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Abstract

Drosophila imaginal discs, the larval precursors of adult structures such as the wing and leg, are 

capable of regenerating after damage. During the course of regeneration, discs can sometimes 

generate structures that are appropriate for a different type of disc, a phenomenon termed 

transdetermination. Until recently, these phenomena were studied by physically fragmenting discs 

and then transplanting them into the abdomens of adult female flies. This field has experienced a 

renaissance following the development of genetic ablation systems that can damage precisely 

defined regions of the disc without the need for surgery. Together with more traditional 

approaches, these newer methods have generated many novel insights into wound healing, the 

mechanisms that drive regenerative growth, plasticity during regeneration and systemic effects of 

tissue damage and regeneration.

Introduction

Regeneration is the process by which tissues, organs or organisms restore missing or 

damaged parts. Regeneration is widespread in nature and observed in diverse taxa (reviewed 

by [1, 2]) including the cnidarian Hydra, flatworms, urodele amphibians (e.g. salamanders), 

and more recently, zebrafish. Approaches mostly derived from experimental embryology, 

such as amputation of limbs and transplantation of tissues, have been applied in each of 

these organisms and have provided important insights into cellular aspects of regeneration. 

While it is now possible, at least in principle, to modify genes in each of these organisms 

using genome-editing technologies, it is still difficult to carry out large-scale forward genetic 

screens.

In contrast, Drosophila melanogaster is an organism that has been studied by geneticists for 

over a hundred years. As a result, a number of sophisticated genetic tools are available to 

study biological processes. These include tools to manipulate gene expression in a tissue-

specific manner as well as the efficient generation of genetic mosaics. Additionally, it is 
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possible to conduct genetic screens in a variety of ways (e.g. chemical mutagenesis, RNAi 

screens) that can be used to deconstruct a complex process such as regeneration that occurs 

in a living organism.

In this review we focus on studies of regeneration in Drosophila imaginal discs which are 

the larval primordia of adult structures such as the wing and eye. Experiments on imaginal 

disc regeneration were pioneered by the group of Ernst Hadorn ([3–6] and reviewed in [7, 

8]). Although these studies revealed many fascinating aspects of regeneration including the 

propensity of tissues to change fate during regeneration (transdetermination) [9], the 

technical difficulties associated with these experiments curtailed the development of this 

field, and until recently, relatively few laboratories studied regeneration in imaginal discs. 

The development of genetic approaches to ablate tissues in a predictable and spatially 

defined way without needing surgery [10, 11] has resulted in a renaissance of the study of 

imaginal disc regeneration. In this article, we first summarize the classical literature on 

regeneration and then discuss recent work derived from genetic approaches.

Discovery of the regenerative capacity of Drosophila imaginal discs

In pioneering studies that began in the 1940s, imaginal discs were cut into fragments that 

were subsequently implanted and cultured in adult female abdomens where regeneration 

occurred [3–6]. In the absence of molecular techniques, the only way true regeneration could 

be distinguished from other forms of growth was to demonstrate that the new tissue acquired 

the developmental potential of portions of the disc that had been ablated. This was assessed 

by re-implanting the cultured fragments into a larva where they differentiated during 

metamorphosis. Morphological markers were used to assess the extent of regeneration. 

Implanted fragments generated additional tissue by localized cell proliferation, reminiscent 

of a regeneration blastema observed following limb amputation in salamanders. 

Additionally, the isolated blastemas alone were shown capable of regenerating the lost 

structures [12], and confrontation of blastemas from distant parts induced regrowth of 

missing structures between those parts (intercalary growth) [13].

These studies also provided two unexpected results. First, certain types of disc fragments, 

instead of regenerating the missing portion, generated mirror-image duplications [6, 14]. 

Second, after long periods of culture, structures that normally derive from other discs were 

sometimes derived from the proliferating blastema, a phenomenon known as 

transdetermination [15, 16].

