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Abstract

Analysis of the cerebrospinal fluid (CSF) proteome has proven valuable to the study of 

neurodegenerative disorders. To identify new protein/pathway alterations and candidate 

biomarkers for amyotrophic lateral sclerosis (ALS), we performed comparative proteomic 

profiling of CSF from sporadic ALS (sALS), healthy control (HC), and other neurological disease 

(OND) subjects using label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS). 

A total of 1,712 CSF proteins were detected and relatively quantified by spectral counting. Levels 

of several proteins with diverse biological functions were significantly altered in sALS samples. 

Enrichment analysis was used to link these alterations to biological pathways, which were 

predominantly related to inflammation, neuronal activity, and extracellular matrix regulation. We 

then used our CSF proteomic profiles to create a support vector machines classifier capable of 

discriminating training set ALS from non-ALS (HC and OND) samples. Four classifier proteins, 

WD repeat-containing protein 63, amyloid-like protein 1, SPARC-like protein 1, and cell adhesion 

molecule 3 were identified by feature selection and externally validated. The resultant classifier 

distinguished ALS from non-ALS samples with 83% sensitivity and 100% specificity in an 

independent test set. Collectively, our results illustrate the utility of CSF proteomic profiling for 

identifying ALS protein/pathway alterations and candidate disease biomarkers.
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INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a progressive, fatal neurodegenerative disorder 

marked by the loss of motor neurons of the corticospinal pathway. ALS is the most common 

form of adult-onset motor neuron disease, with an overall incidence of approximately 2–3 

per 100,0001–4. The disease is relentlessly progressive, with most patients dying from 

respiratory failure within 3–5 years of diagnosis4–8.

At present, diagnosis of ALS is made clinically by use of the symptom-based El Escorial 

diagnostic criteria. While clinically stringent, the method does not take into account the 

underlying etiology of the disease. Numerous mechanisms have been proposed to cause 

motor neuron death in ALS, including oxidative stress, mitochondrial dysfunction, impaired 

RNA metabolism, protein aggregation, and proteasomal/autophagic dysfunction, among 

others9–12. These phenomena occur in a heterogeneous fashion in sporadic ALS cases, as do 

differences in site of onset and rate of disease progression. This has led to the suggestion 

that ALS is actually a constellation of disorders of diverse cause united by the death of 

motor neurons and common symptoms13,14. Thus, a more accurate understanding of the 

underlying protein/pathway alterations accompanying sporadic ALS could enhance 

diagnostic accuracy, identify novel therapeutic targets, provide relevant indices of disease 

progression/therapeutic response, and aid in stratification of the patient population for 

research studies and clinical trials.

Proteomic profiling of cerebrospinal fluid (CSF) offers considerable promise towards these 

ends. In the context of ALS, CSF is a proximal fluid to the site of disease15, which gives it 

several advantages as a biomarker source over more distal fluids, such as plasma. One such 

advantage is its less expansive dynamic range of protein concentrations compared to plasma. 

By reducing levels of highly abundant proteins such as albumin, sensitive detection and 

relative quantification of low abundance, disease-associated proteins can be achieved16,17. 

CSF and other proximal fluids are also hypothesized to contain a higher concentration of 

disease-associated proteins as a result of proximity to the diseased tissue microenvironment, 

from which such proteins may be secreted or released. For example, CSF TDP-43, an RNA 
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binding protein known to form inclusions in neurons in ALS and FTLD-TDP, has been 

suggested as a possible biomarker for these disorders18–20. Thus, pathological intracellular 

changes resulting from disease can be detected externally through proximal fluids, such as 

CSF. CSF has proven useful for identifying biomarkers for other neurodegenerative diseases, 

including Alzheimer’s disease21, Parkinson’s disease22, and multiple sclerosis23. CSF-based 

ALS biomarkers could likewise be used for several purposes, including identifying novel 

disease mechanisms, diagnostic testing24, and evaluating drug efficacy25.

