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Cytokine-induced endoplasmic reticulum (ER) stress is one of
the molecular mechanisms underlying pancreatic 3-cell demise
in type 1 diabetes. Thrombospondin 1 (THBS1) was recently
shown to promote f-cell survival during lipotoxic stress. Here
we show that ER-localized THBS1 is cytoprotective to rat,
mouse, and human f3-cells exposed to cytokines or thapsigargin-
induced ER stress. THBS1 confers cytoprotection by maintain-
ing expression of mesencephalic astrocyte-derived neutro-
trophic factor (MANF) in 3-cells and thereby prevents the
BH3-only protein BIM (BCL2-interacting mediator of cell
death)-dependent triggering of the mitochondrial pathway of
apoptosis. Prolonged exposure of 3-cells to cytokines or thapsi-
gargin leads to THBS1 and MANF degradation and loss of this
prosurvival mechanism. Approaches that sustain intracellu-
lar THBS1 and MANF expression in f-cells should be
explored as a cytoprotective strategy in type 1 diabetes.

Type 1 and type 2 diabetes mellitus (T1D® and T2D, respec-
tively) are characterized by failure of the pancreatic B-cells. In
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T1D, this is caused by autoimmune aggression against 3-cells
that leads to progressive (B-cell dysfunction and death. The
pathogenesis of T2D is characterized by different degrees of
B-cell failure/loss relative to variable degrees of insulin resis-
tance (1). Apoptosis seems to be the main form of B-cell death
in both forms of the disease. In T1D, invading immune cells
trigger B-cell death by cell-to-cell contact and local production
of proinflammatory cytokines, such as IL-13 and IFN-y (2). The
recent observation that gene expression in laser-captured islets
from recent-onset T1D patients (3) is remarkably similar to
gene expression in human islets exposed in vitro to IL-13 and
IEN-v (4) supports the idea that these cytokines (or other cyto-
kines that elicit similar signal transduction) play a role in the
human disease. In the context of T2D, the metabolic stress of
chronic exposure to elevated levels of saturated free fatty acids,
such as palmitate, and glucose contribute to 3-cell dysfunction
and apoptosis (5, 6).

It is of high interest to identify approaches that prevent
both immune-mediated and metabolic B-cell demise; such
an approach would be very useful in the prevention or early
treatment of T1D and T2D. This task is made difficult, how-
ever, by the fact that proinflammatory cytokines (4) and
palmitate (7) induce different gene networks and lead to
pancreatic B-cell apoptosis by different mechanisms (1).
One cellular stress response that is, however, present in
B-cells in both forms of diabetes is endoplasmic reticulum
(ER) stress (8, 9). Pharmacological modulation of the ER
stress response might therefore hold promise for B-cell ther-
apy (10, 11).

The multimeric Ca*>*-binding glycoprotein thrombospon-
din 1 (THBS1) protects cardiomyocytes against ER stress via
activation of ATF6 and downstream chaperones (12). We
have shown recently that THBS1 protects human and rodent
B-cells from palmitate-induced apoptosis (13). Different
from cardiomyocytes, however, this takes place through activation
of the ER stress transducer protein kinase R-like endoplasmic
reticulum kinase (PERK) and the downstream transcription factor
NREF2, increasing the 3-cell capacity to withstand oxidative stress
induced by saturated fatty acids (13).
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THBS1 protects [3-cells through MANF

Here we tested whether THBSI is equally beneficial to
rodent and human B-cells exposed to cytokines or chemically
induced ER stress. THBS1 was clearly protective, but this was
mediated by a different mechanism compared with protection
against lipotoxic B-cell demise (13) or cardiomyopathy (12);
namely, through induction of the mesencephalic astrocyte-de-
rived neutrotrophic factor (MANF). This raises the intriguing
possibility that the multifunctional protein THBS1 changes
roles and/or partner affinities in a cell- or stress-specific man-
ner, as suggested recently for other complex biological systems
(14). Furthermore, these findings indicate that THBS1-induc-
ing agents may represent a novel strategy for 3-cell protection
in both T1D and T2D.

