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dolphin (T. truncatus), in almost all ocean basins, though 
no data have been available for the western North Pacific 
Ocean (WNP). The genetic diversity of bottlenose dolphins 
in the WNP was investigated based on 20 microsatellite 
and one mitochondrial DNA markers for samples collected 
from Taiwanese, Japanese, and Philippine waters (9°–39°N, 
120°–140°E) during 1986–2012. The results indicated that 
there are at least four genetically differentiated populations 
of common bottlenose dolphins in the western and central 
North Pacific Ocean. The pattern of differentiation appears 
to correspond to habitat types, resembling results seen in 
other populations of the same species. Our analyses also 
showed that there was no evident gene flow between the 
two “sister species”, the common bottlenose dolphins, and 
the Indo-Pacific bottlenose dolphins (T. aduncus) occurring 
sympatrically in our study region.

Introduction

A wildlife management unit is usually defined by the signifi-
cance of morphological, genetic, or demographic differences 
among populations, often associated with geographic barri-
ers or distance (e.g. Allendorf and Luikart 2006). Identifying 
management units is imperative in wildlife conservation, as 
it assists the preservation of intra-species diversity and the 
species’ future adaptive potential. Some oceanic dolphin 
species show an unexpected level of population structure, 
given their capacity for extensive dispersion and the lack 
of obvious geographic barriers (Hoelzel 2009). The bot-
tlenose dolphin (Tursiops sp.) has provided a number of 
classic examples regarding the parapatric or sympatric dis-
tribution of differentiated populations or species (e.g., see 
Moura et al. 2013). Here, we investigate bottlenose dolphin 
populations in a region where there is ongoing impact due to 
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bycatch and drive fisheries, and, therefore, a pressing need 
for conservation management.

Bottlenose dolphins are widely distributed in the world’s 
tropical-to-temperate marine environment, including along 
the coasts of all major continents and many oceanic islands, 
over shallow offshore banks or sandbars, and in pelagic open 
waters (Rice 1998). There is considerable geographical vari-
ation in bottlenose dolphin skeletal morphology, life his-
tory, and genetic diversity, which makes the taxonomy of 
the genus controversial (Rice 1998; Wells and Scott 2009; 
Charlton-Robb et al. 2015). In our study region in the west-
ern North Pacific Ocean (WNP), two species of dolphins in 
the genus Tursiops have been recognized: the Indo-Pacific 
bottlenose dolphin (T. aduncus; hereinafter IPBD) and the 
common bottlenose dolphin (T. truncatus; hereinafter CBD). 
These two species are distributed parapatrically, or even 
sympatrically in particular areas. The distribution of IPBD 
is chiefly in the coastal waters of warm-temperate-to-tropical 
Indo-Pacific regions from southern Japan to western South 
Africa and southeastern Australia, where the water depth is 
always less than 200 m (Wang and Yang 2009). The distribu-
tion of CBD in the WNP, on the other hand, ranges from the 
southern Okhotsk Sea to the South China Sea and to Hawai-
ian waters, in both coastal and pelagic habitats (Miyashita 
1993; Rice 1998; Wells and Scott 2009). The distribution 
range of these two species overlaps from the East China Sea 
and Taiwan Strait to the South China Sea (Zhou and Qian 
1985; Wang et al. 1999, 2000; Yang et al. 2005). Although 
the broader taxonomy of the genus remains unresolved, the 
alpha taxonomy of IPBD and CBD is well supported (LeDuc 
et al. 1999; Wang et al. 1999, 2000; Hale et al. 2000; Kem-
per 2004; Natoli et al. 2004; Yang et al. 2005; Kurihara and 
Oda 2007; Moura et al. 2013).

Within the CBD species, a significant differentiation 
between coastal and offshore populations has been reported 
from various locations, including the western North Atlan-
tic Ocean (Hoelzel et al. 1998; Kingston and Rosel 2004), 
the eastern North Atlantic Ocean (Louis et al. 2014a), and 
the eastern North Pacific Ocean (Lowther-Thieleking et al. 
2015). The population structure of CBD can also be defined 
on a finer regional scale, such as within the Gulf of Mexico 
(Sellas et al. 2005; Richards et al. 2013), Northern Bahamas 
(Parsons et al. 2006), west coasts of the United States (Rosel 
et al. 2009), the waters around New Zealand (Tezanos-Pinto 
et al. 2009), Ireland (Mirimin et al. 2011), Hawaiian Islands 
(Martien et al. 2012), and the Adriatic Sea (Gaspari et al. 
2015a).

Two recent papers analysed mitochondrial DNA 
(mtDNA) control region sequence data for CBD and IPBD 
with samples from the western South Pacific Ocean and 
hypothesised that the coastal ecotype of CBD is lacking in 
the Indo-western Pacific Ocean and that this is because the 
coastal habitat has been occupied by IPBD (Tezanos-Pinto 

et al. 2009; Oremus et al. 2015a). However, not all coastal 
and pelagic CBD lineages are reciprocally monophyletic 
(Moura et al. 2013), sometimes likely due to incomplete 
lineage sorting (Segura et al. 2006; Lowther-Thieleking et al. 
2015). Therefore, this assessment should be confirmed using 
nuclear markers.

Miyashita (1993) proposed a three-stock structure for 
CBD in the WNP (for the waters off eastern Japan) based 
on 8-year transect line survey data: a Japanese coastal popu-
lation (from the east coasts of Japan to the west of 142°E), 
a Japanese offshore population (between 30° and 42°N and 
from the east of 145°E to the antimeridian), and a southern 
offshore population (between 23° and 30°N, and between 
127°E and the antimeridian). However, this three-stock 
hypothesis has yet to be tested using molecular markers. 
Kita et al. (2013) sequenced a group of 165 CBD culled 
in a drive fishery hunt in Japan for 402 bp mtDNA con-
trol region and compared these against published sequences 
worldwide (using 290 bp). They report that these dolphins 
were “related more closely to oceanic types from Chinese 
waters than other geographic regions” (p. 476). The study 
was unfortunately unable to provide further insights into the 
population structure of CBD in the WNP.

