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Dysfunction and death of retinal pigment epithelium (RPE) and or photoreceptors can lead to irreversible vision loss. The eye
represents an ideal microenvironment for stem cell-based therapy. It is considered an “immune privileged” site, and the
number of cells needed for therapy is relatively low for the area of focused vision (macula). Further, surgical placement of
stem cell-derived grafts (RPE, retinal progenitors, and photoreceptor precursors) into the vitreous cavity or subretinal space
has been well established. For preclinical tests, assessments of stem cell-derived graft survival and functionality are conducted
in animal models by various noninvasive approaches and imaging modalities. In vivo experiments conducted in animal
models based on replacing photoreceptors and/or RPE cells have shown survival and functionality of the transplanted cells,
rescue of the host retina, and improvement of visual function. Based on the positive results obtained from these animal
experiments, human clinical trials are being initiated. Despite such progress in stem cell research, ethical, regulatory, safety,
and technical difficulties still remain a challenge for the transformation of this technique into a standard clinical approach. In
this review, the current status of preclinical safety and efficacy studies for retinal cell replacement therapies conducted in
animal models will be discussed.

1. Introduction

Stem cell-based therapies have shown to restore or rescue
visual function in preclinical models of retinal degenerative
diseases [1–5] which are built on previous data with trans-
plantation of fetal retinal tissue sheets. This has set a standard
what these optimal cells can do [6–9]. Although retinal

degenerative diseases such as retinitis pigmentosa (RP),
age-related macular degeneration (AMD), and Stargardt’s
disease differ in their causes and demographics, all of them
cause RPE and/or photoreceptor destruction which can lead
to blindness [1–5]. Currently, there is no clinically accepted
cure for irreversible dysfunction or death of photoreceptors
and RPE. Since the retina, like other central nervous system
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tissue, has little regenerative potential [4, 10], stem cell-based
therapies that aimed to replace the dysfunctional or dead
cells remain a major hope.

In 1959, a rat fetal retina was transplanted into the ante-
rior chamber of a pregnant rat’s eye [11]. Several decades
later, dissociated retinal cells or cell aggregates were trans-
planted into the subretinal space of rats [12–17]. In the 80s,
Dr. Gouras demonstrated transplantation of cultured human
retinal pigment epithelial cells into the monkey retina. The
transplanted cells were identified on the Bruch’s membrane
by autoradiography [18]. Turner and Blair reported high sur-
vival (90–100%) and development of lamination for newborn
rat retinal aggregates grafted into a lesion site of an adult rat
retina [19]. Silverman and Hughes were the first one to iso-
late stripes of photoreceptor sheets from the postnatal and
adult retina [20], and this method was modified later on by
other researchers by transplanting photoreceptor sheets
[21], full thickness fetal [6, 7, 22–24] or adult retina [25].
These earlier transplantation studies helped to establish
“proof of concept” for future cell replacement therapies in
the eye. Although the initial transplantation studies did not
show any safety issues, ethical restrictions and absence of
suitable animal models for preclinical evaluations delayed
further progress of this approach [3]. In 2009, human embry-
onic stem cell- (hESC-) derived RPE cells were transplanted
into Royal College of Surgeon (RCS) rats in preclinical stud-
ies [26] that eventually lead to clinical trials. Although the
long-term outcomes of the preclinical investigations are not
yet concluded [27–31], recent advancement in the area of
induced pluripotent stem cell- (iPSC-) derived products pro-
vided a new source for transplantation. This method uses
mature cells that return to a pluripotent state similar to that
seen in embryonic stem cells [32–35]. Preclinical testing of
iPSC-derived RPE (iPSC-RPE) cells has been established
[36, 37], and human clinical trials based on iPSC-RPE have
been initiated [38]. These studies indicate survival of the
transplanted RPE with signs of visual functional improve-
ment and no signs of adverse events. However, one of the first
human clinical trials using autologous iPSC-RPE cells lead by
Masayo Takahashi was halted for a period of time after unex-
pected chromosomal abnormalities were found in the second
patient [39, 40]. In a different incident, severe vision loss was
observed in three AMD patients after intravitreal injection of
autologous adipose tissue-derived “stem cells” (https://blog.
cirm.ca.gov/2017/03/15/three-people-left-blind-by-florida-
clinics-unproven-stem-cell-therapy/comment-page-1/). The
above report raises some concerns regarding the existing
safety requirements and regulations of the use of unregu-
lated stem cell trials [41].

In this review, current progress in stem cell-based thera-
pies will be discussed based on safety assessments and func-
tional evaluations conducted in various animal models of
human retinal degenerative diseases.