Results

The cross-talk between THBS1 and ER stress- and
proinflammatory cytokine-induced [3-cell apoptosis

Knockdown of THBS1 in rat INS-1E cells by two indepen-
dent siRNAs did not affect basal expression of cleaved caspase 9
and 3 and apoptosis (Fig. 1, A and B), but it augmented caspase
cleavage and cell death following exposure to the chemical ER
stressor thapsigargin (an inhibitor of the SERCA2 pump that
depletes ER Ca®") and the proinflammatory cytokines IL-13
and IFN-vy, which cause ER stress, at least in part, via inhibition
of SERCA2 (15). The cleavage of both caspase 9 and 3 indicates
that THBS1 knockdown favors activation of the intrinsic path-
way of apoptosis by thapsigargin and cytokines (16). These find-
ings were confirmed in human islets silenced for THBS1 (Fig. 1,
C and D). Apoptosis was also detected by immunostaining for
cleaved caspase 3 in THBS1-depleted human B-cells exposed to
thapsigargin (Fig. 1E and supplemental Fig. S1) or cytokines
(supplemental Fig. S1). Islets isolated from THBS1 knock-out
mice were also significantly sensitized to thapsigargin and cyto-
kines (Fig. 1F); in both cases, lack of THBSI1 sensitized the cells
to thapsigargin- and cytokine-induced apoptosis. In mirror
experiments, THBS1 was overexpressed in INS-1E cells (Fig.
1G) and human islet cells (Fig. 1/) using an adenoviral vector.
THBS1 overexpression partially reduced thapsigargin- and
cytokine-induced caspase 9 and 3 cleavage (Fig. 1G) and apo-
ptosis in rat B-cells (Fig. 1H) and human islet cells (Fig. 1)).

Because the above findings indicate that THBS1 protects
human, rat, and mouse B-cells from cytokine- and ER stress—
induced cell death, we evaluated whether these stresses affect
THBSI expression. Exposure of human islets to two different
ER stressors, brefeldin A (which blocks transfer of cargo from
the ER to the Golgi) and thapsigargin, decreased THBS1 mRNA
expression by nearly 80% (Fig. 24). A similar inhibition was
observed in IL-18 and IFN-y-exposed human islets (Fig. 24),
and these findings were confirmed at the protein level for thap-
sigargin and cytokines (Fig. 2B). Thapsigargin, which rapidly
induces severe ER stress in INS-1E cells (15), already reduced
THBS1 protein expression by 2 h, with a progressive decrease
up to 24 h (Fig. 2C). Cytokines, which induce ER stress more
slowly in INS-1E cells (by 6 — 8 h) (15), inhibited THBS1 expres-
sion by 8 h, with a nadir at 24 h. These observations suggest
that chemical or cytokine-mediated ER stress progressively
decreases THBS1 expression in 3-cells, sensitizing these cells to
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a pro-apoptotic outcome. In addition to transcriptional inhibi-
tion (Fig. 2A), proteasomal degradation contributes to THBS1
depletion, as proteasome inhibition by MG132 prevented the
loss of THBS1 (Fig. 2E).

Intracellular THBS1 protects -cells against cytokines and
chemical ER stress

THBS1 may reside in the ER and/or be secreted into the
extracellular milieu (13, 17, 18). We thus investigated whether
intra- or extracellular THBS1 mediates cytoprotection against
cytokines or thapsigargin (Fig. 1). Conditioned medium from
INS-1E cells overexpressing THBS1 (Fig. 3A) or exogenously
added recombinant THBS1 (Fig. 3B), shown previously by us to
transduce signals in B-cells (13), failed to protect INS-1E cells
against thapsigargin- or cytokine-induced apoptosis. On the
other hand, an adenovirus for THBS1 containing the ER reten-
tion sequence KDEL (13) was cytoprotective to the same extent
as the control THBS1-FLAG adenovirus (Fig. 3, C and D).

Islet cells from THBS1 /" mice have increased susceptibility to
cell death induced by ER stressors or cytokines (Fig. 1F), and we
next evaluated whether ER-retained THBS1-KDEL could rescue
this phenotype. The THBS1-KDEL adenovirus markedly induced
THBS1 mRNA expression under both control or stressed condi-
tions (Fig. 3E). As in human islet cells (Fig. 1J), THBS1"/* mouse
islet cells were protected against thapsigargin or cytokines (Fig.
3F). Importantly, overexpression of ER-retained THBSI in islet
cells that lack endogenous THBS1 (THBS1 /") abrogated the
marked susceptibility to thapsigargin or cytokines (Fig. 3F), indi-
cating that the ER-retained form of THBSL1 is necessary and suffi-
cient for the cytoprotective effects.

