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ABSTRACT
The forest ecosystem is the main component of terrestrial ecosystems. The global
climate and the functions and processes of soil microbes in the ecosystem are all influ-
enced by litter decomposition. The effects of litter decomposition on the abundance of
soil microorganisms remain unknown. Here, we analyzed soil bacterial communities
during the litter decomposition process in an incubation experiment under treatment
with different litter quantities based on annual litterfall data (normal quantity, 200
g/(m2/yr); double quantity, 400 g/(m2/yr) and control, no litter). The results showed
that litter quantity had significant effects on soil carbon fractions, nitrogen fractions,
and bacterial community compositions, but significant differences were not found in
the soil bacterial diversity. The normal litter quantity enhanced the relative abundance
of Actinobacteria and Firmicutes and reduced the relative abundance of Bacteroidetes,
Plantctomycets and Nitrospiare. The Beta-, Gamma-, and Deltaproteobacteria were
significantly less abundant in the normal quantity litter addition treatment, and were
subsequently more abundant in the double quantity litter addition treatment. The
bacterial communities transitioned from Proteobacteria-dominant (Beta-, Gamma-,
and Delta) to Actinobacteria-dominant during the decomposition of the normal
quantity of litter. A cluster analysis showed that the double litter treatment and the
control had similar bacterial community compositions. These results suggested that
the double quantity litter limited the shift of the soil bacterial community. Our results
indicate that litter decomposition alters bacterial dynamics under the accumulation of
litter during the vegetation restoration process, which provides important significant
guidelines for the management of forest ecosystems.

Subjects Microbiology, Soil Science
Keywords Carbon fractions, Nitrogen fractions, Litter decomposition, Soil bacteria

INTRODUCTION
Plant litter is the main source of soil carbon and nitrogen, and influences the function
and development of terrestrial ecosystems (Sauvadet et al., 2016). The interaction between
the soil and plant litter microorganism has attracted much attention (Urbanová, Šnajdr
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& Baldrian, 2015). Microorganisms provide the link between the soil and plant and
plays an important role in the soil biogeochemical recycle, including the recycling of
carbon (C), nitrogen (N), phosphorus (P) and other mineral elements (Keiluweit et al.,
2015). Plants are the major sources of soil nutrients and affect soil properties via litter
decomposition, root exudates and microorganism invasion from litter (Wardle et al.,
2004). Litter decomposition is a key process for element recycling and had been studied
by many researchers in different areas (Aerts, 1997; Fanin, Hättenschwiler & Fromin,
2014; Freschet et al., 2013; Gundel et al., 2016; Kuramae et al., 2013; Sauvadet et al., 2016;
Van Huysen, Perakis & Harmon, 2016). Previous studies have shown litter quality and
quantity are the main factors that drive the litter decomposition process (Keiluweit et
al., 2015). Litter quality includes the C, N, P, Mn, Fe, Ca, Al, cellulose, hemi-cellulose
and lignin content in the litter (Aerts, 1997; Berg & Mcclaugherty, 2014; Keiluweit et al.,
2015). Litter represents a major pathway for C cycling between the vegetation and the
soil in terrestrial ecosystems, and changes in the aboveground litter quantity and quality
could have important consequences for C cycling. Some researchers have reported that
litter quantity increased litter decomposition, litter carbon (C) loss and soil respiration,
but did not alter soil organic carbon content after 2.5 years in the forest system (Fang
et al., 2015). Generally, the total C and N contents of soil is not sensitive to the litter
decomposition process, but soil organisms have proved to be a sensitive indicator of the
response of vegetation restoration (An et al., 2013; Huang et al., 2011). The quality of litter
inputs determines on both the genetic structure of the soil microbial communities and
their substrate use patterns, which may have effects on soil microbial structure (Lamarche
et al., 2007; Zhang et al., 2013). Thus, much more attention should be paid to the response
of sensitive soil indicators to litter decomposition with the increase of the litter layer.

With the on-going Grain for Green project in China that began in 1999, plant coverage,
plant biomass and the litter layer have gradually increased on the Loess Plateau (Deng,
Liu & Shangguan, 2014). Enhanced soil quality and soil carbon storage have been reported
by many researchers (An et al., 2013; Cheng et al., 2015; Deng, Shangguan & Sweeney,
2013). With the process of vegetation restoration, plant litters gradually accumulate,
which may influence the function of soil microorganisms. Litter quantity is a key factor
that can influence the function and composition of soil organisms. Higher plant litter
quantities usually favor the growth of opportunistic bacterial taxa for the greater labile
C compounds from litter (Nemergut et al., 2010). Thus, the accumulation of plant litter
should theoretically enhance the biomass of soil microbes, in particular, organisms better
that are suited to address the greater availability of C compounds via exploitative resource
strategies (Nemergut et al., 2010). However, the relative effects of litter quantity on the soil
bacterial structure have rarely been assessed, and to our knowledge, there are no studies
disentangling the effects of litter quantity on the soil bacteria during the decomposition
processes in forest soils.