For IPBD, it has been proposed that there are at least six 
populations in Japanese waters (Amano 2007; Brownell and 
Funahashi 2013). Kakuda et al. (2002) studied the genetic 
structure of IPBD from Mikura Island (about 200 km south 
of Tokyo) using mtDNA control region sequences and 
concluded that the dolphins were genetically similar to the 
IPBD in Taiwanese waters. Hayano (2013) used the same 
genetic marker and reported a clear population differen-
tiation among Mikura, Amakusa, Amami, and Ogasawa 
Islands. The residency of Amakusa, Mikura Island, and 
Kagoshima Bay populations has been proposed based on 
photo-identification records (Shirakihara et al. 2002; Kogi 
et al. 2004; Nanbu et al. 2006). A significant geographic 
vocalization variation is found among dolphin populations 
around Amakusa, Mikura, and Ogasawa Islands (Morisaka 
et al. 2005). In Taiwanese waters, the distribution of IPBD is 
seemly discontinuous: current field observations and records 
of fishery interactions showed that this species aggregates 
around the Penghu archipelago (in the Taiwan Strait, west 
of Taiwan), and the coastal waters off Kengting, southeast 
of Taiwan (Wang et al. 1999; Wang 2000).

Both CBD and IPBD are affected by multiple anthro-
pogenic threats, such as small-scale whaling and negative 
fishery interactions in this WNP study region (Perrin et al. 
2005; Kasuya 2007; Young and Iudicello 2007; Robards 
and Reeves 2011). There were more than 26,000 bottlenose 
dolphins caught in Japanese waters during 1972–2008 (Kas-
uya 2011), and about 1700 bottlenose dolphins are inciden-
tally killed in human fisheries in the western-central Pacific 
Ocean every year (Young and Iudicello 2007). The aim of 
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this study is to promote the more effective conservation of 
these highly mobile marine species through a better under-
standing of the pattern and origin of population structure, 
and the relevant processes. We focus on the CBD species in 
the WNP to help assess the impact of human disturbance, 
since this species is a common target in the dolphin drive 
fishery (Kasuya 2007; Oremus et al. 2015b).

Materials and methods

Tissue sample collection and genomic DNA preparation

Sixty-six CBD and seven IPBD tissue samples collected 
from various locations in Japan, Taiwan, and the Philippines 
were included in this study (detailed locations and num-
bers shown in Fig. 1 with further details provided in sup-
plementary Table S1). Species identity was acquired from 
the archives and verified by our genetic assessments. For 
CBD samples, each was assigned to one of the four putative 
populations based on its sampling location (i.e., West Japan, 
East Japan, Taiwan, and the Philippines; Fig. 1a; Table S1). 
The origin of the 14 samples collected from Japanese aquari-
ums was unknown, but assigned to the East Japan group 
based on our factorial correspondence analysis (FCA) result 

(see below). For IPBD, the a prior population assignment 
was based on sampling location (Fig. 1a; Table S1). For a 
set of 15 samples from a drive fishery in eastern Japan, we 
note that none of these samples were collected to support 
this work. Our use of archived materials derived from those 
activities is not meant as an endorsement, but rather as a 
means to contribute to the provision of data critical to the 
effective conservation of these populations.

Genomic DNA was isolated and purified by a standard 
proteinase-K digestion/phenol–chloroform extraction pro-
tocol (Sambrook et al. 1989), and preserved in TE buffer 
(10 mM Tris–HCl, 0.1 mM EDTA, pH7.4). The Philippine 
samples were provided as extracted genomic DNA by the 
Southwest Fisheries Science Center, National Oceanic and 
Atmospheric Administration (USA).

DNA fragment amplification and genotyping

We examined 20 microsatellite loci and a 388 bp mtDNA 
control region sequence that have been conventionally used 
and validated in other bottlenose dolphin genetic studies 
(Shinohara et al. 1997; Hoelzel et al. 1998; Krützen et al. 
2001; Natoli et al. 2004; Mirimin et al. 2011). The micros-
atellite loci and associated annealing temperatures are given 
in Table S2. Polymerase chain reaction (PCR) reagents were 

Fig. 1   Sampling locations are provided for the Indo-Pacific bottle-
nose dolphins (IPBD; open circle) and common bottlenose dolphins 
(CBD; grey triangle) examined in this study, and the IPBD (solid cir‑
cle) and CBD (solid triangle) mitochondrial DNA sequences acquired 
from GenBank. The numbers indicate the sample size for microsatel-

lite/mtDNA data. Note that the sampling locations of the two IPBD 
samples from Indonesia are unknown, therefore, not indicated (see 
Wang et al. 1999). The grey arrow in upper right panel indicates the 
flow of Kuroshio current
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in 20 or 10 μl using GoTaq® Taq DNA polymerase (Pro-
mega) or multiplex polymerase (Multiplex PCR Kit, Qia-
gen), respectively, cycled at 95 °C for 120 s (15 m for mul-
tiplex polymerase), followed by 35 cycles of 40 s at 94 °C, 
40 s at the best annealing temperature of the locus, and 70 s 
at 72 °C, and a post-extension at 72 °C for 10 min. Frag-
ments were visualised on an Applied Biosystems 3730 DNA 
Analyser, and the allele size was determined by an internal 
standard marker (Genescan-500 ROX, Applied Biosystems) 
and visualised in Peak Scanner v.1 (Applied Biosystems). 
Every locus in each sample was examined at least twice and 
the scores blind confirmed by a second person.

The mtDNA sequences were amplified using primers 
designed to amplify cetacean mtDNA control region (Thr 
and Phe primers from Hoelzel et al. 1991). The PCR reac-
tions were in 20 μl cycling at 95 °C for 120 s, followed by 35 
cycles of 40 s at 94 °C, 40 s at 50 °C, and 70 s at 72 °C, and 
a post-extension at 72 °C for 10 min. The amplified mtDNA 
fragments were purified using QIAquick® PCR Purification 
Kit (Qiagen) and then sequenced on an Applied Biosystems 
3730 DNA Analyser. All sequencing results were visualised 
in FinchTV (PerkinElmer) and manually corrected using 
MEGA 5.05 (Tamura et al. 2011).