2. Stem Cell Sources and Their Applications in
the Eye

Stem cell-based therapy for RPE replacement has been initi-
ated at various centers. Since Klimanskaya et al. developed

the original protocol for hESC-derived RPE-like cells [42],
various groups have used several strategies to derive RPE
cells from stem cells. In earlier studies, subretinal transplan-
tation of hESC-derived RPE (hESC-RPE) cells based on cell
suspension injection was shown to rescue degenerating pho-
toreceptors and improve vision in immunosuppressed RCS
rats [26, 43]. In a more recent technique, a pregenerated
RPE monolayer grown on a scaffold and transplanted in
immunosuppressed RCS rats showed improved survival of
hESC-RPE and better clinical outcomes [44, 45] suggesting
that RPE function is dependent on polarization of the trans-
planted RPE cells and the monolayer morphology [44–46].
iPSCs are considered to have several advantages over hESCs
including protection from immune rejection, wide variety
of potential sources, and reduced ethical concerns [47].
Transplantation of iPSC-RPE [37, 48] and iPSC-derived pho-
toreceptor precursor cells [49] has demonstrated success in
different animal models. The iPSC-RPE cells were shown to
have morphological and functional similarities to developing
and mature RPE cells in vitro and in vivo [37, 50–52].
Although it will be advantageous to use patient-derived
RPE (autologous transplants), the time requirements and
production cost make allograft transplantation a desirable
option [47].

Patients need to have a sufficient number of surviving,
functional photoreceptor cells; otherwise, replacement of
only RPE will not help to rescue vision. Therefore, stem cell-
derived photoreceptors [53–56] or retinal progenitor cells
(RPCs) have been used with or without RPE for transplanta-
tion experiments [3, 57–60]. Previously, several types of scaf-
folds made of materials having different architectures,
biocompatibility, size, and stiffness have been used to enhance
cell survival, migration from the scaffold pores, integration
into the host retina, and in vivo differentiation [61–63].

Studies have shown that the beneficial effect of RPC
transplantation is likely achieved by their differentiation into
functional retinal cells and subsequent replacement of lost or
dysfunctional elements [64, 65]. Other investigations sug-
gested that success of RPC transplantation is achieved
through trophic factor release rather than direct replacement
of the lost cells [59, 66–68]. A major challenge in incorporat-
ing photoreceptors and other neuronal cell types is the estab-
lishment of synaptic connections with the proximal neuronal
elements of the recipient retina [2, 69–71]. Using transsynap-
tic tracing techniques and donor cell label, synaptic connec-
tions between fetal retinal sheet transplants and the host
retina have been previously reported [72–74]. Replacement
therapies involving the whole retina are also in progress using
retinal organoids (3D retina) [70, 71, 75, 76]. Recently, hESCs
and iPSCs were differentiated into optic cups and storable
stratified neural retina [77, 78]. Such 3D retinal tissue derived
from iPSCs or hESCs when transplanted in rd1 mice [70, 71]
and immunosuppressed retinal degeneration (RD) monkeys
[75] developed a structured outer nuclear layer and showed
signs of synaptic formations [70, 71, 75]. The above mile-
stone studies highlight the new concepts of regenerative
medicine in retinal therapeutics emphasizing the possibility
of establishing functional connections between the transplant
and the host tissue.
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3. AnimalModels for Stem Cell-Based Therapies

Retinal degenerate rodent models have been extensively used
for biomedical research, but because of the key differences
between the rodent and human eye, rodent models do not
completely replicate the human disease conditions. Most
importantly, the rodents do not have a fovea, and in most
of the rodents, the photoreceptors are mainly rod cells.
Among rodent models, there are both naturally occurring
[79–83] and transgenic animal models [84–87]. Light dam-
age [88], laser-induced choroidal neovascularization [89],
and retinotoxic agents such as sodium iodoacetate [90] and
N-methyl-N-nitrosourea [91, 92] have been also used to
induce retinal degenerative conditions. Among this, sodium
iodate (SI) has been widely used to induce outer retinal
degeneration in otherwise normal animals [93–96].

Rabbits, cats, dogs, pigs, and nonhuman primates have an
eye diameter more or less similar to the human eye which
allows easy testing of surgical tools and procedures developed
for human patients. However, in these large animal models,
inducing a disease condition similar to human patients is
challenging mostly because the etiology of human diseases
is multifactorial, involving both genetic and environmental
contributions [1, 2]. The following section summarizes the
small and large animal models that are currently used in stem
cell-based research.

3.1. Mouse Models. The advantage of using mouse models is
their ability to express gene mutations mimicking those
identified in humans. However, dissimilarities in life span
and rate of disease progression between mice and humans
limit the interpretation of the disease conditions. A variety
of mutations in mice can cause loss of photoreceptors and
reduced rod function and hence were used as AMD
models [97–103]. In humans, mutations in the Abca4 gene
result in Stargardt’s disease, RP, cone-rod dystrophy, and
the accumulation of lipofuscin granules in RPE, a charac-
teristic of AMD [104, 105]. Therefore, Abca4 knockout
mice which also show lipofuscin accumulation in RPE
are considered a model for macular dystrophy conditions
[106–110]. Mutations of the RPE65 gene in humans cause
most frequently Leber congenital amaurosis, with a small
percentage of severe early childhood onset retinal dystrophy
[111]. Hence, Rpe65 knockout mice are a model for studying
RPE65-mediated retinal dystrophy [112, 113]. Transgenic
mice with a rhodopsin Pro23His (P23H) mutation that
causes photoreceptor degeneration are highly comparable
to human RP disease [99, 114, 115]. In humans, a gene
responsible for the autosomal dominant form of Stargardt’s
disease was identified recently [116, 117]. Transgenic mice
harboring this defective gene (Elovl4) are considered a good
model for macular degeneration diseases because of the accu-
mulation of high levels of lipofuscin in the RPE and subse-
quent photoreceptor degeneration in the central retina.
This disease pattern closely resembles human Stargardt’s dis-
ease and AMD [118]. Finally, there are naturally occurring
mutations in mice that are used as models of RP disease
inheritance [79–83]. Many of the mouse models discussed
here are tested for stem cell therapies using cell suspension