Development of genetic ablation systems

In addition to the studies that demonstrated regeneration after physical fragmentation, 

diffuse damage to discs, such as with X-ray irradiation, was found to elicit additional cell 

divisions from the surviving cells [17]. Some authors use the term “compensatory 

proliferation” to distinguish this type of response to injury from the more localized 

proliferation that results from physical damage. Both physical fragmentation and X-ray 

irradiation were, however, not capable of deleting defined portions of the disc with much 

precision. This problem was overcome by the development of genetic approaches to tissue 
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ablation in imaginal discs [10, 11] that took advantage of the Gal4/UAS system to target a 

pro-apoptotic gene (e.g. eiger, reaper) to a defined region of the imaginal disc and the 

temperature-sensitive version of the Gal80 repressor (Gal80ts) to restrict the ablation to a 

specific time window of imaginal disc development. This offers the opportunity to compare 

the regenerative properties of imaginal discs of different maturity. Genetic ablation offers 

two advantages over the traditional fragmentation approach. First, since the discs are ablated 

in situ, they are able to generate the appropriate adult structures and thus the extent of 

regeneration can be assessed in a live fly; a transplanted disc develops within the abdomen 

of the host and needs to be excised from the abdomen of the recipient to be studied. Second, 

because it is far less laborious, genetic manipulations such as screens can be conducted in 

these flies thus enabling the discovery of novel regulators of regeneration. Other pro-

apoptotic transgenes such as debcl (the pro-apoptotic Drosophila Bcl-2 ortholog)[18] and 

hid [19] have subsequently been used with this system. An analogous system was developed 

independently to study regeneration in the adult midgut [20]. Patches of tissue can also be 

ablated, albeit at random locations, by generating clones of tissue that are mutant for a 

temperature-sensitive cell-lethal mutation such as sec5ts [21].

As with fragmentation, genetic ablation usually results in localized regenerative growth 

characterized by an increase in the rate of proliferation of adjacent surviving cells [10, 11]. 

However, clear differences are apparent in the response to ablation with different pro-

apototic genes. These differences likely reflect the signaling pathways that are activated and 

the rate of cell killing by each pro-apoptotic gene leading to differences in the type of cell 

extrusion (apical versus basal), the extent to which proliferation is localized, and whether 

regeneration occurs concurrently with tissue loss [19].

Wound healing and early responses to tissue damage

The cut edges of fragmented discs heal very efficiently. Imaginal discs are epithelial sacs 

that consist of two layers of cells, the columnar epithelium (the “disc proper”) and the 

squamous peripodial epithelium. Transient heterotypic contacts between cut edges of the 

two layers appear during the first day of in vivo culture and involves contact mediated by 

filopodia and closure facilitated by an actin-rich cable [22–24]. Within 48 hours in culture, 

the heterotypic interactions are resolved and continuity is re-established of both the disc 

proper and the peripodial eptihelium. Wound healing has been studied in other tissues in 

Drosophila including the epidermis of the embryo [25, 26], the larva [27], the pupa [28] and 

the adult [29]; there are similarities and differences between those processes and wound 

healing in discs.

T.H. Morgan proposed that regeneration can occur either by local stimulation of cell 

proliferation (epimorphosis) or by re-patterning of existing tissue (morphollaxis) [1]. Most 

studies of imaginal disc regeneration demonstrate DNA synthesis or mitoses near the wound 

i.e. a regeneration blastema [30–35] although a recent study suggests that morphollaxis 

could also occur to some extent [36]. Importantly, the first signs of cell proliferation precede 

the completion of wound healing [12, 32, 34, 35, 37]. This argues strongly against the notion 

that cell proliferation is triggered by the juxtaposition of tissues with disparate positional 

identities and favor a mechanism where tissue damage directly stimulates cell proliferation. 
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Fragmented discs respond to wounding by activation of the Jun N-terminal kinase (JNK), 

concentrated in regions near the edges of the wound. JNK is required for wound healing and 

also for cell proliferation in imaginal disc blastemas [24, 35, 37–39]. In addition to JNK, the 

p38 stress-activated protein kinase is also activated upon tissue damage and is required for 

regeneration [40]. Reactive oxygen species (ROS) are produced rapidly after damage and act 

as chemoattractants for macrophages. This has been demonstrated in both the imaginal disc 

[41] and the embryo [42] and ROS are required for activation of JNK and p38 [40]. In 

embryonic wounds, the NADPH oxidase DUOX, which acts as a source of H2O2, is 

activated by calcium, and Ca2+ flashes have been found upon damage [43]. Intercellular 

Ca2+ waves, propagated via gap junctions are triggered by injury to imaginal discs [44, 45].