With the objective of disentangling the effects of litter quantity on soil bacterial structure
and function, we analyzed the soil community structure and diversity in an incubation
experiment with different litter quantities, including normal and double levels based on
the data from annual litter fall. Illumina Hiseq sequencing was used to determine the
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response of the soil bacterial community to different amounts of litter decomposition.
We hypothesized that: (1) litter decomposition may enhance the soil bacterial diversity
and community composition, especially for the oligotrophic bacteria, and (2) this trend
will increase with the increase of litter quantity as more nutrients are available from litter
decomposition. Our results provide insights to better understand the process of litter
decomposition and to manage forest land with accumulated plant litter.

MATERIALS AND METHODS
Site description
Soil and litter samples were collected from the Fuxian Observatory for Soil Erosion and
Eco-environment, a secondary forest region. Quercus wutaishanica was the predominant
community, playing an important role in maintaining the stability of the system in this area
(Fan, Wang & Guo, 2006;Guo et al., 2010). Therefore, understanding the effects ofQuercus
wutaishanica leaf litter decomposition provides insights into the carbon and nitrogen
recycling in the soil-plant system. We established three plots in Quercus wutaishanica
forests with similar topographical conditions to investigate the annual litter fall using the
method described by Ukonmaanaho & Starr (2001). Over two years of observations, the
annual litter fall of Quercus wutaishanica was approximately 200 g/m2/yr.

Soil and litter sampling
Soil samples from 0–20 cm were obtained in September 2015 when most of the leaves had
fallen. All roots, stones, small animals and other debris were removed from the soil samples
by hand, and the samples were sieved through a 2 mm screen. The mixed soils were used
to conduct the litter decomposition experiment in the laboratory. The soil organic carbon
and total nitrogen contents were 18.26 g/kg and 1.60 g/kg, respectively. Fresh litter was
collected with a litter collector. To avoid damaging the litter structure, the leaves were
air-dried for more than two weeks at room temperature to a consistent weight.

Litter decomposition experiment
Litter decomposition experiment was conducted using the nylon mesh bag technique.
There were three treatments, including normal quantity (200 g/(m2/yr)) litter, double
quantity (400 g/(m2/yr)) litter, and control (no litter) (Fig. 1). The litter bags (10 cm × 20
cm size) were constructed out of 1 mm nylon mesh. First, we placed 200 g fresh soils in a 1
L plastic basin and then placed a litter bag (5 g, normal quantity; 10 g, double quantity) on
the surface. Each treatment had three replicates. We also conducted a control experiment
without litter bags. All basins were incubated at 25 ◦C in an incubator. The soil water
content was adjusted using the weighting method every week at a relative humidity of
20%. After 90 days, we collected the soil sample layer below the litter bags to analyze the
soil properties and bacterial communities. After harvest, each soil sample was mixed and
separated into two parts. One part was air-dried for the evaluation of the soil properties.
The other part was frozen at −80 ◦C (using liquid nitrogen) for subsequent sequencing
analysis.
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Figure 1 The setup of the litter decomposition experiment under different litter quantities.

Analysis of the soil properties
The soil moisture was determined gravimetrically with fresh soils at 105 ◦C for 24 h, and the
water content was expressed as a percentage of the dry weight. The fumigation-extraction
method was used to determine microbial biomass carbon (MBC) and microbial nitrogen
(MBN) (Vance, Brookes & Jenkinson, 1987). The dissolved carbon (DOC) and dissolved
nitrogen (DON) in the soil were determined by extracting the samples in 0.5 mol/L
K2SO4. The soil total N (STN), soil organic carbon (SOC), soil nitrate nitrogen (NO−3 -N)
and soil ammonia nitrogen (NH+4 -N) were analyzed using the method described by
Zeng et al. (2016).