injections [89, 119]. In conclusion, the wide variety of gene
manipulated mouse models provides a valuable tool for stud-
ies on therapeutic intervention of various forms of human
RD. However, because of their small eye size, implantation
of laminated sheets is found to be difficult in mice [44, 120].

3.2. Rat Models. Rats’ eyes are twice the size of mouse eyes
[121] which makes it easier to perform surgical procedures
[121] and transplant both fetal retinal sheets [3, 9] and RPE
cells grown as a monolayer [44, 45]. The RCS rat is an animal
model widely used for investigating therapeutic applications
in the eye [122, 123]. The dystrophic RCS rats are character-
ized by RPE dysfunction due to the deletion in the Mer tyro-
sine kinase (Mertk) receptor that abolishes internalization of
shed photoreceptor outer segments by RPE cells [124]. Accu-
mulation of debris in the subretinal space can lead to drastic
photoreceptor degeneration and rapid loss of vision. In RCS
rats, the degeneration progresses slowly. At one month of
age, the retinal thickness remains close to the normal level
[125] and near complete photoreceptor layer thickness is
present [126]. Subretinal transplantation of RPE cells derived
from both iPSC [127] and hESC [44, 128–130] into 21 to 28-
day old RCS rats showed photoreceptor preservation and res-
cue of declining vision. Certain other rat models mimic the
pathology and progression of RD such as the OXYS rat which
spontaneously develops a phenotype similar to human aging
and AMD-like pathology [131, 132]. The transgenic P23H
rat (available in 3 lines with different degeneration rates),
similar to P23H mouse, is frequently used as a model of
studying RP diseases [85, 133]. S334ter rats carry a mutant
mouse rhodopsin which leads to photoreceptor degeneration
[134–136]. The five lines of this model have different charac-
teristic rates of RD, in which S334ter line-3 and S334ter line-
5 represent fast and intermediate slow degenerating models,
respectively [87]. Several studies have been performed in
the above rat models to assess the feasibility of retinal cell
replacement therapies [3, 73, 137–141].

The advantage of using slow degeneration models is that
they mimic the generally slow progression of human disease
conditions. With the inner retina relatively well preserved,
there is better opportunity for rescue or restoration of vision
following various treatment strategies [138, 142]. However,
challenges like immunological reactions and the presence of
residual host photoreceptors can make it difficult to detect
the transplant effects. To overcome the immunological
issues, recently immunodeficient rat models (more details
are provided in Section 4) are developed for testing cell-
based therapies [143, 144]. In summary, rodent models are
currently the leading in vivo tool for testing retinal cell ther-
apies due to their affordable cost and easy availability [145].

3.3. Rabbit Models. Rabbits have an eye size comparable to
humans and are considered a desirable model to examine
therapeutic effects. However, the rabbit retina differs from
that of human because it is rod-dominated and contains the
visual streak, a horizontal band lying inferior to the optic
nerve absent in humans [146, 147]. The densities of rods
and cones in the visual streak are higher than elsewhere in
the entire retina [146, 147]. Despite this difference, full-field
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electroretinography (ERG) developed for the human eye can
be used in the rabbit with reproducible results [148]. The
transgenic TgP347L rabbit closely tracks human cone-
sparing RP disease [86, 149]. Histopathological study in
TgP347L rabbits reported that the retinal degeneration devel-
oped earlier in the visual streak than in other areas [86] along
with some ERG abnormalities [150].

Previously, a dose-dependent correlation between the
intravitreal injection of sodium iodate (SI) and retinal degen-
eration (RD) has been reported in rabbits [151]. According to
the investigators, since injected SI may not be evenly distrib-
uted in the vitreous due to its uneven liquefaction character-
istics, uneven retinal degeneration is caused. Another
photoreceptor degeneration rabbit model produced by intra-
vitreal injection of N-methyl-N-nitrosourea showed selective
but inconsistent photoreceptor degeneration [152]. Subretin-
ally injected hESC-RPE in immunosuppressed SI-induced
RD rabbits failed to integrate into the areas that showed geo-
graphic atrophy-like symptoms [153]. This shortcoming was
probably due to the unique features of the rabbit eye with a
higher degree of immune rejection [153]. In summary, rab-
bits serve as a useful midsized animal model to study human
diseases and therapeutics because they have large eyes com-
pared to rodents.