THBS1 cytoprotection is not related to modulation of ATF6 or
oxidative stress

It has been shown that THBS1 protects cardiomyocytes
against ER stress by activating the transcription factor ATF6
and, thereby, up-regulating protective chaperones such as
binding immunoglobulin protein (BiP) (12). This does not,
however, explain 3-cell protection by THBS1. THBS1 silencing
did not impair ATF6 activity, as assessed using a luciferase
reporter, or BiP expression (supplemental Fig. S2, A and B). In
keeping with previous findings (12, 13), THBS1 knockdown
reduced signaling in the PERK pathway (supplemental Fig.
S2A). Conversely, THBS1 overexpression did not induce
expression of BiP protein or mRNA, nor did it induce the
ATEFG6 target GRP94 (supplemental Fig. S2, C and D).

Our recent findings indicate that THBS1 protects B-cells
from lipotoxicity via the PERK-NRF2 pathway and consequent
up-regulation of antioxidant defenses (13). THBSI1 loss or gain
of function did not, however, alter oxidative stress (supplemen-
tal Fig. S3, A and B). Cytokines, but not thapsigargin, increased
oxidation of 2',7’-dichlorofluorescein diacetate (DCF), and this
was not altered by modulation of THBS1 expression (supple-
mental Fig. S3, A and B). In line with these findings, neither
THBS1 silencing nor overexpression modified expression of
the antioxidant genes GSTml, catalase, and SOD2 (supple-
mental Fig. S3, C and D). THBS1 knockdown did not affect the
activity of an antioxidant response element luciferase reporter
(supplemental Fig. S3E), which we found previously to be acti-
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Figure 1. THBS1 modulates ER stress- and cytokine-induced f3-cell death. Aand B, cleaved caspase 9 and 3 and THBS1 protein expression (A) and apoptosis
(B) in INS-1E cells transfected with negative (N, control) or two THBS1 (T7 and T2) siRNAs and exposed to thapsigargin (THA) or IL-18 and IFN-+y (IL+IFN) for 16 h
(n = 3-4). C-E, THBST mRNA expression (C), apoptosis (D), and immunostaining (E) for cleaved caspase 3 and insulin in dispersed human islet cells transfected
with negative or THBS1 siRNA and exposed to thapsigargin or IL+IFN for 24 h (n = 3-7).F, cell death in wild-type (THBS1*/*) or THBS1~/~ mouse islets exposed
to thapsigargin or IL+IFN for 48 h (n = 4). G and H, cleaved caspase 9 and 3 and THBS1 protein expression (G) and apoptosis (H) in INS-1E cells infected with
luciferase (L, control) or THBS1 (T) adenovirus (ad) and exposed to thapsigargin or IL+IFN for 16 h (n = 4)./and J, THBST mRNA expression (/) and apoptosis (J)
in dispersed human islet cells infected with luciferase or THBS1 adenovirus and exposed to thapsigargin or IL+IFN for 24 h (n = 3-4).*, p < 0.05 versus control
(CTL); #, p < 0.05 versus cytokine- or thapsigargin-treated cells transfected with negative siRNA or infected with luciferase-expressing adenovirus.

vated by palmitate via up-regulation of NRF2 (13). As a whole,
these observations indicate that THBS1 protects 3-cells against
palmitate or cytokines/ER stressors by different mechanisms.

THBS1 protects [3-cells against cytokines and ER stress via
MANF induction

We next explored alternative mechanisms underlying the
THBS1 cytoprotection and examined the expression of MANF,
shown previously to be up-regulated by THBS (12). MANF is an

SASBMB

ER stress—regulated protein that is crucial for postnatal mouse
B-cell survival (19). Thapsigargin and cytokines inhibited
MANTF protein expression, and this was aggravated by THBS1
knockdown (Fig. 4A4). Palmitate, on the other hand, did not
reduce MANF expression (Fig. 44). A time course analysis in
INS-1E cells exposed to cytokines showed that MANF expres-
sion already decreased at 4 h, and more so in THBS1-depleted
cells (Fig. 4B). On the other hand, adenoviral THBS1 overex-
pression induced and preserved MANF expression for up to 8 h

