec-
tively, of U = i and V = j , for i = 1, . . . ,mU and j = 1, . . . ,mV . If the true underlying distri-
bution F is different from the assumed distribution H, the MLEs of thresholds will be inconsistent
estimators of τ 0 = (τ1,0, . . . , τmU−1,0)

′ and ξ0 = (ξ1,0, . . . , ξmV −1,0)
′, where the subscript 0

indicates true values. Consider the ordinal variableU first. Denote nU = (n1·, . . . , nmU ·)′, where
ni · = ∑mV

j=1 ni j is the marginal total for i = 1, 2, . . . ,mU . The corresponding marginal propor-
tion is pU = (p1·, . . . , pmU ·)′. The pseudo-maximum likelihood estimator (PMLE) of τ , denoted
as τ̂ = (τ̂1, . . . , τ̂mU−1)

′, is obtained by maximizing

Q(τ ) =
mU∑

i=1

ni · log
τi∫

τi−1

h1(x)dx .

It is easy to see that τ̂ is a consistent estimator of τ ∗, where H1 (τ ∗) = F1(τ 0), because the
observed cell probabilities are consistent estimators of F1(τ 0). Similarly, ξ̂ is a consistent estimator
of ξ∗, where H2

(
ξ∗) = F2(ξ0). Let P be an mU × mV matrix with (i, j)-th entry pi j . Then

∂Q (τ )

∂τ
= nBU (τ )′ D−1

U (τ ) pU ,
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∂2Q (τ )

∂τ∂τ ′ = −nBU (τ )′ D−1
U (τ ) DpD

−1
U (τ ) BU (τ ) + nS,

where n = ∑mU
i=1

∑mV
j=1 ni j is the total number of observations,

BU (τ ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

h1(τ1) 0 · · · 0
−h1(τ1) h1(τ2) · · · 0

0 −h1(τ2) · · · 0
...

...
. . .

...

0 0 · · · h1(τmU−1)

0 0 · · · −h1(τmU−1)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

DU (τ ) = Diag
(∫ τ1

τ0
h1(x)dx, . . . ,

∫ τmU
τmU−1

h1(x)dx
)

, Dp = Diag(p1·, . . . , pmU ·), pU = P1mV

with 1mV being an mV × 1 vector of 1’s, and S is a diagonal matrix with i-th element

(
pi,·

∫ τi
τi−1

h1(x)dx
− pi+1,·
∫ τi+1
τi

h1(x)dx

)
∂h1(τi )

∂τi
,

for i = 1, . . . ,mU − 1. The operator Diag(·) constructs a diagonal matrix using the enclosed
vector as diagonal elements. The Taylor expansion of n−1/2∂Q(τ̂ )/∂τ around τ ∗ is

0 = n−1/2 ∂Q
(
τ̂
)

∂τ
= n−1/2 ∂Q (τ ∗)

∂τ
+ n−1/2 ∂2Q (τ̃ )

∂τ∂τ ′
(
τ̂ − τ ∗)+ op(1), (1)

where τ̃ lies between τ̂ and τ ∗. Because both τ̂ and τ̃ are consistent estimators of
τ ∗, n−1∂2Q(τ̃ )/∂τ∂τ ′ is consistent for −BU (τ ∗)′ D−1

U (τ ∗) BU (τ ∗). So, Eq. (1) implies

n1/2
(
τ̂ − τ ∗) = n1/2

[
BU

(
τ ∗)′ D−1

U

(
τ ∗) BU

(
τ ∗)]−1

BU
(
τ ∗)′ D−1

U

(
τ ∗) pU + op(1). (2)

Similar arguments applying to ξ yield

n1/2
(
ξ̂ − ξ∗) =n1/2

[
BV

(
ξ∗)′ D−1

V

(
ξ∗) BV

(
ξ∗)]−1

BV
(
ξ∗)′ D−1

V

(
ξ∗) pV + op(1), (3)

where pV = P ′1mU . Here BV and DV are defined by substituting h1 with h2 in BU and DU .
The PMLEs τ̂ and ξ̂ are inconsistent in the sense that τ ∗ and ξ∗ are different from the true values
τ 0 and ξ0.

2.1.2. Polychoric Correlation Coefficient Estimation Under the distributional assumption H,
the assumed cell probability is

πi j,(H) =
∫ τi

τi−1

∫ ξ j

ξ j−1

h(x, y)dydx,
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while the true cell probabilityπi j,(F) is obtained by substituting h(x, y)with f(x, y). Conditionally

on τ̂ and ξ̂ , the polychoric correlation ρ is estimated by maximizing

L
(
ρ, τ̂ , ξ̂

)
=

mU∑

i=1

mV∑

j=1

pi j log πi j,(H).

Theorem 2.2 in White (1982) shows that the PMLE is a consistent estimator that minimizes the
Kullback–Leibler information (Kullback & Leibler, 1951) under some regularity conditions, one
of which is that the absolute value of logπi j,(H) is dominated by a variable with finite expectation.
Such a regularity condition is satisfied ifπi j,(H) = 0 impliesπi j,(F) = 0 for all (i, j). Consequently,
Theorem 2.2 in White (1982) shows that ρ̂ converges to ρ∗ that minimizes the Kullback–Leibler
information

mU∑

i=1

mV∑

j=1

πi j,(F)

(
log πi j,(F) − log πi j,(H)

)
.