3.4. Cat Models. Abyssinian cats with inherited rod-cone
degeneration (rdAc model) are used as a model for studying
retinal therapeutics [154, 155]. The genetic defect causative
of retinal degeneration in Abyssinian cats has been identified
as a single base pair change in intron 50 of the centrosomal
protein 290 (CEP290) gene (IVS50+ 9T>G). This results in
abnormalities in the transport and distribution of photo-
transduction and/or structural proteins through the connect-
ing cilia resulting in photoreceptor degeneration [156]. A
high prevalence of affected and carrier cats (45% and 44%,
resp.) in the population was first observed in Sweden in
1983 [155]. The cause is speculated to be inbreeding [157].
In addition to have tapetum lucidum (discussed in the next
section) which is different from the human eye, a major
shortcoming of this model is that it does not entirely resem-
ble the human RP diseases where the peripheral retina is
strongly abnormal compared to the central area that remain
relatively less damaged. No such distinction is observed in
Abyssinian cats. In this model, the degeneration is evenly dis-
tributed during the early stages where normal and diseased
photoreceptors are often found side-by-side [158]. In addi-
tion, this cat model manifests a very slow progression of
degeneration, taking from 12 months up to four years [154,
155, 157]. Cat breeds with faster RD disease conditions are
now available [159, 160]. An early onset autosomal recessive
RD disease in Persian cats was virtually completed at 16
weeks of age [160]. Another cat model, the CrxRdy cats,
develops retinal thinning that initially takes place in the
central retina [159]. An acute, reliable, and complete pho-
toreceptor degeneration model in cats can be achieved by
ear vein injection of high-dose iodoacetic acid [161]. Reti-
nal sheet transplantation studies conducted in Abyssinian
cats showed good signs of transplant integration with the
host retina and lamination of transplant photoreceptors.

However, no considerable functional improvement was
noticed [162].

3.5. Dog Models. A major difference in dog eyes from that of
humans is the tapetum lucidum, which is a multilayered
reflective tissue of the choroid. The tapetum lucidum is inter-
posed between the branching vessels in the choroid and the
single layer of the choriocapillaris beneath the retina. The
RPE cells over the tapetum lucidum are normally unpigmen-
ted. The tapetum lucidum acts to amplify and reflect light
back through the photoreceptor layer again in dim light
conditions [163]. Tapetum degeneration called toxic tapeto-
pathy has been described in association with the administra-
tion of several drugs in beagle dogs [164–168]. Toxic
tapetopathy is the characteristic of an altered tapetal color
with degeneration or necrosis of the tapetum lucidum [164,
168]. Tapetum degeneration is not observed in the eyes of
animals without a tapetum lucidum (rodents, monkeys)
[164, 168] and most importantly not in humans [168].

A naturally occurring canine model of autosomal dom-
inant RP caused by a RHO mutation was found to
strongly resemble the human RP phenotype [169]. High
similarity in eye size and preretinal light transmission
characteristics between dogs and humans made this model
suitable for examining the genetic and environmental causes
of RD diseases. Previous studies demonstrated acute retinal
injury in RHO mutation dogs after exposure to strong light
[170, 171]. By varying the dose of light exposure, its long-
term consequences including fast or slow disease progression
and injury repair have been examined [170]. Although there
have been no reports of stem cell-based studies conducted in
these animals, this dog model can be considered a suitable
candidate for future preclinical studies.

3.6. Pig Models. Several transgenic pig models have been
developed for RP diseases, including the Pro347Leu trans-
genic pig with a rhodopsin mutation [84, 172, 173], the
P347S transgenic pig [174, 175], and the P23H transgenic
pig, which is considered a model for autosomal dominant
RP [176]. Disease progression in most of the above models
is slow, making it difficult to assess therapeutic benefits.

Several reports of cell transplantation experiments con-
ducted in pigs are available. Rhodopsin transgenic pigs
have been used for transplantation of full-thickness retina
[177] and retinal progenitor cell (RPC) transplantation
effects [178]. A feasibility and safety study of subretinal
implantation of an hESC-RPE monolayer has been reported
in immunosuppressed Yucatán minipigs [179]. This study
demonstrated preservation of the outer nuclear layer and
photoreceptor outer segment overlying the implant. In non-
immunosuppressed pigs, adaptive immune responses were
activated following allogenic iPSC-RPE transplantation
[180]. The above finding suggests that immunologically
matched and autologous donor cells should be considered
for RPE cell replacement therapies to obviate chronic
immune suppression [180].

A major advantage of using pig models is that surgical
tools can be developed without much adaptation from the
human parameters [1]. Previous RPE cell replacement
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therapy studies conducted in pigs were focused on testing
surgical feasibility of the approach rather than testing
functional improvements [1, 181]. This can be also due
to the absence of a suitable pig RPE dysfunction model.
Although an RPE debridement model can be developed in
pigs [182, 183], it is not preferred for testing RPE cell replace-
ment therapies presumably due to both the difficulty in creat-
ing a consistent disease pattern and the severity of the trauma
that could adversely affect the study outcome.