The ability to detect and quantify the CSF proteome has been aided considerably by the 

development of label-free mass spectrometric comparative approaches, such as ion 

abundance and spectral counting26–28. Several studies have shown that the values produced 

by these label-free methods reliably correlate with overall protein abundance across orders 

of magnitude in complex samples. Following appropriate processing (including filtering and 

normalization27), robust statistical methods can be applied to identify proteins of differential 

abundance between samples, as well as associated pathways/processes from databases such 

as Gene Ontology, Reactome, or KEGG29,30. Moreover, when combined with an appropriate 

feature selection method31, machine-learning approaches can be applied to such datasets to 

build parsimonious classifiers that, e.g., distinguish healthy from diseased samples based on 

protein profiles31–35. Such methods have been used to define the normal human CSF 

proteome. A recent study identified 2,630 proteins from a group of healthy individuals using 

immunoaffinity depletion of abundant proteins, multiple liquid chromatography separations, 

and label-free quantitation36. Moreover, 56% of these proteins were CSF-specific. This 

study and others suggest that the CSF proteome is relatively stable across time and that inter-

subject differences are considerably greater than intra-subject longitudinal differences36,37, 

highlighting the utility of CSF for biomarker discovery.

Several previous studies have attempted to discover CSF-based biomarkers of ALS using 

mass-spectrometric methods38–42. A limitation of these studies is the small overall number 

of CSF samples and, consequently, proteins, peptides, or M/Z peaks detected, which can 

limit downstream data analysis and the detection of low-abundance, disease-associated 

proteins. The present study, by contrast, benefitted from an extensive patient and control 

population that dramatically enhanced our ability to identify CSF proteins. Subjects were 

segmented into groups based on age at symptom onset (< 40, 40–60, or > 60 years old) and, 

for ALS subjects, site of symptom onset (limb or bulbar). This grouping strategy was 

selected to reduce non-contributing inter-subject variability, while preserving disease-

associated differences. Moreover, pooling of samples was used to maximize the sensitivity 

of protein detection.

The goals of this study, thus, were two-fold. First, we sought to use LC-MS/MS label-free 

methods to characterize the CSF proteome in ALS, healthy controls, and other neurologic 

disease subjects to identify disease-associated alterations in proteins and biological 

pathways. Second, we sought to identify CSF proteins that could distinguish sALS from 

both healthy control and other neurological disease subjects by applying feature selection 

and machine learning methods to our CSF proteomic profiles.
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EXPERIMENTAL SECTION

Subjects and CSF Collection

In the first phase of the study, CSF samples from 90 sporadic amyotrophic lateral sclerosis 

(sALS), 80 healthy control (HC), 20 multiple sclerosis (MS), 20 Alzheimer’s disease (AD), 

10 lower motor neuron disease (LMND), 10 upper motor neuron disease (UMND), and 15 

familial ALS (fALS) subjects were collected. These samples were pooled into 9 sALS, 8 

HC, 2 MS, 2 AD, 1 LMND, 1 UMND, and 2 fALS samples for discovery profiling (training 

set). Subjects were assigned to a given pool based on age and disease status, as indicated in 

Table 1, and all pools were gender matched. Each pool contained 200 µL of CSF from each 

subject in that pool. The MS, AD, LMND, and UMND samples were collectively grouped as 

“other neurological diseases” (OND, n=6) for subsequent statistical analyses. A separate set 

of 9 sALS, 7 fALS, and 4 HC CSF samples were individually processed for LC-MS/MS and 

used in the test set for validation of the classifier generated from our training set of pooled 

samples described above. The demographics of these individual samples are also described 

in Table 1.

Revised El Escorial criteria were used to diagnose all ALS subjects, with 18% diagnosed as 

definite ALS, 33% probable ALS, 24% probable/lab supported ALS, and 25% possible 

ALS. CSF samples were obtained by lumbar puncture from subjects at either the University 

of Pittsburgh Medical Center (UPMC) or Massachusetts General Hospital (MGH) upon 

informed patient consent. The study was approved by both institutional review boards.

Following collection, all samples were spun at 3000 rpm at 4 °C for 10 minutes to remove 

any cells and debris, mixed by inversion, aliquoted, and stored in protein low bind 

polypropylene tubes at −80 °C within 2 hours of harvesting. Only CSF samples without 

visible blood were processed by centrifugation. Hemoglobin levels in all final CSF samples 

were measured by ELISA to eliminate those with evidence of significant levels of 

hemoglobin, denoting blood contamination43.