Theorem 1. Assume g
(
ρ, τ ∗, ξ∗) = ∑mU

i=1

∑mV
j=1 πi j,(F) log πi j,(H), as a function of ρ, has a

unique maximum at ρ∗. If πi j,(H) = 0 implies πi j,(F) = 0 for all (i, j), then there exists a root ρ̂
of the equation

∂

∂ρ

mU∑

i=1

mV∑

j=1

pi j log πi j,(H) = 0

such that ρ̂ is a consistent estimator of ρ∗.

That is, ρ̂ is a consistent estimator of ρ∗ that minimizes the probabilistic divergence between
H and F (Kullback, 1959) in the sense of the Kullback–Leibler information. This minimized
divergence implies similarities of H and F in terms of cell probabilities.

The assumption in Theorem 1 requires uniqueness of the maximum. In so doing, we rule out
all cases with local maxima. If we have several stationary points, we can then only conclude that
one of the stationary points minimizes the Kullback–Leibler information.

2.1.3. Asymptotic Variance of Polychoric Correlations Let Lρ (ρ, τ , ξ) denote the first order
partial derivative of L (ρ, τ , ξ) with respect to ρ. Similar symbols are used to represent other

partial derivatives and higher order partial derivatives. Lρ

(
ρ̂, τ̂ , ξ̂

)
can be expanded around ρ∗

for a sufficiently large n,

0 = n1/2Lρ

(
ρ̂, τ̂ , ξ̂

)
= n1/2Lρ

(
ρ∗, τ̂ , ξ̂

)

︸ ︷︷ ︸
(i)

+ n1/2
(
ρ̂ − ρ∗)Lρρ

(
ρ̃, τ̂ , ξ̂

)

︸ ︷︷ ︸
(i i)

+ op(1), (4)

where ρ̃ lies between ρ∗ and ρ̂. Term (i) in Eq. (4) is equivalent to

n1/2Lρ

(
ρ∗, τ̂ , ξ̂

)
= n1/2Lρ

(
ρ∗, τ ∗, ξ∗)+ n1/2Lρτ

(
ρ∗, τ̃ , ξ̃

)′ (
τ̂ − τ ∗)

+ n1/2Lρξ

(
ρ∗, τ̃ , ξ̃

)′ (
ξ̂ − ξ∗)+ op(1), (5)



72 PSYCHOMETRIKA

where τ̃ lies between τ̂ and τ ∗ and ξ̃ lies between ξ̂ and ξ∗. Hence, if πi j,(H) = 0 implies

πi j,(F) = 0 for all (i, j) in a neighbourhood of (τ ∗, ξ∗) given the correlation ρ∗,Lρτ

(
ρ∗, τ̃ , ξ̃

)

is consistent for gρτ

(
ρ∗, τ ∗, ξ∗) and Lρξ

(
ρ∗, τ̃ , ξ̃

)
is consistent for gρξ

(
ρ∗, τ ∗, ξ∗). Thus, Eq.

(5) is equivalent to

n1/2Lρ

(
ρ∗, τ̂ , ξ̂

)
= n1/2Lρ

(
ρ∗, τ ∗, ξ∗)+ n1/2gρτ

(
ρ∗, τ ∗, ξ∗)′ (τ̂ − τ ∗)

+ n1/2gρξ

(
ρ∗, τ ∗, ξ∗)′ (ξ̂ − ξ∗)+ op(1).

Likewise, Term (i i) can be written as

n1/2
(
ρ̂ − ρ∗)Lρρ

(
ρ̃, τ̂ , ξ̂

)
= n1/2

(
ρ̂ − ρ∗) gρρ

(
ρ∗, τ ∗, ξ∗)+ op(1),

provided that πi j,(H) = 0 implies πi j,(F) = 0 in a neighbourhood of
(
ρ∗, τ ∗, ξ∗). Hence, com-

bining with Eqs. (2) and (3), (4) is equivalent to

n1/2
(
ρ̂ − ρ∗) = − n1/2

gρρ

(
ρ∗, τ ∗, ξ∗)

{
Lρ

(
ρ∗, τ ∗, ξ∗)+ gρτ

(
ρ∗, τ ∗, ξ∗)′ (τ̂ − τ ∗)

+ gρξ

(
ρ∗, τ ∗, ξ∗)′ (ξ̂ − ξ∗)}+ op (1)

= − n1/2

gρρ

(
ρ∗, τ ∗, ξ∗) tr

(
�′P

)+ op(1),

where � = A + Eτgρτ

(
ρ∗, τ ∗, ξ∗) 1′

mV
+ 1mU gρξ

(
ρ∗, τ ∗, ξ∗)′ E′

ξ with A being an mU ×
mV matrix with (i, j)-th element

(
∂πi j/∂ρ

)
/πi j , Eτ = D−1

τ Bτ

(
B′

τ D
−1
τ Bτ

)−1
, and Eξ =

D−1
ξ Bξ

(
B′

ξ D
−1
ξ Bξ

)−1
. Note that tr

(
�′P

) = vec(�)′vec(P), where vec(·) stacks the columns

of the enclosed matrix and

√
n
(
vec(P) − vec(π (F))

) d→ N
(
0,Diag(P) − vec(P)vec(P)′

)

with π (F) being an mU × mV matrix with (i, j)-th entry πi j,(F). The arguments above establish
the following theorem.