3.7. Nonhuman Primate Models. The macula is a structure of
the eye unique to humans, apes, and monkeys that plays a
role as the zone of greatest visual acuity. Therefore, nonhu-
man primates are a potentially valuable animal model for
investigating macular diseases of humans [163]. AMD-like
appearance could be found in rhesus monkey (Macaca
mulatta), cynomolgus macaque (Macaca fascicularis), and
the Japanese macaque (Macaca fuscata). This suggests that
the pathogenic mechanisms and associated gene variations
are common between human and nonhuman primates
[184–190]. Induced RD monkey models have been reported
based on systemic injection of iodoacetic acid [191] and
cobalt chloride [75], fiber optic light-induced retinal damage
[192, 193], and focal damage by severe light exposure [193].
However, these models hold one or more adverse features
including ethical issues and inability to produce adequately
sized lesions [75]. Housing, maintenance, costs, and ethical
concerns due to a close evolutionary relationship to humans
further make the nonhuman primate models less appealing
for stem cell researchers [194, 195].

Immune rejection of allogeneic iPSC-RPE transplants
was studied in cynomolgus monkeys (Macaca fascicularis)
[196]. In a recent investigation, researchers used a cobalt
chloride-induced retinal degeneration RP monkey model to
demonstrate possible integration of hESC-derived retinal
sheets with the host bipolar cells [75]. The above finding
demonstrated clinical feasibility of retina sheet transplanta-
tion approach and suggests the need for developing new
strategies for future clinical applications [75].

4. Tools and Approaches for In Vivo Assessment
of the Transplants and Their Functionality

The eyes are one of the few paired organs in the body
where it is possible that one eye is treated while the con-
tralateral eye will serve as control. The transparent nature
of the eye makes the evaluations possible through noninva-
sive imaging modalities.

4.1. In Vivo Imaging of Retinal Transplants and Assessment of
Disease Status. Fundus imaging and fluorescein angiography
are used to record baseline and follow-up examinations after
stem cell therapies. Optical coherence tomography (OCT) is
a noncontact, noninvasive imaging technique widely used in
the clinic. The advancement of OCT technology provided
rapid assessment of transplant morphology and placement
location in the eye [9, 52, 197, 198]. The use of OCT
imaging to assess changes in the retinal thickness post-
transplantation has been established [9, 197–201]. The
above studies conducted in rat models suggested that OCT
is a reliable tool for in vivo screening and evaluation of retinal
transplants. In our rat experiments, we observed that OCT
was helpful using a novel OCT-based screening technique
developed by our team. Using OCT software (Heidelberg
Spectralis’s macular thickness feature), distance between the
internal limiting membrane (ILM) and top of the implant
was measured (Figure 1). The maximum and minimum
values are recorded to determine the delta value. The delta
value is obtained by subtracting the “maximum value
−minimum value.” Based on the delta value, it is possible
to predict whether the implant is placed flat or tilted relative
to the retinal surface.

Recently, Seiler et al. [9] used a Bioptigen Envisu R2200
Spectral Domain Ophthalmic Imaging System (Bioptigen,
Research Triangle Park, NC, USA) to obtain SD-OCT images
of the rat retina that showed similarity between OCT and
histology in the lamination pattern and thickness of the
transplants (Figure 2). Other techniques like scanning laser
ophthalmoscopy (SLO) can generate images from retinal

200 �휇m

(a)

200 �휇m

(b)

Figure 1: OCT imaging to assess surgical placement of hESC-RPE implantation in rats. (a) Fundus image showing hESC-RPE implants
placed inside the rat eye (arrowhead). (b) Optical coherence tomography software was used to measure the distance between the internal
limiting membrane (ILM, arrowhead) and the top of the implant (arrow). The maximum and minimum values were recorded. The delta
value obtained by subtracting “maximum value−minimum value” can be used to determine if the implant is placed flat or tilted relatively
to the retinal surface.
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reflectance, autofluorescence, and extrinsic fluorescence.
With the confocal arrangement, the SLO is capable of reject-
ing scattered light, thereby improving image contrast and
achieving moderate depth sectioning [202]. Confocal near-
infrared SLO imaging was used for in vivo detection of sub-
retinally placed hESC-RPE implants in rats [203]. Although
the lateral resolution achieved with SLO systems is compara-
ble to that obtained with OCT, the depth resolution was rel-
atively poor. But the advantage of SLO is the ability to detect

the presence of pigments on the hESC-RPE in vivo [203].
Hence, the survival and potential functionality of an RPE
graft can be established. Moreover, SLO is useful when the
OCT images are difficult to interpret due to the loss of retinal
architecture, as in the case of advanced AMD.