J. Biol. Chem. (2017) 292(36) 14977-14988 14979



THBS1 protects [3-cells through MANF

A

c 15

8

QI_LO

éO.S * * *

I

— 00
CTL THA BRE IL+IFN

C Thapsigargin
0 2 4 8 16 24  Time(h)
A | B-actin

E 0 2 4 8 Time (h)
-+ -+ - 4+ -+ MGI32
--.!-—! .THBS1
——————— | TUDUlIN

B
CTL THA IL+IFN

3 - -

THBS1

B-actin

D IL+IFN
0 2 4 8 16 24 Timen)
——— THBS1
——————————— | B ctin

Figure 2. ER stress and proinflammatory cytokines decrease THBS1 expression. A and B, THBS1T mRNA (A) and protein (B) expression in human islets
exposed to THA, brefeldin A (BRE), or IL-18 and IFN-vy (IL+IFN) for 48 h (n = 3). Cand D, time course of THBS1 protein expression in INS-1E cells treated with
thapsigargin or IL+IFN (n = 3). E, THBS1 protein expression in INS-1E cells treated with IL+IFN and MG132 (n = 3). *, p < 0.05 versus control (CTL).

of cytokine exposure (Fig. 4C). MANF depletion by cytokines
was not associated with a change in its subcellular localization,
which remained cytoplasmic (Fig. 4D). As for THBS1, protea-
some inhibition by MG132 prevented the cytokine-induced
loss of MANTF protein (Fig. 4E).

We next examined the role of MANF directly using two
independent siRNAs. Efficient MANF knockdown (Fig. 4F)
did not affect basal cell survival but sensitized INS-1E cells to
both thapsigargin- and cytokine-induced apoptosis (Fig.
4@G). A similar sensitization was seen in human insulin-pro-
ducing EndoC-BH1 cells (Fig. 4H). Apoptosis was further
confirmed by immunostaining for cleaved caspase 3 in
MANFEF-depleted thapsigargin- or cytokine-treated EndoC-
BH1 cells (supplemental Fig. S4). MANF silencing also
induced caspase 3 cleavage in insulin-stained primary hu-
man B-cells exposed to thapsigargin (Fig. 47 and supplemen-
tal Fig. S5) or cytokines (supplemental Fig. S5).

We next examined whether cytoprotection could be
achieved by exogenously added MANF protein. Recombinant
MANF protein failed to protect clonal rat INS-1E cells against
thapsigargin or cytokines (Fig. 54). In clonal human EndoC-
BHI cells, however, partial protection was observed from both
stresses (Fig. 5B). Comparable cytoprotection was seen in
dispersed mouse islet cells (Fig. 5C). Apoptosis was further
assessed by TUNEL assay, confirming that recombinant MANF
decreases thapsigargin-induced apoptosis in insulin-positive
mouse 3-cells (Fig. 5D). Taken together, these data show signif-
icant protection conferred by exogenous MANF in mouse and
human but not rat B-cells, pointing to a species difference.

To evaluate whether MANF is indeed an important mediator
of the protective effects of THBS1, we adenovirally overex-
pressed THBS1 and knocked down MANTF in parallel (Fig. 6A).
Inhibition of MANF abrogated the beneficial effects of THBS1
overexpression in INS-1E cells (Fig. 6B). Similarly, efficient THBS1
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overexpression and MANF silencing in human islet cells (Fig. 6C)
abolished the cytoprotection conferred by THBS1 (Fig. 6D). In
mirror experiments, lentiviral MANF overexpression concurrent
to THBSI silencing (Fig. 6E) completely prevented sensitization to
cytokine-induced apoptosis (Fig. 6F). These data show that MANF
is necessary and sufficient for THBS1-mediated 3-cell protection
against cytokines or ER stress.