Theorem 2. Let ρ̂ be the consistent root of Lρ

(
ρ, τ̂ , ξ̂

)
= 0 given τ̂ and ξ̂ . Assume πi j,(H) = 0

implies πi j,(F) = 0 in a neighbourhood of
(
ρ∗, τ ∗, ξ∗), then

n1/2
(
ρ̂ − ρ∗) d→ N

(
0, σ 2

)
,

where σ 2 =
[
tr
(
(� 	 �)′ π (F)

)− (
tr
(
�′π (F)

))2
]
/
(
gρρ

(
ρ∗, τ ∗, ξ∗))2. Here, matrix � is eval-

uated under
(
ρ∗, τ ∗, ξ∗). The operator 	 implies element-wise multiplication.
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2.1.4. Estimating theAsymptoticCovarianceMatrix FollowingTheorem2, the asymptotic va-
riance of ρ̂ can be consistently estimated by

1
[
Lρρ

(
ρ̂, τ̂ , ξ̂

)]2

⎡

⎢
⎣

mU∑

i=1

mV∑

j=1

λ̂2i j pi j −
⎛

⎝
mU∑

i=1

mV∑

j=1

λ̂i j pi j

⎞

⎠

2
⎤

⎥
⎦ ,

where λ̂i j is the (i, j)-th element in �̂. The polychoric correlation between variables U and V
satisfies

n1/2
(
ρ̂(UV ) − ρ∗(UV )

)
= −n1/2

g(UV )
ρρ

(
ρ∗, τ ∗, ξ∗) tr

(
�(UV )′ P (UV )

)
+ op (1) ,

where the superscript (UV ) emphasizes that all quantities are evaluated under the distributional
assumption forU and V . Similarly, the polychoric correlation between variables K and Z satisfies

n1/2
(
ρ̂(K Z) − ρ∗(K Z)

)
= −n1/2

g(K Z)
ρρ

(
ρ∗, τ ∗, ξ∗) tr

(
�(K Z)′ P (K Z)

)
+ op (1) .

The underlying distributional assumption forU and V can either be the same as that for K and Z
or different. Thus, the asymptotic covariance between ρ̂(UV ) and ρ̂(K Z) is consistently estimated
by

∑mU
a=1

∑mV
b=1

∑mK
c=1

∑mZ
d=1 λ̂

(UV )
ab

(
p(UV K Z)
abcd − p(UV )

ab p(K Z)
cd

)
λ̂

(K Z)
cd

Lρρ

(
ρ̂(UV ), τ̂ (UV )

, ξ̂
(UV )

)
Lρρ

(
ρ̂(K Z), τ̂ (K Z)

, ξ̂
(K Z)

) , (6)

where p(UV K Z)
abcd is the sample proportion of observingU = a, V = b, K = c, and Z = d. Under

the assumption that the underlying distribution is normal and correctly specified, Eq. (6) reduces
to the estimator in Jöreskog (1994).

2.2. A Variant of Two-Step Estimation

The above two-step estimation is applicable to bivariate distributions whose marginal distri-
butions do not depend on unknown parameters. For example, the mean and variance of a bivariate
normal distribution are unknown parameters and assuming a standard normal distribution fixes
those parameters to known values. In many other distributions, unknown parameters are included
in the marginal distributions. Consequently, the above two-step MLE cannot be obtained unless
the unknown parameters are prefixed. In such a case, a variant of the two-stepMLEcan be obtained
instead. The MLE maximizes

L (θ) =
mU∑

i=1

mV∑

j=1

pi j log πi j,(H)

with respect to the vector θ that consists of free unknown parameters. Not all parameters in ρ and ζ

are free parameters. Themean and variance of an ordinal variable are not identified. Thus, the scale
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and location parameters that do not contribute to the correlation coefficient are not identified. In
some distributions (e.g. the skew-normal distribution introduced later), the correlation coefficient
is also determined by ζ and, therefore, is not a free parameter. If L (θ) is differentiable with
respect to θ ,

∂

∂θ
L (θ) = ∂

∂θ

mU∑

i=1

mV∑

j=1

pi j log πi j,(H) = 0

is solved to obtain θ̂ . By standard calculation,

n1/2
(
θ̂ − θ∗) = −n1/2E

(
Lθθ (θ

∗)
)−1 C(θ∗)vec(P) + op(1),

where θ∗ = (ρ∗, ζ ∗′
)′ and the k-th row in C is vec(Ck)

′ with the (i, j)-th element being
1

πi j,(H)

∂πi j,(H)