4.2. Electrophysiological Assessments. Visually evoked poten-
tials (VEPs) have been used to determine whether the photo-
receptor sheet transplants to RD rats can activate the
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Figure 2: Correlation of live SD-OCT imaging with histology. Fetal retinas (embryonic day 19) derived from rats expressing human placental
alkaline phosphatase (hPAP) in the cytoplasm of all cells were transplanted to the subretinal space of immunodeficient retinal degenerate rho
S334ter-3 rats. Transplanted rats’ eyes were imaged in vivo by SD-OCT. Two transplant examples are shown. (a, b) Stretched cross-sectional
B-scans of laminated (a) and rosetted (b) transplant to better distinguish different retinal layers. Rosettes are indicated by yellow arrows (b)
and seen as hyperreflective orbs. (c, d) Transplant-specific histochemistry for hPAP using BCIP (purple). hPAP is expressed in the cytoplasm
(not the nuclei) of donor cells. Transplant number 5 (a, c, e) has a large area of lamination parallel retinal layers with photoreceptor outer
segments, indicated by yellow diamonds (c) and strong rhodopsin expression (e) in the donor outer retina. Transplant number 1 (b, d, f)
is more disorganized with photoreceptors in rosettes [rosette lumens indicated by yellow asterisks in (d)]. The rhodopsin-positive outer
segments face inward (f). This transplant (d) was partially placed upside down in the subretinal space. (a, b) Scale bars: vertical bar:
50μm; horizontal bar: 200μm; (c, d): 100 μm; (e, f) bars: 20μm. Modified after Figure 3 of Seiler et al. vision recovery and connectivity by
fetal retinal sheet transplantation in an immunodeficient retinal degenerate rat model, IOVS 2017;58:614–630. DOI:10.1167/iovs.15-19028;
licensed under the Creative Commons attribution license.
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central visual system [204]. VEPs were elicited by using
strobe flash stimuli, and responses were recorded contra-
lateral to the stimulated eye. The results showed that the
reconstructed retina can produce characteristic light-
evoked responses in the visual cortex [204]. Electrophysio-
logical analysis was used to demonstrate that cortical
visual function could be preserved by subretinal RPE cell
grafting in RCS rats [205]. This was also established using
optical imaging techniques [206]. Morphological assess-
ments confirmed good correlation between photoreceptor
survival and the extent of cortical functional preservation
[206]. However, the degree of visual acuity achieved by
transplants cannot be completely addressed using visually
evoked cortical responses.

Electroretinography (ERG) is employed to access the
diffuse electrical response of the retina. Response to flash
ERG has been used to evaluate the visual functional changes
in retinal degenerative animal models [43, 207, 208]. ERG
assessments have revealed improved photoreceptor function
in RCS rats after hESC-RPE injection [43]. A major limita-
tion in using full-field flash ERG is that it may fail to detect
signals from the comparatively small transplant area. This
is because the ERG response is the cumulative effect of signals
from the entire retina, whereas signal output from the
transplant area may not be sufficient to generate considerable
difference in the ERG wave form [9].

Focal electroretinography (fERG) is used to study a dis-
crete region of the retina and determine if there is signifi-
cantly more electrical activity in that area compared to the
surrounding retina. This technique has been successfully
employed in RCS rats to show photoreceptor rescue after
iPSC-RPE injection [209]. Although multifocal ERG
(mfERG) is also considered an equally efficient tool to ana-
lyze focal retinal changes, its application in stem cell research
is still not well established. Previously, the technique has been
proven to be useful in primate recordings [210] and effective
in rats to show focal retinal defects [211]. However, its appli-
cation in small animal studies is not very popular, presum-
ably due to the inconsistency in the recording pattern
which causes difficulties during data interpretation (unpub-
lished observations).

Transplant functionality may be reliably assessed by
means of electrophysiological mapping of the superior col-
liculus (SC). The SC receives direct retinal input which
corresponds to the areas of the retina that are being stim-
ulated by light [138, 212] and can provide point to point
estimates of the retinal function [2]. Our previous studies
have demonstrated improved SC responses in rodent
models of the RD following cell-based therapies [9, 43,
137, 138, 213]. The SC mapping data can demonstrate that
the quality of fetal retinal sheet transplants corresponds to
the quality of the SC response [9, 214]. The transplants
with more lamination shown in OCT images were later con-
firmed by SC electrophysiology as having better restoration
of visual responses compared to those transplants that were
rosetted [9] (Figure 3).

4.3. Visual Behavioral Testing.Optokinetic (OKN) testing is a
noninvasive visual behavioral testing method widely used for