Soil NDA extraction and PCR amplification
The DNA of the soil was extracted from a 0.5 g soil sample using the CTAB method. The
concentration and purity of the DNA were monitored using 1% agarose gels. According to
the concentration, the DNA samples were diluted to 1 ng/µL with sterile water to reduce
the effects of the PCR inhibitors. The V4 gene of the 16S rRNA was amplified using the
515F/806R primer sets (Bergmann et al., 2011; Zeng, An & Liu, 2017). All PCR reactions
were carried out with Phusion R© High-Fidelity PCR Master Mix (New England Biolabs,
Ipswich, MA, USA). The same volume of 1 × loading buffer (contained SYB green) was
mixed with the PCR products, and electrophoresis was conducted on 2% agarose gels for
detection. The samples with a bright strip between 400–450 bp were chosen for further
experiments. The PCR products weremixed at equal density ratios. Then, the PCRmixtures
were purified using a Qiagen Gel Extraction Kit (Qiagen, Hilden, North Rhine-Westphalia,
Germany).
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Illumina Miseq sequencing
Sequencing libraries were generated using a TruSeq R© DNA PCR-Free Sample Preparation
Kit (Illumina, Hayward, CA, USA) following the manufacturer’s recommendations and
index codes were added. The library quality was assessed on the Qubit@ 2.0 Fluorometer
(Thermo Scientific, Waltham, MA, USA) and Agilent Bioanalyzer 2100 system. Finally, the
library was sequenced on an Illumina HiSeq 2,500 platform and 250 bp paired-end reads
were generated. The 16S rRNA gene amplicon sequencing was conducted at Novogene
Bioinformatics Technology Co., Ltd., Beijing, China. The raw sequence data in FASTQ
format are accessible from the NCBI SRA with the number of SRP107086.

Statistical and bioinformatics analysis
QIIME software was used to analyze the sequences data (Caporaso et al., 2010). The
sequencing data yielded 569,171 raw reads, with 71,146 raw reads per sample. After
removing the low quality reads and trimming the barcodes and primers, there were
545,740 valid reads (average length 253 bp). Clustering sequences at 97% similarity
levels were assigned to the same OTUs (Stackebrandt & Goebel, 1994). After the removal of
chimeric sequences, a total of 4,833 different OTUs were recorded. Taxonomy was assigned
to each OTU via the Ribosomal Database Project (RDP) classifier (Cole et al., 2009). The
representative sequence for each OTUwas screened for further annotation. The abundance
of OTUs information was normalized using a standard sequence number corresponding
to the sample with the fewest sequences. The alpha diversity was applied to analyze the
complexity of the species diversity of each sample, including the observed-species index and
the Shannon index. All indices in our samples were calculated with QIIME (Version1.7.0)
and displayed with R software (Version 2.15.3).

The similarities between treatments were measured using a principal coordinate analysis
(PCoA) plot. The PCoA was analyzed using the WGCNA, stat and ggplot2 packages in R
software (Version 2.15.3). One-way ANOSIM and SIMPER analysis were used to compare
the differences in the bacterial composition among the different treatments using the
Bray-Curtis method (PRIMER software v 7) (Zeng, An & Liu, 2017). A higher R value in
ANOSIM indicated a higher separation between the treatments. The linear discriminant
analysis effect size (LEfSe) method was used to determine the difference between the
normal and the double litter amount treatments (Segata et al., 2011). One-way ANOVA
was performed to explore the differences between the soil properties and the soil bacterial
compositions under the different treatments (SPSS version 20.0 for Windows), and the
Student-Newman-Keuls (SKN) method was used for the comparison (P = 0.05). The
relationships between soil bacterial composition and the environmental factors were tested
using Pearson correlation analyses using SPSS 20.0 for Windows.

RESULTS
Soil chemical properties and the response of microbial biomass to
litter decomposition
The soil nitrogen fractions, carbon fractions and soil moisture were significantly altered by
the addition of litter (Fig. 2). The soil moisture showed a significant decline in the normal
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Figure 2 Soil carbon and nitrogen fractions in the different treatments.Different lowercase letters indi-
cate significant differences at the 0.05 level. All data are expressed as means± SD.
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Table 1 Soil bacterial alpha diversity indices under different the litter quantity treatment.