CSF Preparation and Digestion

To enhance the detection of low-abundance CSF proteins, abundant proteins were depleted 

using the Multi-Affinity Removal System spin cartridge (Agilent; Santa Clara, CA, USA) 

that removes the 6 most abundant human CSF proteins (albumin, IgG, IgA, haptoglobin, 

transferrin, and α-1-antitrypsin) according to the manufacturer’s protocol. Depleted samples 

were buffer exchanged into 50 mM ammonium bicarbonate (NH4HCO3) by centrifugation 

using Amicon Ultra3K columns (Millipore; Darmstadt, Germany) to a final volume of 300 

µL.

The samples were reduced with addition of 10 mM DTT at 56 °C for 30 minutes. Samples 

were then alkylated in 55 mM iodoaceteamide in the dark at room temperature for 30 

minutes. Next, 3 µL of 1% ProteaseMAX and Trypsin Gold (Promega; Madison, WI, USA) 

were added to the samples at a 1:20 ratio and digested at 37 °C for 9 hours. All samples 

were then de-salted using Pepclean C-18 spin columns (Pierce; Rockford, IL, USA). Peptide 

digests were eluted with 20 µL 0.1% TFA and 60% ACN by spinning at 1500 g for 1 minute 

twice. Finally, samples were dried by vacuum centrifugation.
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Liquid Chromatography-Tandem Mass Spectrometry

Peptide digests were re-suspended in 0.1% TFA and analyzed in triplicate by nanoflow 

reversed-phase liquid chromatography tandem mass spectrometry (LC-MS/MS) using a 

Dionex Ultimate 3000 LC system (Dionex Corporation; Sunnyvale, CA, USA) coupled 

online to a linear ion trap (LIT) mass spectrometer (LTQ, ThermoFisher Scientific; San Jose, 

CA, USA). Run orders for each experiment were randomly determined. Separations were 

performed using 75 µm i.d. × 360 o.d. × 10 cm long fused silica capillary columns 

(Polymicro Technologies; Phoenix, AZ ,USA) that were slurry packed in house with 5 µm, 

300 A pore size C-18 silica-bonded stationary phase (Jupiter, Phenomenex; Torrance, CA, 

USA). Approximately 1 µg of total peptide digest, as determined by BCA assay, was 

injected onto a C-18 trap column (Dionex, ThermoFisher Scientific; San Jose, CA, USA), 

the column was washed for 3 min with mobile phase A (2% acetonitrile, 0.1% formic acid in 

water) at a flow rate of 30 µL/min. Peptides were eluted using a linear gradient of 0.3% 

mobile phase B (0.1% formic acid in acetonitrile)/min for 130 minutes, then to 95% B in an 

additional 10 min, all at a constant flow rate of 0.20 µL/min. Column washing was 

performed at 95% B for 20 minutes, after which the column was re-equilibrated in mobile 

phase A prior to subsequent injections. The LIT-MS was operated in a data dependent 

MS/MS mode in which each full MS scan was followed by five MS/MS scans where the five 

most abundant peptide molecular ions are selected for collision-induced dissociation (CID), 

using a normalized collision energy of 30%. Data were collected over a broad mass to 

charge (m/z) precursor ion selection scan range of m/z 375–1800 with an isolation window 

of 3 m/z. Dynamic exclusion was used to minimize redundant selection of peptides 

previously selected for CID with the following settings: repeat count = 1, repeat duration = 

30 s, exclusion list size = 500, exclusion duration = 90 s and expiration S/N threshold = 3.

Spectral Counting

Tandem mass spectra were searched against a combined UniProt human protein database 

from the European Bioinformatics Institute (http://www.ebi.ac.uk/integr8, downloaded 

10-05-2010, 58,769 sequences) using the SEQUEST algorithm in BioworksBrowser (v3.31, 

ThermoFisher Scientific; Waltham, MA, USA). For a fully tryptic peptide to be considered 

legitimately identified, it had to achieve charge state and proteolytic cleavage-dependent 

cross correlation (Xcorr) scores of 1.9 for [M+H]1+, 2.2 for [M+2H]2+ and 3.5 for [M

+3H]3+, and a minimum delta correlation ΔCn of 0.08. Additionally, peptides were searched 

for methionine oxidation with a mass addition of 15.9949 and serine, threonine and tyrosine 

phosphorylation with a mass addition of 79.9663. A false peptide discovery rate less than 