We next evaluated the effector mechanisms downstream of
THBS1-MANF that regulate B-cell apoptosis. Previous data
indicate that the BH3-only proteins PUMA (p53-upregulated
modulator of apoptosis, also known as BBC3) (20), death pro-
tein 5 (DP5) (21), and BCL2-interacting mediator of cell death
(BIM) (22) are critical mediators of cytokine-induced apopto-
sis, whereas the Bcl-2 family proteins Bcl-2 and Bcl-XL antag-
onize these effects (16). Knockdown or overexpression of
THBS1 did not modify the expression of DP5, PUMA, BIM,
Bcl-2, and Bcl-XL in INS-1E cells (supplemental Fig. S6, A-E).
BH3-only proteins may be a necessary component for cytokine-
induced apoptosis, even under conditions where their expres-
sion is not up-regulated (16, 23). To test whether this was the
case here, we silenced THBSI1 in parallel with BIM, DP5,
PUMA, or BCL-2-associated death promoter (BAD) (Fig. 7A).
Efficient knockdown was achieved for BIM (by 52%; Fig. 7, B and
D), DP5 (silencing of mRNA by 63%), PUMA (by 74%), and BAD
(by 89%). BIM silencing, but not DP5, PUMA, or BAD knockdown,
partially prevented cytokine-induced apoptosis in THBS1-de-
pleted B-cells (Fig. 7A). In a similar experimental approach, BIM
also mediated apoptosis induced by thapsigargin (Fig. 7, B and C).
Because THBSI cytoprotection requires MANF expression (see
above), we examined whether BIM also mediates cell death
induced by MANF deficiency. BIM knockdown fully abrogated
sensitization to cytokine-induced apoptosis in MANF-depleted
cells (Fig. 7, D and E). These observations indicate that BIM is the
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Figure 3. Intra- but not extracellular THBS 1 improves 3-cell survival. A, apoptosis in INS-1E cells exposed for 16 h to THA or IL-1B and IFN-+y (IL+IFN) in conditioned
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THBS1-KDEL (K) adenovirus and exposed to thapsigargin or IL+IFN for 16 h (n = 4). E and F, THBST mRNA expression (E) and apoptosis (F) in dispersed wild-type
(THBS1*/*) or THBS1 ™/~ mouse islet cells infected with luciferase or THBS1-KDEL adenovirus and exposed to thapsigargin or IL+IFN for 48 h (n = 4).*, p < 0.05 versus
untreated cells; #, p < 0.05 versus thapsigargin- or cytokine-treated cells infected with luciferase adenovirus or exposed to ad Luc medium; §, p < 0.05 as indicated.

downstream mediator of B-cell apoptosis following inhibition of
the THBS1-MANTF pathway.

Discussion

The local release of proinflammatory mediators by infiltrat-
ing immune cells contributes to pancreatic B-cell demise in
T1D. Cytokine-induced ER stress is one of the molecular mech-
anisms activating the mitochondrial pathway of apoptosis in
B-cells (9, 10, 24). This stress response also plays a role in 3-cell
failure in T2D and in monogenic forms of diabetes (25-27).
Here we identified a novel B-cell protective role of the ER-res-
ident proteins THBS1 and MANTF in cytokine- and chemical ER
stress—induced apoptosis. Partial cytoprotection was observed
across species (rat, mouse and human). THBS1 maintains the
expression levels of the anti-apoptotic protein MANF and
thereby prevents BIM-dependent mitochondrial apoptosis.
Prolonged exposure of B-cells to cytokines or thapsigargin
leads to proteasomal THBS1 and MANF degradation and loss
of this prosurvival mechanism (Fig. 8).

SASBMB

THBS1 and MANTF are both present in the ER, secreted via
the constitutive secretory pathway, and regulated under condi-
tions of ER stress. THBS1 is glycosylated and contains disulfide
bridges. Under conditions of Ca®>* depletion and ER stress, the
protein misfolds and is retained in the ER or targeted for deg-
radation. MANF expression is induced by ER stress. In 3-cell
ER stress induced by misfolding insulin, MANF mRNA was
induced, but protein levels were not examined (28). MANF is
retained in the ER through different mechanisms: it has a C-ter-
minal sequence that binds the KDEL receptor, and it binds BiP
and reticulon proteins; under ER stress conditions, its secretion
is enhanced (29).

THBS1 has a wide interactome. In cardiomyocytes, THBS
interacts with ATF6 and promotes its ER-to-Golgi transloca-
tion, activation, and function, thereby eliciting an adaptive ER
stress response (12). Under lipotoxic conditions, THBS1 pro-
motes PERK phosphorylation and NRF2 activation, thereby
equipping B-cells with an antioxidative stress defense (13).
Extracellularly, THBS1 inhibits angiogenesis by interacting

J. Biol. Chem. (2017) 292(36) 14977-14988 14981
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0.05 versus thapsigargin- or cytokine-treated cells transfected or not with negative siRNA.