Treatment Observed_species Shannon

Normal 3,035± 42 9.57± 0.11
Double 2,962± 109 9.59± 0.04
Control 2,932± 62 9.53± 0.10

Notes.
All indices were not significantly different between the different treatments. All data are expressed as means± SD.

treatment and an increase in double treatment. No significant differences were observed
among the treatments for soil NH+4 -N, which ranged from 5.39 to 5.73 mg/kg. The MBN
content was significantly higher in the normal treatment and ranged from 43.50 to 124.14
mg/kg, and was in the order of normal>double >control. The DON showed the opposite
trend to the MBN, with the highest value measured in the control treatment. The soil
nitrate nitrogen ranged from 21.98 to 27.90 mg/kg, and there was no significant difference
between the normal and the control treatments. The control treatment had the highest
MBC and the lowest DOC, and was significantly different from the double treatment. With
the increase of litter quantity, the soil nitrate nitrogen, soil moisture, MBC, DOC and
DON showed significant reductions in the normal treatment, and a significant increase
was observed in the MBN.

Response of the soil bacterial community activity to litter
decomposition
The bacterial diversity indices showed no significant changes between the different
treatments (Table 1), but the soil bacterial community compositions demonstrated
significant structuring in response to litter addition. The most dominant groups across
all soil samples were Proteobacteria (38–42%), Actinobacteria (11–21%), Acidobacteria
(18–20%), Gemmatimonadetes (5%), Bacteroidetes (4–6%), Chloroflexi (3%), Firmicutes
(1–2%), Verrucomicrobia (2–4%), Planctomycetes (3–4%) and Nitrospirae (2%) (Fig. 3).
The relative abundance of Actinobacteria, Bacteroidetes, Planctomycetes, Firmicutes and
Nitrospirae in the normal treatment was significantly higher than in the double and control
treatments (Fig. 3A).

To explore the dynamics of the major microbial taxa under different mounts of litter
treatment, we found that Alpha, Beta, Gamma, and Delta-proteobacteria were the main
members of Proteobacteria. Only Alpha-proteobacteria showed no significant differences
among the different treatments, and ranged from 15.50 to 17.82%. With the increase of
litter quantity, the relative abundance of Bet, Gamma, and Deltaproteobacteria showed
a decrease in the normal treatment, and an increase in the double treatment. The Beta,
Gamma, and Deltaproteobacteria occupied 5.75%, 6.00%, and 6.93%, respectively, in the
normal treatment, which significantly differed from the double and control treatment
(Fig. 3B). At the order level, Subgroup_6 and Subgroup_4 were the dominant taxa
in the Acidobacteria phylum, and showed no significant changes with the increase of
litter quantity. Rhizobiales was the dominant taxa of Alpha-proteobacteria, and ranged
from 7.01 to 8.75%, and showed similar variation to those of the Alpha-proteobacteria.
Solirubrobacterales, Xanthomonadales, Sphingobacteriales, Myxococcales and Gaiellales

Zeng et al. (2017), PeerJ, DOI 10.7717/peerj.3777 7/18

https://peerj.com
http://dx.doi.org/10.7717/peerj.3777


Figure 3 Soil bacterial communities under different litter quantities at the phylum level (A) and class
level (B).Different lowercase letters indicate significant differences between the different litter quantity
treatments (P < 0.05); ns indicates that there is no significant difference. All data are expressed as means
± SD. S0, control; S5, normal treatment; S10 double treatment.

had significant differences among the litter addition treatments (Fig. 4). These differences
were only detected between the normal treatment and the double or the control treatment.
The cluster analysis and PCoA also indicted these changes (Figs. 3 and 5). More specifically,
the bacterial community profiles in normal treatment trended to group together and were
separated from those in the double and control treatments. A t -test showed that the soil
bacterial taxa were significantly different between the normal and the double treatments,
including Proteobacteria (Xanthomonadales, Salinisphaerales, Legionellales, Chromatiales,
Syntrophobacterales, Sh765B-TzT-29, Myxococcales, SC-I-84, Sneathiellales, DB1-14 and
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Figure 4 The significantly different taxa between the normal treatment and the double treatment as
determined by a T -test. The taxa shown in the figure were significant at the 0.05 level. All data are ex-
pressed as means± SD.

Caulobacterales), Planctomycetes (WD2101_soil_group, Phycisphaerales, CCM11a), and
Actinobacteria (Micrococcales, Solirubrobacterales, Rubrobacterales andAcidimicrobiales)
(Fig. 5).

The ANOSIM based on the OTUs of the 16S rRNA gene sequences indicated that the
differences were significant between the different litter addition treatments (ANOSIM
Global R= 0.761, P = 0.01). SIMPER analysis revealed that bacterial communities were
76–81% similar between the normal, double and control treatments. The LEfSe analyses
identified the significant difference in the abundant taxa between the different litter
quantity treatments. Using the LEfSe, we found that Bacteroidetes, Myxococcales and
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Figure 5 Principal coordinates analysis (PCoA) of the soil bacterial community composition based on
Bray–Curtis distances. S0, control; S5, normal treatment; S10 double treatment.