Microsatellite data analysis

Genetic diversity and differentiation

We used Arlequin 3.5.1 (Excoffier and Lischer 2010) to 
examine linkage disequilibrium (LD), observed heterozy-
gosity (HO), and expected heterozygosity (HE), and to assess 
the significance of any deviation from Hardy–Weinberg 
equilibrium (HWE) using Fisher’s exact test and Markov 
chain method (number of steps in Markov chain, 1000,000; 
number of dememorization steps, 100,000). The inbreeding 
coefficient (FIS) for each locus in each putative population 
was estimated using FSTAT 2.9.3.2 (Goudet 2002). We also 
used Arlequin to assess the degree of population differentia-
tion by FST (Wright 1951) and RST (Slatkin 1995), only for 
populations with a sufficient sample size (East Japan; n = 32 
and Taiwan; n = 28). We used a non-parametric permutation 
approach with 10,000 permutations to assess the statistical 
significance (p < 0.05 after Bonferonni correction).

Genetic structure was also investigated by FCA imple-
mented in Genetix 4.0 (Belkhir et al. 2004), and using the 
Bayesian assignment method implemented in STRUCTURE 
(Pritchard et al. 2000). FCA was run both with and with-
out referencing individuals to a population centre (the “sur 
population” option). In STRUCTURE, we used six inde-
pendent runs for each value of K assuming admixture and 
applying a burn-in length of 100,000 and a length of simu-
lation of 1,000,000 repeats. The analysis was undertaken 
with and without using the “LOCPRIOR” function. Delta K 

(ΔK) reflecting the highest hierarchical level was determined 
by the Evanno method implemented in Structure Harvester 
(Earl and von Holdt 2012), and the result was optimized 
using CLUMPP (Jakobsson and Rosenberg 2007) and DIS-
TRUCT (Rosenberg 2004). Once K was determined, we used 
the USEPOPINFO option to search for potential hybrids or 
descents of hybrids following the method described in Mar-
tien et al. (2012).

We also used the R package Geneland (Guillot et al. 
2005) to assess the population structure in a spatial context. 
Because the program requires information of precise spatial 
coordinates for each genotyped individual, those CBD sam-
ples with ambiguous sampling locations were excluded for 
this analysis. In particular, the Japanese samples collected 
from the aquariums and the Taiwanese samples confiscated 
in the fish markets were excluded. We conducted the analy-
sis using the procedure described in Fontaine et al. (2007), 
but the number of clusters (K) was set to vary from 1 to 6 
clusters, and the maximum rate of Poisson process fixed to 
41 (number of samples), uncertainty attached to spatial coor-
dinates was fixed to 100 km, maximum number of nuclei in 
the Poisson–Voronoi tessellation was fixed to 123, and the 
posterior probabilities of population membership for each 
individual and each pixel of the spatial domain were calcu-
lated with a burn-in of 100 iterations and a spatial domain of 
151 pixels along the X-axis and 250 along the Y-axis.

CBD population dynamics in the WNP

The effective population size (Ne) and long-term gene 
flow (the number of migrants per generation; Nem) were 
estimated using maximum-likelihood coalescent meth-
ods implemented in MIGRATE version 3.6.6 (Beerli and 
Felsenstein 1999, 2001). The settings were after Martien 
et al. (2012), but we used a heating scheme and repeated 
the analysis five times. An approximate Ne was calculated 
as the Neμ divided by an average expected microsatellite 
mutation rate, μ = 5 × 10−4 (Whitaker et al. 2003; Hoelzel 
et al. 2007; Hollatz et al. 2011). The ratio of effective to 
census population size (Ne N−1; Frankham 1995) was cal-
culated using published estimates of the census population 
sizes for CBD populations found in Japanese waters. We 
used the census population size (N) estimated for the “Japa-
nese Coastal” population (N = 37,000; Miyashita 1993) for 
the “East Coast Cluster” (see below), and the N estimated 
for the CBD in southwestern Japanese waters (N = 35,000; 
Kasuya 2011) for the “West Coast Cluster”. We used Gene-
Class2 to search for potential first-generation migrants (Piry 
et al. 2004) and computed the likelihood using the algorithm 
described in Paetkau et al. (2004), with a frequency-based 
method (Paetkau et al. 1995). The probability was estimated 
using MCMC resampling of 1000 individuals and the type 
I error was set to 0.01. Tests for sex-biased dispersal were 
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implemented in FSTAT (Goudet et al. 2002). This is based 
on differences between the sexes for statistics associated 
with mean and variance of assignment indices, FIS, FST, 
relatedness, HO, and within-group gene diversity (HS) with 
t tests using 1000 permutations.

Mitochondrial DNA data analyses

Multi‑region network

Published mtDNA control region sequences for both CBD 
and IPBD from the same or adjacent regions, i.e., Taiwan 
and southeastern China (Wang et al. 1999; Yang et al. 2005), 
Japan (Kita et al. 2013), northeastern China (Yang et al. 
2005), and Hawaiian Islands and Palmyra Atoll (Martien 
et al. 2012), were acquired from GenBank (see Table S3). To 
address strong kin bias for our samples, one individual from 
all recognized parent–offspring pairs was discarded. In the 
published sequences, the pedigree relationship among indi-
viduals for Japanese, Hawaiian, and Palmyra Atoll samples 
was well documented (Martien et al. 2012; Kita et al. 2013), 
but the kinship information for Chinese samples was not 
available (Wang et al. 1999; Yang et al. 2005). We assumed 
that there was no parent–offspring pair sampled in the Chi-
nese samples, because (1) they were collected in independ-
ent strandings or occasional fishery interaction events, (2) 
only a few individuals shared the same haplotype, and more 
importantly, (3) those samples sharing the same haplotype 
were not collected at the same time or location. We aligned 
the sequences together with ours in MEGA and obtained a 
consensus sequence (388 bp) from which we generated a 
median joining network using the program POPART (Leigh 
and Bryant 2015). We then assigned these published mtDNA 
sequences together with ours to six putative populations 
based on their sampling geography; that is, Japan, Northeast 
China (including Zhoushan, Qingdao, and Lianyunggang), 
Southeast China (including Dongshan, Taiwan, Hong Kong, 
the Philippines), South China (Beihai), Indonesia, Hawaiian 
Islands, and Palmyra Atoll (Fig. 1; Table S3).