∂θk
, provided that E

(
Lθθ (θ

∗)
)
is invertible. Assume that the correlation coefficient

satisfies ρ = ρ(θ) in which ρθ (θ
∗) is nonzero. The delta method (Ferguson, 1996) indicates

n1/2
(
ρ̂ − ρ∗) d→ N

(
0, ρθ (θ

∗)′E
(
Lθθ (θ

∗)
)−1 C(θ∗)�C(θ∗)′E

(
Lθθ (θ

∗)
)−1

ρθ (θ
∗)
)
,

where� is the asymptotic covariancematrix of vec(P). Hence, the asymptotic covariance between
ρ̂(UV ) and ρ̂(K Z) can be consistently estimated in a similar manner to Eq. (6). Let the matrix ϒ

be constructed through vec (ϒ)′ = ρθ (θ)′E (Lθθ (θ))−1 C(θ). Then the asymptotic covariance
between ρ̂(UV ) and ρ̂(K Z) is consistently estimated by

mU∑

a=1

mV∑

b=1

mK∑

c=1

mZ∑

d=1

ϒ̂
(UV )

ab

(
p(UV K Z)
abcd − p(UV )

ab p(K Z)
cd

)
ϒ̂

(K Z)

cd . (7)

In Olsson (1979), thresholds τ and ξ are parameters for the one-step MLE. However, the
thresholds are not always directly estimated for the one-step MLE for other distributions. For
example, the density function of a bivariate skew-normal distribution in Azzalini and Valle (1996)
is

f (x, y) = 2φ2 (x, y;ω) � (α1x + α2y) , (8)

where φ2(·, ·;ω) is the density function of the bivariate standard normal distribution with correla-
tion coefficient ω,�(·) is the distribution function of a standard normal distribution, and α1 and
α2 control skewness and kurtosis. The covariance matrix of X and Y is

W − 2

π
(
1 + α2

1 + 2ωα1α2 + α2
2

) R , (9)

where

W =
(
1 ω

ω 1

)

and R =
(

(α1 + ωα2)
2 (α1 + ωα2) (α2 + ωα1)

(α1 + ωα2) (α2 + ωα1) (α2 + ωα1)
2

)

.
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Thus, the correlation coefficient is affected by ω, α1 and α2. The marginal distributions are uni-
variate skew-normal distributions with densities

f (x) = 2φ (x) � (αx) , (10)

where α = (α1 + ωα2)/
[
1 + (1 − ω2)α2

2

]1/2
for X and α = (α2 + ωα1)/

[
1 + (1 − ω2)α2

1

]1/2

for Y . Bazán et al. (2006),Molenaar (2015), andMolenaar et al. (2012) have applied the univariate
skew-normal distribution to the item response theory. The marginal distributions are affected by
ω, α1, and α2, as are the thresholds. Therefore, the thresholds are not free parameters. The vector
of free parameters in the variant of two-step estimation is θ = (α1, α2, ω)′.

3. Numerical Examples

A numerical study is conducted in this section to examine the asymptotic bias under different
distributional assumptions. Asymptotic limits of PMLE for polychoric correlation coefficients are
numerically computed.

3.1. Distributional Assumption

Four experiments are conducted in which different true underlying distributions are investi-
gated.

3.1.1. Experiment 1: Elliptical Distribution In probability and statistics, an elliptical distrib-
ution belongs to a broad family of probability distributions. The bivariate joint density function
of an elliptical distribution is of the form

1

2πσ11σ22
(
1 − ρ2

)1/2 q (z) , (11)

where q (·) is a univariate function and

z = 1

1 − ρ2

[
(x − μ1)

2

σ 2
11

− 2ρ(x − μ1)(y − μ2)

σ11σ22
+ (y − μ2)

2

σ 2
22

]

with σ11 being the variance of X and σ22 being the variance of Y . An elliptical distribution
generalizes the normal distribution and keeps some properties (e.g. Balakrishnan & Lai, 2009;
Fang, Kotz, & Ng, 1990; Kelker, 1970). Some examples of the bivariate elliptical distributions
that will be used later are

1. Normal distributions: q (z) = exp (−z/2);
2. t(v) distributions with degrees of freedom v: q (z) = (1 + z/v)−(v+2)/2;
3. Bivariate uniform distributions: q (z) = 2I{z≤1} with I being an indicator function;

4. Bivariate Logistic distributions: q (z) = 4 exp (−z) /
[
1 + exp (−z)

]2;
5. Bivariate exponential power distributions: q (z) = 2 exp

(−zβ/2
)
/
(
21/β�(1 + 1/β)

)
.
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The elliptical distribution family plays a very important role in robustness studies (e.g. Kano,
Berkane, & Bentler, 1993). In the context of Pearson correlation estimation, Hampel, Ronchetti,
Rousseeuw, and Stahel (1986) showed that the PMLE of the covariance matrix is proportional
to the MLE under the true distributional assumption, provided that continuous data have been
acquired. This result enables us to use anymember of the family to estimate the correlationmatrix,
having the same estimates as if the true distribution were used. Likewise, Berkane, Kano, and
Bentler (1994) claimed that “there is practically no cost in treating the distribution as multivariate
t with specified (possibly small) degrees of freedom” (Berkane et al., 1994, p. 266) when the
true distribution is normal and continuous data are observed. It only slightly inflates the variance
of the resulting estimator. Thus, it is worth investigating the effect of an underlying elliptical
distribution. Because we have only categorical data, the mean and variance are not identified. But
then only the correlation coefficient ρ is the parameter of interest, so we can assumeμ1 = μ2 = 0
and σ11 = σ22 = 1.