with a range of factors and receptors. In keeping with this bio-
logical effect, Carlsson and co-workers (30-32) showed that
THBS1 knock-out mice have large hypervascularized islets.
These THBS1 /" islets are dysfunctional, however, with
reduced glucose oxidation and insulin biosynthesis and release
and, at the whole-body level, impaired glucose tolerance. In
db/db mice, THBS1 disruption leads to cardiomyopathy and
heart failure (33). In man, a SNP in the THBS1 coding region
reduces Ca®" binding to the protein and impairs THBS1
folding and secretion; this has been associated with prema-
ture coronary artery disease (34, 35). Taken together, we
suggest that maintenance of THBS1 expression is required
to prevent or delay B-cell failure in diabetes and diabetes
complications.
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MANF expressionisalsorequired for B-cell survival. Antiapo-
ptotic effects have been reported for intracellular and extracel-
lular MANF in different cell types. The C-terminal domain of
MANEF is structurally similar to the BAX (BCL-2-associated
protein X) inhibitory protein Ku70, and it was suggested to
prevent neuronal apoptosis by inactivating BAX (36), but
experimental evidence for this could not be found in a subse-
quent study (37). MANF knock-out mice develop severe diabe-
tes because of progressive postnatal reduction of B-cell mass,
caused by decreased proliferation and increased apoptosis (19).
Deficient MANF induction underlies immune-independent
B-cell failure and diabetes susceptibility of non-obese diabetic
(NOD) mice when the protein load in the islets of these mice is
increased by expression of hen egg lysozyme under the Ins2
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Figure 5. Extracellular MANF improves human and mouse but not rat 3-cell survival. A, apoptosis in INS-1E cells treated with recombinant MANF protein
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control cells; #, p < 0.05 for IMANF versus vehicle-treated cells.

promoter (38). Whether MANF expression is lost in B-cells in
T1D models under less artificial conditions has not been
reported. Serum MANTF levels were found to be increased in
children with T1D around the time of diabetes onset (39), but
the reason for this is unclear. As MANF levels in long-standing
T1D patients are similar to non-diabetic controls, and consid-
ering its ubiquitous expression, it seems plausible that most
circulating MANF does not originate from B-cells (39). A
homozygous MANF mutation (IVS1 + 1G>T) was recently
reported as a likely pathogenic candidate in a 22-year-old
woman with diabetes, hypothyroidism, primary hypogonad-
ism, short stature, microcephaly, deafness, myopia, and alope-
cia (40). This case report awaits confirmation, but it may sug-
gest a role for MANF loss of function in human diabetes.

Based on the evidence for chronic ER stress in pancreatic
B-cells in T1D (9, 24), attempts have been made to protect
B-cells from ER stress. In the NOD and RIP-LCMV-GP (rat
insulin promoter-lymphocytic choriomeningitis virus-glyco-
protein) mouse models of T1D, promoting a functional ER
stress response by chemical chaperones confers survival poten-
tial to pancreatic 3-cells (10). Peroxisome proliferator-acti-
vated receptor (PPAR)-vyactivation by pioglitazone administra-
tion to NOD mice improved -cell function and survival by
promoting an adaptive ER stress response (41). Based on our
findings, we suggest that reducing ER Ca®>* depletion and ER
stress may be B-cell-protective through the preservation of
THBS1 and MANF expression. Under conditions of severe ER
stress, approaches that sustain intracellular THBS1 and
MANTF expression in (3-cells should be explored as a cytopro-
tective strategy in T1D.
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Experimental procedures
Culture of mouse islet cells, human islets, and INS-1E cells

Animals were used according to the Belgian Regulations for
Animal Care with approval of the Université Libre de Bruxelles
Ethical Committee. Islets were isolated from 10- to 13-week-
old THBS1 knock-out (30) or wild-type mice. Human islets
(from 20 donors; age, 64 = 3 years; body mass index, 26 + 1
kg/ m?; 12 males and 8 females; cause of death cerebral hemor-
rhage (six), cardiovascular disease (eight), trauma (five) or
unknown (one)) were isolated by collagenase digestion and
density gradient purification. The islets were cultured, dis-
persed, and transfected as described previously (42). The per-
centage of B-cells, examined by insulin immunofluorescence,
was 46% = 3%. The rat insulin-producing INS-1E cell line (a
kind gift from Prof. C. Wollheim, Centre Médical Universitaire,
Geneva, Switzerland) was cultured in RPMI 1640 (with 2 mm
GlutaMAX-I) containing 5% FBS (43) and used at passages 60 —72.
Human EndoC-BH1 cells (44) were kindly provided by Prof. Raph-
ael Scharfmann (Université Paris-Descartes, Institut Cochin,
Paris, France) and cultured as described previously (45).