Genetic diversity and tests for population expansion 
history

We used DnaSP v5 (Librado and Rozas 2009) to identify 
the haplotypes and estimate the nucleotide diversity (π) and 
haplotype diversity (h) for each putative population, as well 
as for the overall species. The neutrality tests Tajima’s D 
(Tajima 1989) and Fu’s Fs (Fu 1997) were estimated using 
DnaSP to look for signals that could be interpreted as either 
selection or population expansion. Mismatch distributions 
generated in Arlequin were produced to test for population 
expansion signals (Rogers and Harpending 1992; Schneider 
and Excoffier 1999; Excoffier 2004; Ray et al. 2003). The 

confidence intervals of the estimates were obtained under 
10,000 bootstrap simulations of an instantaneous expansion 
under a coalescent framework. The sum of square deviations 
(SSD) between the observed and the expected mismatch and 
the raggedness index (r) of the observed distribution were 
calculated and tested to evaluate fit to models (Harpending 
1994; Schneider and Excoffier 1999).

CBD population structure in the western and central North 
Pacific Ocean

Global tests of genetic differentiation among samples, as 
well as a differentiation test between all pairs of putative 
populations, were assessed using a Fisher’s exact test (Ray-
mond and Rousset 1995) implemented in Arlequin, using 
10,000 permutations. Pairwise FST and ΦST between all pairs 
of putative populations were calculated and tested for sig-
nificance using Arlequin. The significance level was set as 
p < 0.05.

We used MrBayes 3.2 (Ronquist et al. 2012) to recon-
struct the phylogeny of all CBD haplotypes using a Bayesian 
Markov Chain Monte Carlo (MCMC) analysis. The evolu-
tionary model for the test was determined by jModelTest 
2.1.5 (Darriba et al. 2012); the sampling increment was set 
at 100 and diagnostics at every 1000 generations; at least 
900,000 generations were simulated to generate the consen-
sus tree. The final consensus tree was visualized and edited 
for optimal display in FigTree v.1.4 (http://tree.bio.ed.ac.uk/
software/figtree/).

Results

CBD microsatellite locus diversity and differentiation

All samples were successfully genotyped, and the missing 
data rate was less than 5% for all loci and samples. No sig-
nificant LD or deviation from HWE was detected. Summary 
statistics are shown in Table 1 for each putative population 
(see Table S4 for the information by locus). The FST between 
East Japan and Taiwan was 0.013 and significantly greater 
than zero (p < 0.01); while RST was 0.055, but not signifi-
cant (p = 0.068 ± 0.002). As expected based on simulation 
studies (e.g., Latch et al. 2006), the magnitude of differen-
tiation was too small for clear detection by STRUCTURE. 
However, although LnP(K) indicated K = 1, ΔK = 2 when 
the LOCPRIOR function is applied, and then differentia-
tion between East Japan and Taiwan/West Japan could be 
detected (Fig. S1).

For comparisons among CBD populations using the “sur 
population” option, all population-specific clusters could be 
identified and FC1 and FC2 accounted for 82.95% of the 
variance (Fig. 2a). Without using the option, the genotypes 

http://tree.bio.ed.ac.uk/software/figtree/
http://tree.bio.ed.ac.uk/software/figtree/
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Table 1   For common 
bottlenose dolphins (CBD) 
and Indo-Pacific bottlenose 
dolphins (IPBD), the number of 
alleles, expected heterozygosity 
(HE), observed heterozygosity 
(HO), allelic richness (AR), 
and inbreeding coefficient (FIS) 
averaged across loci within 
populations (Mean ± SD)

See Table S4 for the estimates by locus within each population

Population n No. of alleles HE HO AR FIS

CBD
 Taiwan 28 7.100 ± 2.882 0.715 ± 0.193 0.697 ± 0.192 1.715 0.025
 East Japan 32 7.350 ± 3.558 0.715 ± 0.172 0.702 ± 0.189 1.715 0.019
 West Japan 4 3.750 ± 1.517 0.695 ± 0.225 0.684 ± 0.248 1.661 0.019
 Philippines 2 2.650 ± 0.875 0.769 ± 0.173 0.694 ± 0.349 1.692 0.138
 All samples 66 8.400 ± 3.789 0.717 ± 0.179 0.695 ± 0.176 1.717

IPBD
 Taiwan 4 3.111 ± 0.963 0.651 ± 0.134 0.625 ± 0.196 1.586 0.046
 Amakusa 2 2.385 ± 0.506 0.641 ± 0.165 0.615 ± 0.300 1.417 0.059
 Mikura Island 1 NA NA NA NA NA
 All samples 7 3.350 ± 1.137 0.601 ± 0.190 0.549 ± 0.180 1.601

Fig. 2   Results of the FCA for 
the CBD: a using the “sur popu-
lation” option; b without using 
the “sur population” option. The 
two most informative factors 
(FC1 and FC2) were assigned 
as X and Y axes in the plot, and 
the numbers in parentheses in 
each axis indicate the percent-
age of the variance explained by 
the factor
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of the Philippine samples remained highly distinct, but other 
putative populations were less well resolved (Fig. 2b). The 
14 captive dolphin samples provided by Japanese aquari-
ums grouped with samples from East Japan rather than 
West Japan, while West Japan samples grouped with sam-
ples from Taiwan for FC1 vs. FC2. It is noteworthy that an 
East Japan sample, EW4842, was clustered with the Tai-
wan–West Japan samples, and the same clustering pattern 
was also found in the Geneland analysis (see below). This 
young male dolphin was stranded at the coast of Miyazaki, 
which was the most southerly sampling site for the putative 
East Japan population (Fig. 1). This “mis-grouping” could 
reflect limitations to the resolution of the analysis, evidence 
of direct migration between populations, or the result of a 
carcass drifting between regions (Bilgmann et al. 2011). 
The West Japan samples were segregated from the Taiwan 
samples and became an independent cluster by the third fac-
tor, FC3. This factor explained the remaining 17.05% of the 
variance (Fig. S2).