Deltaproteobacteria were primarily different in the high-litter treatment (double). The
green color in Fig. 6 indicates the significantly different taxa in the normal treatment, and
these species could potentially be used as biomarkers in the normal quantity treatment
(Fig. 6).

Pearson correlation analysis showed that soil moisture, DON and MBN were the factors
that mainly contributed to the significant correlation with bacterial taxa (Table 2). DON
was significantly correlated with the relative abundance of Actinobacteria, Bacteroidetes,
Verrucomicrobia, Verrucomicrobia, Firmicutes and Nitrospirae, with coefficients of
−0.684, 0.812, 0.679, 0.669, −0.804 and 0.715, respectively. The SM and MBN were
similarly correlated with the bacterial community composition (Table 2). There were no
significant correlations with the relative abundance of Acidobacteria, Gemmatimonadetes
and Chloroflexi, as the abundance of these taxa was stable among the different treatments.

DISCUSSION
Plant litter decomposition is a key process of in the recycling of soil elements (Berg &
Mcclaugherty, 2014). In this study, the SOC and STN contents were not significantly
altered by litter decomposition (Fig. 2). This result is not consistent with other litter
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Figure 6 A linear discriminant analysis effect size (LEsFe) method identifies the significantly differ-
ent abundant taxa of bacteria under different litter quantity treatments. Taxa with significantly differ-
ent abundance among treatments are represented by colored dots. S5, normal treatment; S10 double treat-
ment.

Table 2 The Pearson correlations between the soil properties and the soil bacterial community com-
position.

DOC DON MBC MBN SM NO3-N NH4-N

Proteobacteria 0.759* 0.302 −0.227 −0.426 0.676* 0.511 −0.313
Actinobacteria −0.648 −0.684* −0.189 0.816** −0.839** −0.444 0.514
Bacteroidetes 0.644 0.812* 0.33 −0.915** 0.749* 0.26 −0.306
Verrucomicrobia 0.114 0.679* 0.511 −0.674* 0.385 −0.035 −0.343
Verrucomicrobia 0.537 0.669* 0.201 −0.785* 0.674* 0.395 −0.462
Firmicutes −0.623 −0.804** −0.262 0.897** −0.820** −0.404 0.426
Nitrospirae 0.563 0.715* 0.307 −0.797* 0.637 0.239 −0.318

Notes.
DOC, dissolve organic carbon; DON, dissolve organic nitrogen; MBC, microbial biomass carbon; MBN, microbial
biomass nitrogen; SM, soil moisture; NO3-N, nitrate nitrogen; NH4-N, ammonia nitrogen.
*Indicate significance at the 0.05 level.
**Indicate significant at the 0.007 level (adjusted by Bonferroni correction).
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decomposition studies. This study was a short-term experiment (only three months),
generally, while total C and N accumulation in soil occurs over long term processes with
different mechanisms. However, the available nutrients in soil, such as nitrite nitrogen and
dissolved nitrogen, were significantly altered by litter decomposition. Litter decomposition
altered the available soil N fractions (i.e., MBN, DON and NO3-N), and provided N
resources for the growth of microbial organisms (Cleveland & Townsend, 2006; Wardle
et al., 2004). The MBC and DOC also differed between the different treatments. These
changes revealed that the available C and N concentrations in the soil were sensitive
to litter decomposition, which could help to estimate and evaluate the effects of litter
decomposition under global climate change, N deposition, extreme drought and other
environmental problems.

Litter decomposition altered the bacterial community composition by a greater
degree in the normal quantity treatment than in the double treatment, but the bacterial
diversity did not differ significantly (Shannon and observed-species indices). Short-
term litter decomposition increased the relative abundance of Actinobacteria, Firmicutes
and Thermoleophilia, and decreased the relative abundance of Deltaproteobacteria,
Gammaproteobacteria, Betaproteobacteria and Sphingobacteriia, which is most likely
a result of the available C and N input via litter deposition caused by soil or litter
microorganisms (Cleveland & Townsend, 2006; Wardle et al., 2004). Soil copiotrophic
Bacteroidetes, α-, β-, and γ-Proteobacteria were relatively more abundant in the control
and the double quantity litter treatment soils. The available nutrients released by the
litter stimulated the microbial production of extracellular enzymes (Koyama et al., 2013),
resulting in increased C and N availability, which also altered the bacterial community
composition. Zhang et al. (2016) (Zhang et al., 2016) also observed that soil Proteobacteria
increased with succession in Loess Plateau grasslands, as the soil nutrients were enhanced
across the succession. In addition, our results indicated that soil water content significantly
increased with the quantity of litter (Table 1). Increased water availability should alter soil
microbial processes such as litter decomposition and nutrient mineralization (DeAngelis
et al., 2015). These results suggest that nutrient and water availability in the soil may help
explain why the increase in litter input altered the soil bacterial community composition
in the normal and control treatments.