Treatments

Mouse islets and INS-1E cells were exposed to a combination
of IL-18 (10 units/ml, R&D Systems, Abingdon, UK) and
recombinant mouse or rat IFN-y (1000 or 100 units/ml, respec-
tively; R&D Systems) or 1 um thapsigargin in medium with 1%
or 5% FBS, respectively. Recombinant human IL-18 (50 units/
ml, R&D Systems) and human IFN-vy (1000 units/ml; Pepro-
tech, London, UK), 1 um thapsigargin, or 10 ng/ml brefeldin A
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(Sigma) were added in medium without serum for human islets
(4, 7). MG132 (Sigma) was dissolved in DMSO and added at 2
uM concentration 2 h before and during cytokine exposure.
INS-1E cells were exposed to 0.5 mM palmitate in the presence
of 0.75% fatty acid-free BSA and 1% FBS, as described previ-
ously (13, 46). Lyophilized THBS1 (purified from human plate-
lets; Calbiochem, San Diego, CA) was diluted in bidistilled
water and used at 2 ug/ml. Recombinant MANF was used at
100 ng/ml. For the TUNEL assay (see below), mouse islets were
cultured in medium with 10% FBS.

RNAi

Proteins were knocked down using previously validated
siRNAs against THBS1, DP5, PUMA, BIM, and BAD (13, 20,42,
47, 48). MANF siRNAs (rat MANF-1 5164483, rat MANEF-
2 $164484, and human MANF s15436) were from Life
Technologies). The negative control of 21-nt duplex RNA (Qia-
gen, Hilden, Germany) does not affect 3-cell function, gene
expression, and viability (49). Lipid—-RNA complexes were
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formed in Opti-MEM (1 pl of Lipofectamine RNAi-MAX,
Invitrogen, to 150 nm siRNA) and added to the cells at a final
concentration of 30 nm siRNA (50). Transfected cells were cul-
tured for 2 days before treatment.

Real-time PCR

Poly(A)™ RNA was isolated from cells using oligo(dT)
25-coated polystyrene Dynabeads (DYNAL, Oslo, Norway) and
reverse-transcribed to cDNA with the GeneAmp RNA PCR kit
(PerkinElmer Life Sciences). Real-time PCR amplification was
done using IQ SYBR Green Supermix (Bio-Rad) on a MyiQ2
instrument. PCR product concentration was calculated as cop-
ies per microliter using a standard curve, and values were cor-
rected for the reference gene GAPDH. -Actin, the expression
of which is not modified by cytokine exposure (4), was used as
the reference gene for mouse or human samples. The specific
primer sequences are described in supplemental Table S1.
Gene expression values are shown as -fold change of control,
except in the mouse islet experiments.

SASBMB


http://www.jbc.org/cgi/content/full/M116.769877/DC1

B
o
* 3t

1 [ Negative SIRNA  # #
| MTHBST SRNA % *

Apoptosis (%) >

- - - BIM DP5 PUMA BAD

IL+IFN
B
CTL THA IL+IFN

NTBTBNTBTBN T B TB SRNA
8 B s = = |THBS1
.. - .

o0 »e -
'a: ~- e e - & BIM

|....-....-——-.-—-|Tubunn

Control IL+IFN
N M B MBN M B MB
-—_as e

- - -

BIM

S ——— - |MANF

MTUK)UHH

THBS1 protects [3-cells through MANF

§
C =
50 1 O Negative siRNA #
— D THBS1 SiRNA i §
X 40 {WBIMSIRNA 4
~ @ THBS1+BIM siRNA *
R *
(2}
(e}
—
Q.
o
Q.
<

CTL THA IL+IFN

m

B
o

O Negative siRNA
O MANF siRNA

30 {M BIM siRNA

@ BIM+MANF siRNA

Apoptosis (%)

Control IL+IFN

Figure 7. BIM is the mediator of THBS1/MANF deficiency-mediated B-cell apoptosis. A, apoptosisin INS-1E cells transfected with negative or THBS1
siRNA in combination with BIM, DP5, PUMA, or BAD siRNAs and exposed to IL-18 + IFN-y (IL+/FN) for 16 h (n = 3). Band C, THBS1 and BIM protein
expression (B) and apoptosis (C) in INS-1E cells transfected with negative (N), THBS1 (T), and/or BIM (B) siRNAs and exposed to THA or IL+IFNfor 16 h (n =
3). CTL, control. D and E, BIM and MANF protein expression (D) and apoptosis (E) apoptosis in INS-1E cells transfected with negative, MANF (M), and/or
BIM siRNAs and exposed to IL+IFN for 16 h (n = 2-3). *, p < 0.05 versus untreated cells; #, p < 0.05 versus thapsigargin- or cytokine-treated cells

transfected with negative siRNA. §, p < 0.05 as indicated.