The ten simulations in the first step of the Geneland 
analysis all indicated the most likely number of populations 
for our sample set was K = 3. With the K fixed to K = 3 
in the second step, the analysis suggested eight variations 
of population distribution patterns for CBD among the 10 
runs with the highest LPP in 100 simulations. These eight 
variations all showed approximately the same clustering 
pattern, with a few samples showing inconsistent popula-
tion membership (Fig. 3). The basic pattern was a cluster 
grouping samples from the west coast of Japan, west and 
north coast of Taiwan, and the sample collected in Miyazaki, 
Japan (“the West Coast Cluster”); a cluster for the samples 
from the east coast of Taiwan and from Taiji, Japan (“the 
East Coast Cluster”); and a cluster for the samples from the 
Philippines (“the South Tropical Cluster”). The samples 
collected from Tainan (southwestern Taiwan) and Shizuoka 
(eastern Japan) overlapped with all three clusters, but usually 
grouped with the South Tropical Cluster (Fig. 3a, b, f, h). 
The sample collected from Aichi (eastern Japan) grouped 

A

E F G H

B C D

Fig. 3   Eight variations of the individual population membership 
assignment patterns shown in the 10 runs with the highest LPP for 
K = 3 in Geneland analysis. The colours indicate the distribution of K 

clusters based on the mode of simulated posterior probability for each 
pixel. The landmarks mentioned in the text are shown
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with the East Coast Cluster (Fig. 3a–e, g) and the West Coast 
Cluster (Fig. 3f, h).

Population dynamics for CBD inferred 
from microsatellite analyses

To evaluate the population dynamics for CBD populations, 
we regrouped the samples into two clusters (for which 
sample sizes were deemed sufficient) based on the result 
of Geneland analysis: a West Coast Cluster (the samples 
from Miyazaki and the west coasts of Taiwan and Japan), 
and an East Coast Cluster (the samples from the east coast 
of Taiwan and Taiji). The samples from Tainan, Aichi, and 
Shizuoka were excluded due to the uncertainty of their 
population identity. Ne estimated from Migrate for the East 
Coast Cluster was slightly larger than for the West Coast 
Cluster (Table 2). Ne N−1 for both populations was similar 
in magnitude, ranging from 0.042 to 0.059, or from 0.084 to 
0.118, depending on what microsatellite mutation rate was 
used, and migration estimates suggested a higher rate from 
the West to the East Coast cluster (Table 2). The GeneClass 
analysis identified three potential first-generation migrants 
(Table S5). There was no support for sex-biased dispersal 
(Table S6).

MtDNA genetic diversity of CBD and IPBD 
in the western and central North Pacific Ocean

We sequenced 42 CBD samples from Taiwan, East Japan, 
and Philippines, and seven IPBD samples from Taiwan and 
Japan. Together with the published sequences acquired from 
GenBank (n = 344), we used a 388 bp consensus mtDNA 
sequence from a total of 393 sequences and reconstructed 
five putative CBD populations (East Japan, Northeast China, 
Southeast China, Hawaiian Islands, and Palmyra Atoll) and 
four IPBD populations (Japan, Southeast China, South 
China, and Indonesia) (Fig. 1; Table S3). According to the 

AIC and BIC indices calculated by jModelTest, the best 
model for reconstructing a phylogenetic tree for the genus 
using our mtDNA sequences was HKY + I+G.

For CBD, we examined 353 sequences and identified 64 
haplotypes defined by 82 variable sites, including two dele-
tion gaps (Table S7). The overall haplotype diversity (h) 
was 0.935 and nucleotide diversity (π) was 0.0197. The h 
and π for each population are shown in Table 3. TtHap_2 
was the most widespread haplotype, found in all populations 
except Palmyra Atoll (Fig. 4; Fig. S3; Table S8). It was also 
the dominant haplotype in the WNP (28.3% of all samples), 
where it was most common in Northeast China (42.9%, 
accession number AF459509-15), and in the school of dol-
phins culled in the drive fishery in 2005 (30.4%, previously 
published as Haplotype Ttr06, GenBank accession num-
ber AB303159). TtHap_16 was the only haplotype shared 
between the WNP (in Southeast China) and the tropical cen-
tral Pacific (in Palmyra Atoll). It is noteworthy that in the 
phylogenetic tree, TtHap_17 (from southeast China), 25, and 
33 (from eastern Japan) were isolated from the major CBD-
IPBD lineage, potentially indicating that a lineage sorting 
process is still ongoing in CBD in the WNP populations 
(Fig. S3).

For IPBD, we identified 18 haplotypes defined by 19 vari-
able sites in a total of 40 sequences from the coastal waters 
around Japan, Southeast China, and South China (GenBank 
accession numbers MF806001-18). The overall h was 0.924 
and π was 0.014; the h and π of IPBD populations were 
lower than CBD populations in general, but samples sizes 
per population were small (Table 3). TtHap_59 was an IPBD 
haplotype from a putative CBD specimen collected from 
Hawaiian waters (M34066), and the introduction of this alien 
haplotype to the CBD population was regarded as a result of 
introgression in the distant past (Martien et al. 2012).