the assessment of spatial visual acuity in rodents [3, 67, 68,
215]. The OKN response is a compensatory eye movement
that reduces movement of images across the retina. Factors
which affect the OKN responses are the population and dis-
tribution of surviving photoreceptors, the inner retina plas-
ticity status, and the morphological status of subcortical
visual areas of the brain like the SC [2]. The outcome of stem
cell-based therapies can be assessed based on OKN responses
by varying the stimulus parameters, such as grating spatial
frequency and contrast sensitivity [26, 67, 68, 216]. A major
advantage of the OKN testing is the ability to assess visual
function without prior training of the animals. It can also
enable testing of the left and right eyes independently by
using a special apparatus [217] or by changing the direction
of the rotation of the stimuli [218]. Previous studies demon-
strated that eyes that received stem cell therapies elicit higher
levels of optokinetic response compared to the control
groups [43, 213, 217, 219, 220]. However, as in the case of
full-field ERG, the OKN responses may be inadequate for
detecting visual function from a small area showing trans-
plant function [144]. Since the animal could see only a
spot-like light from a small area in the visual field, it may fail
to evoke head-tracking responses [71]. Another drawback of
the OKN testing is its inability to measure higher visual pro-
cessing since these responses are elicited mostly by subcorti-
cal centers. According to McGill et al. [219], since OKN
responses in RD animals show conflicting results, it should
be used with caution because of the subjective nature of the
tests. Other techniques developed for visual behavioral test-
ing include water maze [221, 222] and visual discrimination
apparatus [223]. Although the above techniques require
extensive training for the animals, they provide the opportu-
nity to test wide variety of visual stimuli that require higher
visual processing. However, these tests remain unpopular
due to the training requirements, time constraints, and gen-
eral concerns regarding the accuracy of two-choice tests.

5. Safety Studies for Stem Cell
Transplantation Approaches

Based on some of the recent reports, the occurrence of
adverse events following ocular cell replacement therapies
cannot be ruled out. The first study that used autologous
iPSC-RPE cells for therapy of AMD in Japan was halted after
unexpected mutations were noticed in the iPSCs derived
from the second patient. To overcome this issue, cord blood
and samples from cord blood banks were targeted as a main
source of the cells for reprogramming and a human leukocyte
antigen (HLA) homozygous iPSC bank was also established
[39]. The major purpose of developing this iPSC bank is to
solve the issue of high cost and time consumption in process-
ing autogenic iPSC-RPE cells [224]. There are some reports
of human clinical trials based on RPE allografts that failed
to survive because of immune rejection [225–227]. The
degree of allografts that undergo rejection depends partly
on the degree of similarity or histocompatibility between
the donor and the recipient. HLA matching has great clinical
impact in kidney and bone marrow transplantation but is
less of a consideration in heart and lung transplantation
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Figure 3: SC recordings from RD nude rats with retinal sheet transplants. (a) Spike count totals (heat maps) over the entirety of the region
recorded in SC for all transplanted rats. L: laminated transplant; R: rosetted transplant; D: disorganized transplant. Responses were observed
only in certain areas in the SC and were centered on a peak. Sample traces from areas (marked with X) with robust, intermediate, and no
response for (b) transplant number 5 with strong responses and (c) transplant number 1 with weak responses. Arrows and black bars
indicate the light stimulus. Taken from Figure 7 of Seiler et al., vision recovery and connectivity by fetal retinal sheet transplantation in an
immunodeficient retinal degenerate rat model; IOVS 2017;58:614–630. DOI:10.1167/iovs.15-19028; licensed under the Creative Commons
attribution license.
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[228, 229]. Matching for HLA-B plus HLA-DR resulted in a
significant correlation with graft outcome in kidney trans-
plant patients. Grafts with no HLA-B,-DR incompatibilities

had approximately 20% higher success rates at one year than
grafts with 4 mismatches [230]. Sugita et al. tested all six HLA
genotypes (A, B, C, DRB1, DQB1, and DPB1) and reported

(a) (b)

Figure 4: Positive control experiments (injection of undifferentiated cells) conducted in athymic nude rats to show development of tumors in
the eye. (a) Teratoma formation at about 6 weeks after injection (2 μl) of undifferentiated hESCE suspension (60,000cells/μl) shown on H&E
staining (2x) (arrowhead: lens, arrow: tumor formation originated from the subretinal space, broken arrow: the margin of the tumor). (b) 10x
magnification of the black square from (a). The teratoma is composed of various cell types, including cartilage cells (arrowhead).
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Figure 5: Genotyping assays of immunodeficient S334ter-3 rats. (a) S334ter transgene genotyping assay. Lane 1 15 bp–3 kb size marker. Lane
2 transgene-negative sample. Lane 3 transgene-positive sample. Sizes in base pairs (bp) are indicated to the left of the image. An amplicon of
350 bp indicates the presence of the transgene. The 15- and 3000-bp alignment markers are present in all lanes. (b) Allelic discrimination
assay plot for detection of the Foxn1rnu mutation. The fluorescence levels of VIC (wild type, allele X) and FAM (mutant, allele Y) are
plotted on the x-axis and y-axis, respectively. The genotypes of each sample are represented by blue diamonds (homozygous Foxn1rnu),
red circles (homozygous for the wild-type Foxn1 allele), or green triangles (heterozygous +/Foxn1rnu). The no template negative control
is represented by the gray box. Reprinted from Graefes Arch Clin Exp Ophthalmol, vol. 252, Seiler et al., a new immunodeficient
pigmented retinal degenerate rat strain to study transplantation of human cells without immunosuppression, pages 1079–1092, copyright
(2014), with permission from Elsevier. DOI 10.1007/s00417-014-2638-y.
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that the effector T cells can recognize MHC molecules on the
allogeneic iPSC-RPE cells, but the immune reaction caused
by the T cells can be prevented after HLA blood tests [224].
Therefore, the future clinical trials can make use of alloge-
neic RPE cells derived from iPSC lines procured from the
HLA-homozygous iPSC bank [39, 224]. Nevertheless, further
detailed analysis is needed using larger sample size and long-
term follow-up [224].