2% was determined by searching the primary tandem MS data using the same criteria 

against a decoy database wherein the protein sequences are reversed44. Results were further 

filtered using software developed in-house, and differences in protein abundance between 

the samples were derived by summing the total CID events that resulted in a positively 

identified peptide for a given protein in accession across all samples (spectral 

counting)26–28. We further filtered our data by specifying that for a protein to be considered 

for subsequent statistical analysis, at least 2 unique peptides of the protein had to be detected 

in at least one pooled sample, in keeping with recent guidelines designed to improve 

reproducibility in spectral count data analyses45.
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Statistical Analysis of Relative Protein Abundance

We used the beta binomial test for spectral count data46 together with normalization to total 

spectral counts27 to assess relative levels of identified proteins between groups. To control 

the false discovery rate (FDR)47 of the test, we imputed obtained p values into the R 

package “Q Value” to generate q values from the associated p values. Bootstrap-based 

resampling of p values48–52 was used to correct for multiple testing, with the FDR set at 

0.05. To provide further insight into the relative differences in protein abundance between 

groups, we computed log2 fold difference values for each 2 group comparison (sALS/HC, 

sALS/OND, OND/HC). A value of “1” was added to each protein’s spectral count value to 

account for proteins with a zero spectral count before computing the fold difference53. To 

further control false positives in our analysis, we used a joint q value and fold change criteria 

to assign statistical significance to a given protein identified in our analysis. Previous work 

has shown that proteins with high spectral count values tend to produce low fold differences 

and vice versa27,45. Accordingly, we used a minimum log2 fold difference of 0.26 for 

proteins with an average spectral count of 100 or more, a 0.58 log2 fold difference for 

proteins with an average spectral count of 1 to 100, and a 0.77 log2 fold difference for 

proteins with an average count of less than 1 to filter our list of proteins with a q value of 

less than 0.05.

Ontological Enrichment Analysis

After filtering our dataset, we used the program STRAP (version 1.5)54,55 to characterize the 

CSF proteome based on the annotations of each identified protein in the Gene Ontology 

(GO) domains “Biological Process”, “Cellular Complex”, and “Molecular Function”. We 

next visualized our list of statistically significant proteins in a network layout using 

Cytoscape56. Proteins were visualized first by log2 fold difference values using a red 

(decreased in x for the x/y fold difference) to green (increased in x for the x/y fold 

difference) gradient above each protein’s name.

To identify biological pathways associated with our list of differentially abundant proteins, 

we performed enrichment analysis using ClueGO57. The hypergeometric test (with 

Benjamini-Hochberg multiple testing correction47) was used to assess enrichment of 

categories in the GO domain “Biological Process”58. Consistent with recent guidelines for 

the selection of a reference set59,60, we used our list of all identified proteins across groups 

as the reference set for enrichment analysis. In the resultant graph, the proportion of shared 

proteins associated with a pair of given GO terms was evaluated using the kappa statistic. 

Pairs of terms (nodes) with a kappa value of at least 0.4 were connected with edges in the 

network, with the edge thickness reflecting the kappa score value.

Following the identification of over-represented GO Biological Processes, we used 

Cluepedia61 to enrich the networks created from these terms. First, we visualized leading 

terms (GO Biological Process terms with the highest number of statistically significant 

proteins) together with the proteins associated with that term and the respective fold 

difference. In the second phase of enrichment, we sought to provide a functional context to 

the alterations in relative protein levels we identified. To that end, we selected an over-

represented GO Biological Process (“Regulation of Extracellular Matrix” [ECM]) and 
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visualized known STRING62,63 actions (activation, inhibition, expression, and post-

translational modification) for statistically significant ECM proteins, other ECM proteins 

detected in our CSF samples, and several ECM proteins not found in our CSF samples. 

STRING action scores were used to connect nodes (proteins) in the network. All final 

figures were made in Adobe Illustrator CS5 (Adobe Systems, Mountain View, CA, USA).