Table 2   Estimates of effective 
population size times mutation 
rate (Neμ) and number of 
migrants per generation (Nem) 
from the two CBD populations 
recognized in Geneland analysis

The Ne is calculated assuming that the average microsatellite mutation rate (μ) is 0.01% for Ne (high) and 
0.02% for Ne (low). The ratio of effective to census population size (Ne/N) is calculated using the census 
population size (N) estimated for the “Japanese Coastal” population (N = 37,000; Miyashita 1993) for the 
East Coast Cluster, and the N for the CBD in the southwestern Japanese waters (N = 35,000; Kasuya 2011) 
for West Coast Cluster. The 2.5th and 97.5th profile likelihood estimates are given in parentheses

Source population Host population

East coast West coast

Neμ 0.400 (0.367–0.437) 0.321 (0.293–0.353)
Ne (low) 2000 (1836–2186) 1605 (1465–1766)
Ne (high) 4001 (3671–4371) 3211 (2930–3532)
Ne (low)/N 0.054 (0.05–0.059) 0.046 (0.042–0.05)
Ne (high)/N 0.108 (0.099–0.118) 0.092 (0.084–0.101)
Nem East coast 0.057 (0.046–0.070)

West coast 0.106 (0.089–0.125)



Mar Biol (2017) 164:202	

1 3

Page 9 of 17  202

Population structure and expansion history for CBD 
inferred from mtDNA data

Most pairwise FST and ΦST comparisons were statistically 
significant (Table 4). Fisher’s exact tests based on haplo-
type frequencies suggested that the five putative populations 
were well differentiated, except for the comparison between 
Northeast and Southeast China (Table S9). The clear dif-
ferentiation between the Hawaiian Islands and Palmyra 
Atoll populations has been reported in the original paper 
(Martien et al. 2012); here, our analysis further reveals that 
Hawaiian Islands and Palmyra Atoll populations were also 
differentiated from the WNP populations. Within the WNP, 
the Northeast China population was the least differentiated, 
although the statistical insignificance could be largely due to 
deficient sample size, which was an issue for our Northeast 
China population sample.

A negative Tajima’s D was estimated for all putative 
populations, although none of the values were significantly 
different from zero (Table 3). A negative Fu’s Fs was esti-
mated for the East Japan and Southeast China populations, 
but again, none of the estimates were statistically signifi-
cant. The only exception was when all samples were pooled 
together, the Fu’s Fs estimate was negative and significantly 
different from zero (Table 3). The mismatch distributions for 
each putative population appeared to be multimodal (Fig. 
S4), even though fit to the expansion model could only be 
rejected for the Hawaiian Islands and Northeast China popu-
lations (Table S10).

Interspecific comparisons

FCA analyses showed a clear genetic difference between 
CBD and IPBD (Fig. S5, S6). Using STRUCTURE, both 
ΔK and LnP(K) values supported K = 2 (Table S11). The 
ancestry assignment test showed three CBD individuals, 
from Japan, Taiwan, and Philippines, respectively, that might 
have had an IPBD grandparent, although the probability was 
only between 7.1 and 11.9% (Fig. S6; Table S12).

Discussion

CBD population structure in the WNP

Miyashita (1993) suggested the CBD in the WNP is mainly 
distributed in 30°–42°N and west of 160°E, with a density 
gap at 142°–145°E as a boundary separating the “Japanese 
coastal” population (west of 142°E) and “Japanese offshore” 
population (east of 145°E). That boundary is tentatively sup-
ported by a telemetry study showing that the CBD popula-
tion targeted by the Japanese coastal drive fishery (Kishiro 
and Kasuya 1993) is unlikely to utilise the waters further 
than 200 nautical miles from land (Tanaka 1987). Since most 
of the samples were collected from the dolphins caught in 
the coastal drive fishery, our East Japan sample very likely 
represents this Japanese coastal population. Our Geneland 
analysis further suggests that the range of this Japanese 
coastal population could be extended further south to the 
eastern coast of Taiwan (22°–25°N, east of 121°E), and 
we, therefore, call this the “East Coast Cluster” to avoid 
confusion. The east coasts of Taiwan and Japan (between 

Table 3   Summary of the 
mtDNA haplotype diversity, 
nucleotide diversity, and indices 
for testing locus neutrality for 
the CBD and IPBD populations

The SD for haplotype and nucleotide diversity is given in parentheses. Significant results (p < 0.05) are 
given in bold
* p < 0.05; ** p < 0.01

n No. of 
haplo-
types

Haplotype diversity (h) Nucleotide diversity (π) Tajima’s D Fu’s Fs

CBD
 East Japan 160 23 0.870 (0.019) 0.01368 (0.00103) −0.81835 −1.788
 SE China 49 20 0.908 (0.025) 0.02193 (0.00314) −0.74485 −1.607
 NE China 14 8 0.824 (0.098) 0.01638 (0.00427) −1.09647 0.216
 Hawaii 119 20 0.868 (0.016) 0.02124 (0.00088) −0.09236 1.449
 Palmyra 11 7 0.909 (0.066) 0.01851 (0.00423) −0.42215 0.526

Overall 353 63 0.935 (0.008) 0.01966 (0.00079) −1.25991 −22.17**
IPBD
 Japan 3 2 0.667 (0.314) 0.00346 (0.00163) NA 1.061
 SE China 29 14 0.899 (0.036) 0.01365 (0.00110) 0.99207 −2.389
 S China 6 3 0.733 (0.155) 0.01195 (0.00351) 0.99488 2.76
 Indonesia 2 2 1 (0.5) 0.01039 (0.00519) NA 1.386

Overall 40 18 0.924 (0.022) 0.01395 (0.00084) 0.66414 −4.005*
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22° and 42°N) are together embedded in a unique oceanic 
biogeographic province, of which the main characteristic is 
sharing the speedy, warm, relatively high saline Kuroshio 
current flowing northeastward from Luzon in the Philippines 
to the east coast of Japan year-round (Wyrtki 1975; Spalding 
et al. 2012; Fig. 1). Despite the uncertainty of the habitat 
preference for this East Coast Cluster CBD population, it is 
very likely that the strong, constant Kuroshio Current plays 
a crucial role in defining their habitat (Tanaka 1987). Similar 
structure of connectivity along the east coasts of Taiwan 
and Japan is also seen in short-finned pilot whales (Globi‑
cephala macrorhynchus) (Chen et al. 2014), Risso’s dolphins 
(Grampus griseus), and Fraser’s dolphins (Lagenodelphis 
hosei) (Chen 2016). However, we acknowledge that further 
fine-scale population sub-division within the Cluster is pos-
sible, as it seems to be a common pattern for CBD elsewhere 
in the world (e.g., Mirimin et al. 2011; Martien et al. 2012; 
Richards et al. 2013; Gaspari et al. 2015a), but our sample 
size for eastern Taiwan was too small (n = 4) to reveal such 
pattern, if it does exist. In contrast to some earlier studies 
(e.g., Wiszniewski et al. 2010), we found no evidence for 
sex-biased dispersal, though we cannot rule this out as the 
test has relatively low power (Goudet 2002).