For some members of the elliptical distribution family, the marginal distribution is still ellip-
tical but not of the same type (Gómez, Gómez-villegas, & Marín, 2003). The bivariate uniform
distribution, the logistic distribution, and the exponential power distribution possess such proper-
ties. The support of the bivariate uniform distribution is not the whole Cartesian plane, whereas
the other distributions have the whole Cartesian plane as their support. The exponential power
distribution includes the normal distribution (β = 1) and the Laplace distribution (β = 1/2) as
special cases.

3.1.2. Experiment 2: Skew-Normal Distribution An elliptical distribution is symmetric. Qui-
roga (1992) reported that kurtosis does not have strong effects on the polychoric correlation but
that skewness increases the bias. The above elliptical distributions examine various values of
kurtosis. The following distributions introduce nonzero values of skewness.

A natural generalization of a standard normal distribution is the univariate skew-normal
distribution proposed by Azzalini (1985) and extended by Azzalini and Valle (1996) to a multi-
variate skew-normal distribution. The bivariate density function, covariance matrix and marginal
density function are shown in Eqs. (8), (9), and (10), respectively. The ranges of the skewness
and excess kurtosis are (−0.9953, 0.9953) and [0, 0.8692), respectively (Azzalini & Capitanio,
2014, p. 32). This range is close to the low skewness and low kurtosis case in Flora and Curran
(2004). The reader can refer to Azzalini (2005) for an overview of the skew-normal distribution
and to Azzalini and Capitanio (2014) for the expressions of skewness and excess kurtosis. Note
that the bivariate skew-normal distribution proposed by Azzalini and Valle (1996) is different
from the skew-normal distribution in Quiroga (1992). The specification in Azzalini and Valle
(1996) is used in the present study for its connection with the skew-t(v) distribution in the next
experiment.

3.1.3. Experiment 3: Skew-t(v)Distribution Skewness can also be introduced to the t(v) distri-
bution.Azzalini andCapitanio (2003) proposed amultivariate skew-t(v)distributionwhose bivari-
ate density function is

f (x, y) = 2t (x, y;ω, v)T

(

(α1x + α2y)

(
v + 2

v + (x2 − 2ωxy + y2)/(1 − ρ2)

)1/2

; v + 2

)

,

where t(·, ·;ω, v) is the density function of a standard bivariate t distribution with correlation w

and degrees of freedom v and T(·; v + 2) is the distribution function of a univariate t distribution
with degrees of freedom v + 2. The covariance matrix of X and Y is
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v

v − 2
W − 2

π
(
1 + α2

1 + 2ωα1α2 + α2
2

) R ,

provided that v > 2. Both marginal distributions are univariate skew-t distributions with density
function

f (x) = 2t (x; v)T

(

αx

(
v + 1

v + x2

)1/2

; v + 1

)

.

The reader is directed to Azzalini and Capitanio (2003) for the expressions of skewness and excess
kurtosis.

3.1.4. Experiment 4: Other Distributions The skew-normal and t(v) distributions are special
cases of the skew-t(v) distribution family. There are many distributions that are not members
of the skew-elliptical distribution family. In addition, the underlying distribution cannot be truly
determined from the observed ordinal data. It is therefore important to investigate the effect of
distributional misspecification using the distributions that do not belong to the skew-t distribution
family. A Pareto distribution is commonly used to model income (Arnold, 2008) and income is
commonly used as an indicator of socio-economic status. Mardia (1962) proposed a multivariate
Pareto distribution in which the bivariate density function is

f(x, y; a, θ1, θ2) = (a + 1)a(θ1θ2)
a+1(θ2x + θ1y − θ1θ2)

−(a+2),

and the marginal density function is f(x) = aθai x
−(a+1), with x ≥ θ1 > 0, y ≥ θ2 > 0, and

a > 0. The correlation coefficient between X and Y is 1/a, which is always positive.

3.2. Numerical Design

Three combinations of categories are used. First, bothU and V have five categories with cell
probabilities (0.1, 0.2, 0.4, 0.2, 0.1) and (0.1, 0.1, 0.3, 0.3, 0.2), respectively. Second, both U
and V have three categories with cell probabilities (0.2, 0.5, 0.3) and (0.1, 0.3, 0.6), respectively.
Third,U has three categories with cell probabilities (0.2, 0.5, 0.3) and V has five categories with
cell probabilities (0.1, 0.1, 0.3, 0.3, 0.2).

In Experiment 1, β in the exponential power distribution is β = 0.3, 0.4, 0.5, 0.6. In Exper-
iments 2 and 3, three values of α1 are considered (α1 = 0.1, 0.5, 1) and 20 evenly spaced values
of α2 are considered ranging from 0.5 to 10 for both skew-normal and skew-t(v) distributions.
Thus, different combinations of univariate skewness and kurtosis are investigated. In Experiments
1, 2 and 3, the degrees of freedom for the t(v) and skew-t(v) distributions are 4, 6, 8, and 10. In
Experiment 4, parameters for the Pareto distribution are θ1 = θ2 = 3.