Bacteria play an important role in the litter decomposition process. Most
Alphaproteobacteria, Acidobacteria and Actinobacteria can degrade recalcitrant C in plant
litter (Barret, Morrissey & O’Gara, 2011). Acidobacteria can grow on complex polymers,
including plant hemicellulose or cellulose and fungal chitin (Eichorst, Kuske & Schmidt,
2011). With litter addition, the soil bacterial community composition changed. These
changes were indicated between the control and the normal treatments. The cluster tree
analysis, PCoA and one-way ANOSIM all indicated that double and control treatments had
similar bacterial communities (Figs. 3, 5 and Table 3). These results were consistent with
the results of the LEefSe analysis and taxa abundance. Based on the results of LEefSe analysis
indicated that Gaiellaes, Solirubrobacterales, Thermoleophilia and Alphaproteobacteria
were significantly different in the normal treatment, and Shphingobacteria, Myxococcales
and Deltaproteobacteria were significantly different in double treatment, which suggested
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Table 3 ANOSIM and SIMPER analysis between the different litter treatments.

SIMPER ANOSIM
Group A & B Average similarity % R value

Normal vs Double 76.28 1
Normal vs Control 76.66 0.889
Double vs Control 81.02 0.296

that litter addition had significant effects on certain bacterial species (Fanin, Hättenschwiler
& Fromin, 2014; Mau et al., 2015). The abundance of soil microbes was based on the
nutritional preferences and functions of the microbes (Banerjee et al., 2016; Mau et al.,
2015). The normal amount of litter addition altered the priming effects of soil bacterial
communities, which has been confirmed by other researchers (Banerjee et al., 2016). Litter
addition enhanced the decomposition of soil organic matter and altered the abundance of
functional groups, as seen by the decline of copiotrophic bacteria. The double litter addition
treatment did not alter the soil bacterial composition, as much more liable nutrients from
litter decomposition could maintain the growth of copiotrophic bacteria.

Soil available nutrients may be the primary difference caused by these shifts. Zhong,
Yan & Shangguan (2015) found that N addition caused changes of the soil bacterial and
fungal communities in a long term field experiment. The SOC was another main factor
that affected the affecting soil bacterial community composition. Liu et al. (2014) found
that Actinobacteria was significantly positively related to SOC, and Deltaproteobacteria
was significantly negatively related to SOC. However, similar results were not observed in
this study, which was in accordance with the results from Zhong, Yan & Shangguan (2015).
We also found that soil total N had no significant effect on soil community structure, but
soil available N was significantly related to the soil bacterial community. Soil available N
is the main resource for soil bacterial growth, which caused the variation in soil bacterial
community structure. Zhang et al. (2016) reported that the soil nitrate nitrogen content
was significantly related to the soil bacterial community along a natural succession. Yao et
al. (2014) found that the soil ammonium nitrogen content played an important role in the
soil bacterial community compositions in the grass land soils of China. Yuan et al. (2014)
also observed similar results in soil on the Tibetan Plateau. All these results confirmed that
soil available N content was the main factor that drove these changes in the soil bacterial
communities.

CONCLUSION
These results suggested that normal litter quantity could alter soil bacterial community
compositions. A higher quantity of litter did not affect the soil microbial community. Beta,
Gamma, and Deltaproteobacteria were significantly decreased in the normal quantity litter
addition treatment, and subsequently increased in the double quantity litter addition
treatment. The bacterial communities transitioned from Proteobacteria-dominant
(Beta-, Gamma-, and Delta) to Actinobacteria-dominant during decomposition of the
normal quantity of litter. The soil available nutrients and the soil copiotrophic bacterial
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communities were higher in the control and the double quantity of litter decomposition
treatments. These results suggested that litter addition affected the soil bacterial structure,
and can provide guidance to manage vegetation restoration with the increase of litter
quantity.
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