On the other hand, Kasuya et al. (1997) found a subtle dif-
ference in several life history traits (e.g., the body length at 
sexual maturity, the age of sexual maturity, and the interval 
of breeding) between CBD caught in Taiji (eastern Japan) 
and Iki (southwestern Japan), suggesting that CBD popula-
tions between the east and west coasts of Japan could be 
differentiated (cited in Kasuya 2011). This hypothesis is ten-
tatively supported by Hayano (2013), who studied a 520 bp 
mtDNA control region sequences in 42 CBD from the east 
and west coasts of Japan and found that seven of the ten sam-
ples collected from the west coast were grouped in a unique 
phylogenetic cluster with a bootstrap support value of 71%. 
Our FCA and Geneland results also support the differentia-
tion of CBD populations between the west and east coasts of 
Japan (i.e., between the Sea of Japan and the Pacific coast of 
Japan), although the sample size from the population west of 
Japan is too small for robust inference. This pattern has been 
reported for other cetaceans found in the same region, e.g., 
in minke whales (Balaenoptera acutorostrata; Abe et al. 
2000) and Dall’s porpoises (Phocoenoides dalli; Hayano 
et al. 2003).

Our results further reveal that there may be another 
coastal CBD population in the vicinity of the Taiwan Strait 

(western Taiwan), although its relationship with the CBD 
population from West Japan (in the Sea of Japan) is ambigu-
ous, and so we grouped the samples together as a West Coast 
Cluster. Earlier studies for bottlenose dolphins in the coastal 
region of WNP mainly focused on the ecological, morpho-
metric, and genetic differences between CBD and IPBD 
(Gao et al. 1995; Wang et al. 1999, 2000; Yang et al. 2005; 
Kurihara and Oda 2007), providing limited insight into the 
population differentiation within the CBD species. Our study 
highlights the need for further careful investigations into 
CBD in this region, including the distribution, habitat prefer-
ences, or behaviours of the dolphins, to shed more light on 
the evolutionary mechanisms driving the CBD populations 
in the Asian coastal waters to differentiate.

Our FCA and Geneland results suggest a fairly distinct 
population of CBD inhabiting Philippine waters, though the 
sample size is too small for strong inference. One of the sam-
ples could possibly be a hybrid with other delphinid species; 
however, we have insufficient data to be precise about which 
one. Dolar et al. (2006) reported that the CBD population 
in central Philippine waters (Sulu Sea and the Tañon Strait) 
was found exclusively in shallow and intermediate waters 
inside of the shelf break, and that this preference may limit 
the dispersal of the Philippine population. Although vari-
ous lines of evidence indicate that possibility, more data are 
needed to resolve this question.

Population dynamics of the CBD in the WNP

The Ne estimated for the West Coast Cluster and the East 
Coast Cluster are only about a quarter to a tenth of the Ne 
estimated for the more pelagic central Pacific populations 
(Martien et al. 2012). This agrees with an earlier report that 
suggests that the Ne for coastal CBD populations tends to 
be smaller than for pelagic populations (Louis et al. 2014a). 
Our calculation showed the Ne N−1 estimates for both West 
and East Coast Clusters are similar in magnitude, ranging 
between 0.042 and 0.118. This range is consistent with esti-
mates proposed by meta-analysis of Ne N−1for wildlife popu-
lations (Frankham 1995).

Tajima’s D and Fu’s Fs estimates were statistically insig-
nificant and the mismatch distributions appeared multimodal 
in both demographic and spatial models (though not always 
significantly different from the model for expansion). In gen-
eral, there was no strong evidence for population expansion.

Possible mechanisms that shape the CBD population 
structure in the WNP

The migrate analysis suggests that long-term gene flow 
between the East and West Coast Clusters is limited to 
less than one migrant per generation. On the other hand, 
the GeneClass analysis identified three contemporary 

Fig. 4   Median-joining network tree for CBD and IPBD mtDNA con-
trol region haplotypes. Each circle represents a unique haplotype. The 
size of the circle indicates the number of individuals having the hap-
lotype and the colour shade indicates the proportion of each popu-
lation within the haplotype. The number of hatch marks at the lines 
indicates the number of mutational steps separating the haplotypes. 
Solid circles indicate missing intermediate haplotypes

◂
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first-generation migrants, suggesting the presence of ongo-
ing gene flow between the two populations. Low levels 
of gene flow have been reported between the coastal and 
pelagic populations in the eastern North Atlantic Ocean 
(Louis et al. 2014a), and among the regional populations 
around the Hawaiian Islands (Martien et al. 2012). It has 
been proposed that this could be promoted by assortative 
mating due to the constrained preference of natal habitat, 
specialised diet, and possibly culture familiarity (Hoelzel 
et al. 1998; Möller et al. 2007; Cantor and Whitehead 2013; 
Louis et al. 2014a, b). In our case, although the strong cor-
respondence between the population structure and contrast-
ing oceanographic features (i.e., shallow continental shelves 
vs. sharp continental slopes) implies population-specific 
resource preference, the structure may have been promoted 
by historic isolation (possibly during the glacial period). We 
propose that the Kuroshio current could play an important 
role in “regulating” the frequency of gene exchange.