For all experiments, two values of ρ are used: ρ0 = 0.4, 0.6. For the purpose of illustra-
tion, the assumed underlying distributions are bivariate normal, skew-normal, and t(v) distri-
butions. The normal assumption consists of only one unknown parameter of interest, ρ. The
skew-normal assumption consists of three parameters: α1, α2, and ω that determine the cor-
relation coefficient. The degrees of freedom in the t(v) are prefixed to be 4, 6, 8, 10 and the
correlation coefficient is the only parameter of interest. The expressions of the partial derivatives
of the skew-normal distribution and t distribution can be found in the supplementary materi-
als.
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3.3. Numerical Results

To assess the bias of polychoric correlation estimates, the relative bias (RB) is computed,
which is defined as RB = 100 × (

ρ̂ − ρ0
)
/ρ0. Following the definition in Flora and Curran

(2004), RB ≤ 5, 5 < RB ≤ 10, and RB ≥ 10 indicate slight, moderate, and large bias,
respectively. To assess the closeness of the fit, the limit value of RMSEA

RMSE A =
(

max

[
2
∑mU

i=1

∑mV
j=1 πi j,(F) log

(
πi j,(F)/πi j,(H)

)

mUmV − mU − mV
, 0

])1/2

,

is computed. Owing to space limitations, here only some main results are presented and discussed
in this subsection. Complete results can be found in the supplementary materials.

3.3.1. Experiment 1 Figures 1 displays the RB andRMSEAvalues when the true correlation is
0.4. As expected, assuming a wrong underlying distribution generally biases the polychoric corre-
lation.Observe that the skew-normal distribution contains the normal distribution as a special case.
Thus, both the normal and skew-normal assumptions consistently estimate the polychoric corre-
lation when the true underlying distribution is normal. When the true underlying distribution is a
normal distribution or a t distribution, all distributional assumptions produce a low RB (less than
5%). When the true underlying distribution is a uniform distribution or logistic distribution, the
normal assumption generally produces a low-biased correlation estimate. However, the t assump-
tion may produce a high RB (Figure 1). The normal and skew-normal assumptions can produce
moderately biased polychoric correlations when the underlying distribution is the exponential
power distribution with β = 0.3 that corresponds to a distribution with high kurtosis (Figure 1).
As the kurtosis in the exponential power family decreases, the magnitude of RB concomitantly
decreases. When the underlying distribution is non-normal, the normal and skew-normal assump-
tions may produce different correlation estimates. Thus, the skew-normal distribution adjusts the
underlying non-normality by introducing some degree of skewness. Consequently, the magnitude
of RB may become higher but the RMSEA may become lower (Figure 1), which occurs when
the number of categories is three for both ordinal variables. The polychoric correlation based on
the underlying normal assumption generally underestimates the true correlation coefficient. The
t(4) and t(6) assumptions sometimes outperform the normal assumption in Experiment 1.

3.3.2. Experiment 2 As expected, the polychoric correlation is consistently estimated when
the true and assumed underlying distributions are both skew-normal (Figure 2). The normal
assumption produces negatively biased correlation estimates. It can be moderately or strongly
biased unless both α1 and α2 are small. Recall that α1 and α2 control the skewness and kurtosis of
the underlying distribution. Small values of α1 and α2 only introduce a small departure from the
bivariate normal distribution. All the t distribution assumptions produce similar RBs relative to
the normal assumption. Under both the normal and t(v) distribution assumptions, three categories
in both ordinal variables generally lead to a higher magnitude of the RB value than five categories
in both variables. For example, the RB with five-category variables does not exceed −15 when
α1 = 1 and ρ0 = 0.4, whereas the RB with three-category variables frequently exceeds −25
under the same condition (Figure 2). As the true value of the correlation increases while the other
conditions remain the same, the RB generally becomes smaller (see Figures 7, 8, and 9 in the
supplementary materials).

In Experiment 2, the RMSEA can be misleading when the number of categories is three in
both variables. Consider the normal assumption as an example. The magnitude of RBmay exceed
10 when α1 = 0.1, ρ0 = 0.4, and both ordinal variables have three categories (Figure 2), whereas
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Figure 1.
Relative bias (RB) and root-mean-square error of approximation (RMSEA) of correlation estimates when the true under-
lying distribution belongs to the elliptical distribution family. The true correlation coefficient is 0.4, a RB when both
ordinal variables have five categories. b RMSEA when both ordinal variables have five categories. c RB when both
ordinal variables have three categories. d RMSEA when both ordinal variables have three categories. Note Nor normal,
Uni uniform, Logi logistic, EP(·)=exponential power distribution with the enclosed value of β.

the RMSEA is still below 0.05 (Figure 3). The pattern is more dramatic when α1 = 1. The RB
is almost −20 when α2 = 1.5 and ρ0 = 0.4, but the RMSEA is slightly below 0.05. Thus, the
estimated probabilities can be rather close to the true probabilities but the polychoric correlation
can be largely biased. This event occurs because RMSEAonlymeasures the closeness between the
estimated and true category probabilities, and is not a direct measure of the correlation estimate.