Functional screens for genes that regulate the early stages of wound healing in Drosophila 
imaginal discs are only beginning, and one such screen demonstrated a role for Plexin A in 

the repair of wounds in imaginal discs [46]. Since plexins and semaphorins, which have 

known functions in axonal pathfinding, predate the evolution of the nervous system, it is 

possible that the ancestral function of this pathway is to repair damaged epithelia.

Regenerative growth

The pathways that drive proliferation following tissue damage seem to be the same as those 

that regulate growth during normal development. Physical damage to discs results in the 

upregulation the WNT protein Wingless (Wg) [10, 47–49]. As has been shown for disc 

growth during development [50], wg functions in regenerative growth by increasing Myc 

levels via a double-repression mechanism involving Notch [10]. The JAK/STAT pathway 

[40, 49, 51–53] and the Hippo pathway effector Yorkie (Yki) [18, 54–56] also drive 

regenerative growth. There are ways in which these regulators are utilized during 

regenerative growth that differs from normal growth. First, rather than by developmentally 

regulated signals, these pathways are activated by damage responsive signals. The 

expression of wg is activated by a damage-responsive enhancer [57, 58]. Expression of 

Unpaired, the ligand upstream of the JAK/STAT pathway is activated by both JNK [40, 49, 

51] and the p38 kinase [40]. Following tissue damage, the Hippo pathway is inhibited by the 

LIM-domain protein Ajuba, likely in response to changes in cell tension, resulting in 

increased Yki activity [54, 55]. Cross-talk between these pathways is likely; for example, 

Yki can activate Myc expression [59].

In addition, the rate of cell proliferation is higher during regenerative growth than during 

normal growth [21, 60]. Thus hypomorphic mutations in genes necessary for cell 

proliferation might not impair normal growth but can curtail regenerative growth. Finally, in 

contrast to the preferred orientation of mitotic cell divisions during normal growth 

(proximodistal in the wing pouch), cells re-orient their axes of division during regeneration 

to facilitate the efficient replacement of lost cells [56].

As for tissues in many organisms, the capacity for discs to regenerate diminishes as they 

mature [10]. This results, in significant part from muted upregulation of genes that appear 

necessary for regenerative growth (e.g. wg, Mmp1). In the wg locus, the inability to 

upregulate wg correlates with a localized increase in H3K27 trimethylation at the damage-
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responsive enhancer as discs mature [58]. This localized silencing is mediated by a silencing 

element that is adjacent to, and separate from, the damage-responsive module.

Patterning and regeneration

During normal development, patterning occurs concurrently with growth and the patterns of 

expression of morphogens such as Wg and Dpp have been well characterized. Following 

ablation, these same proteins are expressed in non-physiological patterns and their normal 

patterns of expression are often not re-established until regenerative growth is complete [10]. 

During regeneration, cell fates (such as vein and intervein fates in the wing disc) can be re-

specified to intercalate missing pattern elements [56]. Similarly, cells from the hinge of the 

wing disc appear capable of generating cells that contribute to the pouch [10, 19, 52]. A 

normal feature of imaginal discs is the presence of compartments which are composed of 

lineage-restricted cells that remain separate from each other [61]. Compartment boundaries 

are re-established soon after tissue ablation [10, 11]. However, cells near the compartment 

boundary appear capable of changing fates and adopting new compartmental identities [62]. 