During the glacial period, the influence of the Kuro-
shio current on the coasts of the eastern Asian continent 
was weakened as the flows to the East China Sea and South 
China Sea were limited (Ijiri et al. 2005; Jiang et al. 2006). 
The Tsushima Warm Current, a branch of Kuroshio Cur-
rent carrying warm water into the Sea of Japan through the 
Tsushima Strait, was suspended during the Last Glacial 
Maximum (Itaki et al. 2004). Therefore, the oceanography 
of the region may not have promoted connectivity during 
the glacial period as much as today, and the lack of warmer 
water introduced by the Kuroshio Current from the south 
could have generated more contrasting physical conditions 
between the shallower western coastal and the deep eastern 
continental slope habitats. This habitat distinction may have 
also reinforced the reduction of connectivity between the 
two populations during that period. In contrast, today, the 
current itself and its branch currents constantly drive the 
surface waters in and out the shallow coastal region (Cho 
et al. 2009; Matsuno et al. 2009; Jan et al. 2010), and it has 
been observed that the movement of CBD can be influenced 
by the flow of Kuroshio Current (Tanaka 1987). Our data 
suggest recent migration between these regions, which may 
reflect this environmental facilitation (though the popula-
tions remain differentiated).

Sympatric relationship between IPBD and CBD

Our mtDNA data agree with the previous studies showing 
clear phylogenetic differentiation between IPBD and CBD 
(Wang et al. 1999; Kakuda et al. 2002; Natoli et al. 2004; 
Yang et al. 2005; Kita et al. 2013; Moura et al. 2013). Our 
microsatellite data also exhibit a distinct difference between 
IPBD and CBD. The microsatellite data also provide some 
indication of limited gene flow between these two species, 
indicating three individuals that might have hybrid ancestry. 
The two species are known to have interbred and produced 
reproductively viable female hybrids in a captive environ-
ment (Hale et al. 2000), and potential descendants of hybrids 
between the two species are found in the CBD populations in 
Hawaiian and Japanese waters (Martien et al. 2012; Hayano 
2013). However, we cannot eliminate the possibility that the 
interbreeding was between CBD and other delphinid spe-
cies that are closely related to IPBD but live sympatrically 
with the CBD, such as pantropical spotted dolphin (Stenella 
attenuata), striped dolphin (Stenella coeruleoalba), spinner 
dolphin (Stenella longirostris), common dolphin (Delphi‑
nus sp.), or Fraser’s dolphin (LeDuc et al. 1999; Kingston 
et al. 2009; Möller et al. 2008; McGowen 2011; Amaral 
et al. 2012). This has the potential to produce misleading 
results when the signal for hybridisation is weak, as in the 
case of our study. In fact, among four potential hybridisa-
tions between the Tursiops congeneric species (three from 
this study and one from Martien et al. 2012), one of the 
putative hybrid animals was similar in appearance to Fraser’s 
dolphin, and two (one form eastern Taiwan and the other 
from Hawaiian Islands) were sampled from a region where 
the occurrence of IPBD has never been documented (Yang 
et al. 1999; Chou 2007; Baird et al. 2013). Since there is evi-
dence of polyphyly among the Tursiops–Stenella–Delphin‑
ius complex of species (LeDuc et al. 1999; Kingston et al. 
2009; McGowen 2011; Amaral et al. 2012), the evidence for 
hybridisation, therefore, needs to be interpreted carefully.

Our genetic data for IPBD were obtained from three puta-
tive aggregation sites in Taiwanese and Japanese waters: 
Amakusa (southwestern Japan), Mikura Islands (south-
eastern Japan), and western Taiwan; and the FCA result 
showed distinct clustering for those samples (Fig. S5). The 

Table 4   Pairwise mtDNA FST 
and φST comparisons among the 
five putative CBD populations 
in the western-central North 
Pacific Ocean

The pairwise FST value is above the diagonal and the pairwise φST value is below the diagonal
* p < 0.05; ** p < 0.01

n East Japan SE China NE China Hawaii Palmyra

East Japan 160 0.041** 0.020 0.114** 0.107**
SE China 49 0.080** 0.018 0.104** 0.076**
NE China 14 0.020 0.005 0.134** 0.135**
Hawaii 119 0.160** 0.059** 0.092** 0.109**
Palmyra 11 0.533** 0.304** 0.434** 0.243**
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microsatellite data are consistent with the population struc-
ture proposed based on mtDNA data (Hayano 2013), but to 
verify the hypothesis of IPBD population structure in these 
waters, further examination using more samples from the 
same and further sites is necessary.

Conservation implications

Our results indicate that there are at least two populations of 
CBD distributed parapatrically in the coastal waters around 
Taiwan and Japan, corresponding to the distribution of shal-
low continental shelf or deep continental slope habitats. 
Further sampling may well reveal further structure in the 
broader region. Although our analyses detected some recent 
immigration, the long-term estimates show limited gene flow 
between the two populations. This potentially agrees with 
earlier analyses that show that habitat specialisation plays 
an important role in differentiating inshore and offshore 
populations (Hoelzel et al. 1998; Möller et al. 2007; Louis 
et al. 2014b; Gaspari et al. 2015b). The two CBD popula-
tions are likely affected by different anthropogenic threats. 
For instance, the small-scale dolphin drive fishery appears 
to target primarily the East Coast Cluster CBD (see Kas-
uya 2011). On the west coast, habitat loss and degradation, 
pollution, acoustic disturbances, and fisheries interactions 
have been identified as risks for coastal cetacean species 
(Perrin et al. 2005; Jefferson et al. 2009; Choi et al. 2013; 
Slooten et al. 2013). It is, therefore, justifiable to manage 
them as separate CBD populations, and further investiga-
tions are needed to evaluate their resistance to those threats. 
We address our aim to improve understanding of the pattern 
and origin of population structure in this region by identi-
fying previously unrecognised boundaries and illustrating 
the historical and environmental contexts. This contributes 
both towards the more effective conservation of species in 
this genus, and towards a better understanding of processes 
associated with population differentiation in this region.
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