In a recent report, three AMD patients in Florida suffered
severe vision loss after receiving injection of autologous
adipose tissue-derived stem cells. In this study, adipose-
derived stem cells were injected into the eye based on mini-
mal clinical evidence of safety or efficacy. The injection
caused ocular hypertension, hemorrhagic retinopathy, vitre-
ous hemorrhage, combined traction and rhegmatogenous
retinal detachment, and lens dislocation [41].

The major concern of optimum safety and purity of the
cells is that the products should be free of undifferentiated

cells and should demonstrate the genetic and functional sig-
nature of the desired stem cell-derived tissue. Undifferenti-
ated pluripotent stem cells have the capacity to differentiate
into all cell types of the three germ layers and may cause
tumor formation. Therefore, extensive testing for the absence
of tumor formation and cell migration before implantation
is crucial [2]. Differentiation into nondesired cell types is a
potential threat to the success of stem cell-derived cell
therapies. Confirming the purity of stem cell derivations
before transplantation is mandatory [231]. In one study,
subcutaneous transplantation of iPSCs into immunosup-
pressed mice resulted in tumor formation, demonstrating
the pluripotency of the injected iPSCs and its capability to
evade immune detection [232]. The ability of tumor forma-
tion is often assessed using tumorigenicity studies in animal
models. According to Nazari et al. [2], assessing tumorigenic-
ity potential in immunocompetent animal models can be
misleading since the absence of tumor formation might be

RCS-p+/ RCS-p+

Retinal degeneration,
normal immunity, hairy

Foxn1rnu/ Foxn1rnu

Normal eyes, 
immunodeficient,
hairless

Founder breeders

+/ RCS-p+ and +/ Foxn1rnu

Normal eyes, normal
immunity, hairy

+/ RCS-p+ and +/ Foxn1rnu

Normal eyes, normal
immunity, hairy

First generation

RCS-p+/ RCS-p+

and +/ Foxn1rnu

Retinal degeneration,
normal immunity, hairy

RCS-p+/ RCS-p+

and Foxn1rnu/ Foxn1rnu

Retinal degeneration,
immunodeficient, hairless

Second generation

RCS-p+/ RCS-p+

and Foxn1rnu/ Foxn1rnu

Retinal degeneration,
immunodeficient, hairless

Third generation
(Target animal model)

Figure 6: Breeding of immunodeficient RCS rats. Initial mating was performed between male athymic nude rats (Hsd:RH-Foxn1mu) and
female dystrophic RCS rats (Mat LaVail, UCSF) to generate F1 pups. The F1 rats were further crossed to generate F2 litters. Pups that are
double homozygous (homozygous for RPE dysfunction gene and immunodeficiency gene) were identified based on phenotypic and
genotypic expressions.
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related to the ability of the host to reject tumorigenic cells
before tumors form. However, this can be overcome by using
positive controls (injection of undifferentiated cells) that are
expected to develop tumors in the target area (Figure 4).

Although the eye is to a large extent regarded as an
immune privileged organ, there is strong evidence for
immune response to xenografts [199, 233–235]. When dis-
ease models are used for assessing functional efficacy,
immunosuppressant drugs are administered to avoid immu-
nological rejection. Most of the preclinical studies involving
human-derived cells used animal models that are exposed
to severe immunosuppression regimes [26, 196]. Adminis-
tration of immunosuppressants in rodents is labor intensive
andmay cause additional pain and discomfort to the animals.
A recent study demonstrated more adverse effects of immu-
nosuppression in animal models. Cyclosporine A plus
dexamethasone-administered RCS rats showed depressed
scores on visual behavioral and electrophysiological testing
[236]. To overcome the above issues, we have developed
new immunodeficient rat models. This was accomplished
by crossing between nondystrophic immunodeficient ani-
mals (NIH nude rats) and RD disease models. The double
homozygous pups (immunodeficient RD) can be determined
by genotyping [143, 144]. Based on this, an immunodeficient
S334ter-line-3 rat colony has been established which elimi-
nated the need for immunosuppression when transplanting
xenografts [143] (Figure 5). More recently, a new immuno-
deficient RCS rat model has been also created [144] and is
currently being tested for various stem cell-based products
(Figure 6). By employing these models, it is possible to justify
ethical concerns by reducing animal use and the overall study
cost can be considerably lowered.

6. Conclusion

Stem cell-based therapies provide a new treatment option for
retinal degenerative diseases that were previously considered
incurable. Preclinical experiments conducted in animal dis-
ease models demonstrated functional efficacy and safety of
ocular cell replacement therapies. Studies conducted in large
animal models helped to establish the surgical techniques
required for clinical trials. The above animal studies have
paved the way for several clinical trials based on cell-based
therapies currently in progress.
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