Cytokines
ER Ca2* depletion
ER stress

THBS1 —— Transcriptional inhibition
Proteasomal degradation

|

MANF — Proteasomal degradation

| }

BIM ] BIM activation
Extracellular Caspase 3 and 9 cleavage
MANF l
Apoptosis
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human B-cells, triggering BIM-dependent B-cell apoptosis. The images of
mitochondria and the ER are from Servier Medical Art.
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Assessment of 3-cell apoptosis

Apoptotic cells were counted by fluorescence microscopy
after staining with the DNA-binding dyes Hoechst 33342 (10
pg/ml) and propidium iodide (5 ug/ml) (51). Caspase 3 and 9
cleavage confirmed apoptosis (see below). TUNEL staining was
assessed by Click-iT TUNEL Alexa Fluor imaging assay
(Thermo Fisher Scientific), performed according to the instruc-
tions of the manufacturer, was followed by insulin staining.
Slides were mounted with Vectashield mounting medium con-
taining DAPI (Vector Laboratories), and the number of apopto-
tic B-cells was quantified.

Western blotting

Western blot analyses were performed using 20 ug of whole-
cell extract protein (51). Laemmli buffer was added, and the sam-
ples were boiled for 5 min. Protein expression and phosphoryla-
tion were analyzed using the specific primary rabbit/mouse
antibodies described in supplemental Table S2. After incubation
with secondary horseradish peroxidase—labeled anti-rabbit or
anti-mouse antibodies (1:10,000, Jackson ImmunoResearch
Laboratories, Baltimore Pike, PA), protein-specific signals were
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detected using chemiluminescence Supersignal (Pierce) and
quantified using Scion Image (Scion Corp., Frederick, MD).

Infection with recombinant adenoviruses

Cells were infected with adLUC (a luciferase-expressing con-
trol virus), adTHBS1 (expressing mouse THBS1), adTHBS1-
KDEL (expressing mouse THBS1 fused to KDEL), or ad THBS1-
FLAG (expressing mouse THBS1 fused to the FLAG peptide)
(12, 13) and used at a multiplicity of infection of 1. To induce
MANTF overexpression, cells were infected with the CMV-
MANEF lentivirus or control CMV-GFP lentivirus at a multi-
plicity of infection of 5. After 3—4 h of infection, the medium
was changed, and cells were treated or collected 48 h later.

DCF assay

Oxidative stress was measured by incubating cells with the flu-
orescent dye DCF (10 um, Sigma) for 30 min at 37 °C. Fluorescence
was quantified in a Victor 2 reader (PerkinElmer Life Sciences) and
corrected for total protein quantified in cell lysates (13).

Promoter reporter assay

The UPRE luciferase reporter construct was kindly provided
by Prof. Prywes (Columbia University, New York, NY). The
PARE-TI-luciferase reporter containing a single copy of the 41-bp
murine GST-Ya antioxidant response element and minimal
TATA-Inr promoter was kindly provided by Prof. Fahl (University
of Wisconsin, Madison, WI). Cells were transfected using Lipo-
fectamine 2000 with 250 ng of reporter construct and pRL-CMV
plasmid (50 ng, with Renilla used as an internal control for trans-
fection efficiency) and treated after 48 h. Luciferase activity of cell
lysates was expressed as relative luciferase/Renilla activity.

Immunofluorescence

INS-1E cells were fixed with 4% formalin for 10 min, permea-
bilized with 0.1% Triton for 5 min, blocked in PBS with 3% goat
serum for 30 min, and incubated overnight with MANF anti-
body. The slides were stained with Hoechst 33342 and second-
ary antibodies conjugated with Alexa Fluor 568 (Life Technol-
ogies) and analyzed by inverted fluorescence microscopy (Zeiss
Axiovert 200, Oberkochen, Germany) at X20 magnification
and 20 °C. Double immunofluorescence for insulin and cleaved
caspase 3 was performed on dispersed human islet cells as
described previously (52).

Statistical analysis

Data are presented as means * S.E. of the indicated number
(n) of independent experiments. Comparisons were performed
by analysis of variance followed by paired ¢ test with Bonferroni
correction for multiple comparisons where needed. p < 0.05
was considered statistically significant.
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