On the other hand, although the skew-normal assumption consistently estimates the poly-
choric correlation in Experiment 2, the numerical difficulties (such as non-convergence and local
maximizer) are encountered in the present study. The fit function L (θ) can be fairly flat (see
Figure 13 in the supplementary materials as an illustration). A bad choice of the starting value
for the numerical optimization process can lead to the aforementioned issues. Thus, 20 starting
values are employed. As a result, the skew-normal assumption is computationally much more
intensive than the normal assumption.

3.3.3. Experiment 3 When the true underlying distribution is a skew-t(4) distribution, the
normal and t(v) underlying distributional assumptions lead to a largely biased polychoric correla-
tion, except when both α1 and α2 are small (Figure 4). A small pair of (α1, α2) only introduces a
small skewness and kurtosis to the underlying distribution, which is similar to a t(4) distribution.
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Figure 2.
Relative bias (RB) of correlation estimates when the true underlying distribution is skew-normal. The true correlation
coefficient is 0.4. a α1 = 0.1 and both ordinal variables have five categories. b α1 = 0.5 and both ordinal variables have
five categories. c α1 = 1 and both ordinal variables have five categories. d α1 = 0.1 and both ordinal variables have three
categories. e α1 = 0.5 and both ordinal variables have three categories. f α1 = 1 and both ordinal variables have three
categories.
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Figure 3.
Root-mean-square error of approximation (RMSEA) of correlation estimates when the true underlying distribution is
skew-normal. The true correlation coefficient is 0.4. Both ordinal variables have three categories. a α1 = 0.1. b α1 = 0.5.
(c) α1 = 1.

As known from Experiment 1, the normal and t(v) underlying distributional assumptions are only
slightly biased when the true underlying distribution is a t distribution. The skew-normal assump-
tion may produce not so biased correlations when both ordinal variables have three categories and
α1 is small (Figure 4). In general, the skew-normal assumption is less biased than the normal and
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Figure 4.
Relative bias (RB) of correlation estimates when the true underlying distribution is skew-t(4). The true correlation
coefficient is 0.4. a α1 = 0.1 and both ordinal variables have five categories. b α1 = 0.5 and both ordinal variables have
five categories. c α1 = 1 and both ordinal variables have five categories. d α1 = 0.1 and both ordinal variables have three
categories. e α1 = 0.5 and both ordinal variables have three categories. f α1 = 1 and both ordinal variables have three
categories.

t(v) assumptions. As the degrees of freedom of the skew-t(v) distribution increases, all distrib-
utional assumptions become less biased, and the skew-normal assumption in particular is often
robust (See the figures in the supplementary materials). This effect is expected from the fact that
the skew-normal distribution corresponds to the skew-t(∞) distribution. Nevertheless, the normal
and t(v) assumptions still produce moderately or largely biased polychoric correlations. Similar
to the conclusions from the underlying skew-normal distribution, a wrong distributional assump-
tion tends to underestimate the polychoric correlation. Three categories in both ordinal variables
generally lead to a higher RB in magnitudes than five categories in both ordinal variables; and
a higher value of the true correlation coefficient generally leads to less biased estimates. Similar
to the case in Experiment 2, the RMSEA can be misleading as well. A low RMSEA does not
necessarily indicate a low RB (e.g. see Figure 26 in the supplementary materials).

3.3.4. Experiment 4 Table 1 shows that all the underlying distributional assumptions tend
to be extremely biased when the true underlying distribution is a Pareto distribution. Similar to
Experiments 2 and 3, the polychoric correlation tends to be underestimated across all conditions
in Experiment 4. The skew-normal assumption produces a lower RB than the normal and t(v)

assumptions, although all assumptions generally produce a large RB. The value of RMSEA tends
to be small despite the heavily biased polychoric correlation. In particular, the RMSEA produced
by the skew-normal assumption is always low. Note that the Pareto distribution is skewed. Thus,
the skew-normal distribution assumption mimics the skewed pattern, although the true correlation
coefficient is inconsistently estimated.
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Table 1.
Relative bias (RB) and root-mean-squared error of approximation (RMSEA) of polychoric correlations in Experiment 4.

mU mV ρ0 Assumed distribution

Normal t(4) t(6) t(8) t(10) Skew-normal

RB
3 3 0.4 −47.18 −45.98 −46.29 −46.47 −46.59 −32.89

0.6 −51.23 −50.17 −50.42 −50.57 −50.68 −38.78
3 5 0.4 −38.23 −37.83 −37.60 −37.60 −37.65 −32.12

0.6 −43.50 −43.12 −42.92 −42.93 −42.97 −37.99
5 5 0.4 −36.26 −38.19 −36.94 −36.48 −36.28 −31.60