Indeed, previous studies with disc fragmentation demonstrated changes in compartment 

identity during regeneration [47, 63]. The activation of JNK, which has been shown to 

reduce the activity of Polycomb-dependent silencing [38] facilitates fate changes. The 

chromatin regulator Taranis has recently been shown to stabilize compartmental identities 

during regeneration [64].

The phenomenon of transdetermination is another example of enhanced plasticity during 

regeneration (reviewed in [8, 9]). Hadorn’s group was able to maintain imaginal discs in 

long-term culture by repeatedly fragmenting discs and culturing fragments in the abdomens 

of female adult flies until regeneration was complete (330 transfers over 12 years!). During 

these studies they observed that portions of these discs adopted the fates of other discs, as 

assessed by the adult structures they generated when implanted into larvae that were allowed 

to proceed through metamorphosis. Transdetermination appears to occur as a collective fate 

change of a small number of cells and not a single cell [65]. Moreover, there are parts of 

discs termed “weak points” that are more prone to transdetermination and coincide with 

locations where the expression of the two morphogens Dpp and Wingless coincide [6, 66–

68]. Indeed ectopic expression of wg in the foreleg disc can promote leg to wing 

transdetermination [66, 68]. Transdetermination involves JNK-mediated downregulation of 

Polycomb-group proteins [38]. Investigations of transdetermination are being conducted at 

multiple levels; changes in gene expression have been cataloged [69] and genetic changes 

that modulate it have been documented [48]. However, our understanding of 

transdetermination is still at a rudimentary level.

Systemic effects of regeneration

Early studies pointed to mechanisms in Drosophila larvae that delay pupariation in response 

to X-irradiation [70] or damage to imaginal discs [71]. Retinoids mediate part of this delay 

although the mechanism by which they do so is still not known [72]. An exciting 

development was the discovery of a protein of the insulin/relaxin family, Dilp8, which is 

released by damaged imaginal discs [73, 74]. Expression of Dilp8 is activated by JNK [49, 
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73], Yki [75] and, indirectly, by the chromatin modifying enzyme Trithorax [76]. Dilp8 

binds to a G-protein-coupled receptor, Lgr3 [77–80], that is expressed on a subset of 

neurons. The Lgr3-expressing neurons synapse with PTTH-secreting neurons which 

innervate the prothoracic gland (PG) and promote the synthesis of ecdysone, the hormone 

that promotes metamorphosis. This neural pathway likely mediates the developmental delay. 

In addition, Lgr3 is also expressed in the PG itself, where it activates nitric oxide synthase. 

NOS activity is necessary to slow the growth of undamaged discs while damaged tissue is 

being repaired [80, 81].

Concluding remarks

Studies of regeneration in Drosophila imaginal discs have identified novel components of 

the network of signals that regulated wound healing, revealed epigenetic mechanisms that 

regulate regenerative capacity and plasticity during regeneration, and uncovered systemic 

responses that facilitate regeneration. These findings are likely to promote the search for 

similar mechanisms in other organisms such as mammals.
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Highlights

• Drosophila imaginal discs are capable of regeneration after damage.

• Genetic tools enable specific regions of imaginal discs to be ablated in situ.

• Reactive oxygen species, protein kinases and cytokines function in would 

healing.

• Regenerative growth uses many of the same genes that function in normal 

growth.

• Chromatin states impact regenerative capacity and plasticity during 

regeneration.
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Figure 1. Regeneration in wing-imaginal discs
(A) Regeneration following physical fragmentation of a disc that has been implanted in an 

adult abdomen. Wound healing (gray arrows) is facilitated by actin cables and filopodia in 

regions of JNK activation (green). Damaged-induced proliferation (red) occurs prior to the 

completion of wound healing.

(B) Genetic ablation of tissue in the wing disc. Expression of a pro-apoptotic gene (blue) 

during the ablation phase (30°C) eliminates most of the pouch. Regenerative growth restores 

the pouch that can differentiate into a wing of normal size and shape.

(C) Summary of regulators implicated in imaginal disc regeneration.
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