0.6 −41.96 −43.35 −42.36 −42.01 −41.86 −37.41
RMSEA
3 3 0.4 0.04 0.07 0.05 0.05 0.04 0.00

0.6 0.05 0.08 0.06 0.06 0.06 0.01
3 5 0.4 0.04 0.05 0.04 0.04 0.04 0.01

0.6 0.05 0.06 0.05 0.05 0.05 0.01
5 5 0.4 0.03 0.04 0.04 0.03 0.03 0.01

0.6 0.04 0.05 0.04 0.04 0.04 0.01

3.4. Asymptotic Variance

In this subsection, the asymptotic variance is illustrated in Figure 5 when the true underlying
distribution is a skew-normal distribution and both ordinal variables have five categories. The
skew-normal assumption produces a lower asymptotic variance than do the other assumptions of
distribution. The normal assumption often produces a similar asymptotic variance to the t assump-
tion when ρ0 = 0.4. Otherwise, the normal assumption tends to be slightly less variable than the
t assumption. However, Figure 5 shows that the asymptotic variances under the skew-normal
assumption can be substantially higher than the asymptotic variances of other assumptions of
distribution when both ordinal variables have three categories. Recall that the normal assumption
is asymptotically biased (Figure 2); however, a lower variance may lead to a lower mean squared
error than the skew-normal assumption. Thus, although the skew-normal assumption is asymp-
totically unbiased, the correlation estimate is likely to have a larger departure from the true value
than the normal assumption because of the large variation.

4. Conclusion and Discussion

In this paper, we study robustness of polychoric correlation estimation against misspeci-
fication of underlying distributions. The asymptotic polychoric correlation and its asymptotic
(co)variance are derived under the conditions of the support of assumed distributions. Unlike the
continuous case, the correlation structure is not asymptotically unbiased any more. Although the
bias is sometimes small, a large bias can occur, especially when the true underlying distribution is
skewed but a bivariate normal or t distribution is assumed. It is seen from the numerical example
that the skew-normal assumption performs as well as the conventional normal assumption when
the true underlying distribution is a t distribution and improves the normal assumption when
skewness exists.

Both Flora and Curran (2004) and Quiroga (1992) found that the normal assumption is robust
against non-normal data generated from the Fleishman–Vale–Maurelli method. For example,
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Figure 5.
Asymptotic variances of correlation estimators when the true underlying distribution is skew-normal. The true correlation
coefficient is 0.4. a α1 = 0.1 and both ordinal variables have five categories. b α1 = 0.5 and both ordinal variables have
five categories. c α1 = 1 and both ordinal variables have five categories. d α1 = 0.1 and both ordinal variables have three
categories. e α1 = 0.5 and both ordinal variables have three categories. f α1 = 1 and both ordinal variables have three
categories.

the largest skewness and kurtosis considered in Flora and Curran (2004) are 1.25 and 3.75,
respectively. The RB is lower than 10 in most conditions and is lower than 5 when the number
of categories is five and ρ0 = 0.49 (Flora & Curran, 2004, Table 2). Our results show that the
polychoric correlation can be largely underestimated using the normal assumption when the true
underlying distribution is a skew-normal distribution skewness and kurtosis of which are bounded
by some small values. The bias becomes even higher when the true underlying distribution is
skew-t(4) or a Pareto distribution in which cases the kurtosis is not well defined. Although the
skew-normal assumption is also largely biased sometimes, it greatly improves the conventional
normal assumption. Still, the skew-normal assumption has amuch higher variance than the normal
assumption when the number of categories is small. Thus, the volatility is high under the skew-
normal assumption. Obviously, more studies are needed to investigate small sample volatility in
order to provide suggestions for practice.

Lee and Lam (1988) suggested using the correct underlying distributional assumption to
estimatemore accurately the polychoric correlation if the ordinal data are asymmetric. Because the
ordinal data indicate the loss of informationwhen comparingwith continuous data,we cannot have
visual inspections of the underlying distribution. If the tests of the underlying distribution were
rejected, the underlying distributional assumption is questionable, and an alternative distributional
assumption should be used. In practice, several assumptions of underlying distribution can be
tested and then the most plausible one chosen.
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The normal distribution is a special case of the skew-normal distribution. We have shown
that both distributions consistently estimate the polychoric correlation when the true distribution
is normal. Thus, the skew-normal assumption, which is able to model skewness and kurtosis,
is a natural extension to the conventional normal assumption and frequently outperforms the
normal assumption. However, three parameters are simultaneously estimated in the skew-normal
distribution.Because the thresholds are determined throughα1, α2, andω, the gradient andHessian
matrix involve derivatives of the thresholds with respect to α1, α2, and ω. Accordingly, it is
computationally more difficult than the normal assumption. Besides, non-convergence and local
optimizers are encountered in the present study and multiple starting values are used to obtain the
correlation estimate.

Although only the t and skew-normal assumptions are illustrated as non-normal alternatives
in the present study, other distributions that are differentiable with respect to unknown parameters
can be used to estimate the correlation coefficient by the aid of Theorem 1 or Eq. (6). Its asymptotic
variance and covariance can be estimated using Theorem 2 or Eq. (7). For example, the logistic
distribution can be assumed in the two-step estimation and the skew-t distribution can be assumed
in the variant of the two-step estimation. It will be of interest to derive analytical expressions for
the skew-elliptical distribution family that consists of the skew-normal and skew-t distributions.
Our numerical results demonstrate that the skew-normal assumption generally improves the con-
ventional normal assumption in the imaginary case where n is infinite. It is worthy to conduct a
simulation study to investigate the small sample bias in estimating the correlation coefficient and
its effects on the bias of parameters in a SEM with ordinal data.
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