Feature Selection, Classifier Construction, and Validation

In the second phase of the study, we used our CSF proteomic profiles to construct a classifier 

capable of separating ALS CSF samples from HC and OND CSF samples. The data mining 

software package Weka64 was used for this purpose. The classification task was the binary 

separation of ALS samples (ALS) from HC and OND (collectively, NON) samples. The 

training set included all of our pooled sALS and HC CSF proteomic profiles and 3 of the 6 

OND proteomic profiles. An independent test set comprised of the remaining 3 OND 

samples, 9 individual sALS samples, 2 pooled fALS samples, 7 individual fALS samples, 

and 4 individual HC samples was used for subsequent validation of the classifier. The 

assignment of samples to the training or test set is indicated in Table 1.

To develop a model resilient to overfitting of the training set, we used a support vector 

machines algorithm for classification and performed filtering and feature selection on our 

list of proteins in the training set samples. Filtering was performed by removing any protein 

from our list if the mean spectral count of any of the classes was zero. Golub’s index (GI), a 

feature selection method previously used for both disease classification65 and feature 

selection66 of spectral count data, was used to select proteins for the classifier. The GI for a 

protein, i, was calculated as follows:

where  is the mean normalized spectral count for protein i for the indicated class and 

 is the standard deviation for protein i for the indicated class. Proteins with a GI ≥ 1.5 

were included in the classifier. Weka’s linear support vector machine (SVM) learning 

algorithm was used to build the classifier. Consistent with prior studies66,67, we used a 

complexity parameter, C, of 100 for classifier training and test set evaluation.

To evaluate the performance of the classifier on the training set, we used stratified 10-fold 

cross validation. We then validated our classifier on the test set described above and in Table 

1. To evaluate the performance of the classifier on the test set, we used common measures of 

predictive performance (ROC curve, sensitivity, specificity, ROC AUC, and F-measure).

Validation of Selected Proteins

To validate our LC-MS/MS results, we used several complementary techniques. Proteins 

selected for our SVM classifier were validated using Western blotting (WB). Polyacrylamide 

gel electrophoresis (PAGE), electrophoretic transfer to PVDF membrane, and WB were 

performed as previously described68. Briefly, equal volumes of CSF were loaded in each 

SDS-PAGE gel lane and total protein by reversible PVDF membrane stain (G-Biosciences; 
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St. Louis, MO, USA) was used as a loading control. For WB experiments, the following 

antibodies were used: rabbit-anti-WDR63 (Abcam; Cambridge, MA, USA), rabbit-anti-

APLP1 (Proteintech; Chicago, IL, USA), rabbit-anti-SPARCL1 (Lifespan Biosciences; 

Seattle, WA, USA), rabbit-anti-CADM3 (Sigma Aldrich; St. Louis, MO, USA), and rabbit-

anti-secretogranin I (Proteintech; Chicago, IL, USA). To permit blot to blot comparisons, 

Western blot data were normalized using sum total normalization69.

ELISAs for complement C3 and cystatin C were performed as previously described70,71. 

Immunohistochemistry and light microscopy of spinal cord tissues for tenascin R were 

performed as previously described72. Immunohistochemistry, immunofluorescence, light 

microscopy, and confocal microscopy of spinal cord tissues for eIF 4e-transporter (4e-T) 

were performed as previously described72.

RESULTS

Global CSF Analysis

Our experimental work flow is illustrated in Figure 1. The demographics of each of our 

pooled samples are shown in Table 1. Within each of these pooled CSF samples, we 

identified an average of 6,137 peptides, corresponding to an average of 1,234 unique 

proteins per sample. Collectively, we identified 1,712 unique proteins across all groups after 

filtering. (Table S-1). To further understand the composition of the obtained CSF proteome, 

we grouped these proteins based on their annotations in the Gene Ontology (GO) domains 

“Biological Process”, “Cellular Complex”, and “Molecular Function”. Figure 2 shows the 

proportional representation of the various sub-categories in each GO domain with each value 

expressed as a percentage of the total. Sub-category proportions did not differ substantially 

between sporadic ALS (sALS), healthy control (HC), and other neurological disease (OND) 

groups (data not shown). Our results indicate that proteins associated with diverse biological 

processes, cellular complexes, and molecular functions are found in the CSF proteome. 

Notably, we detect proteins from numerous intracellular organelles, including the nucleus, 

mitochondria, ribosomes, and ER in the CSF, consistent with previous work36,37.

Statistical Analysis of Relative Protein Abundance

To identify proteins of differential abundance in the CSF between sALS, HC, and OND 

groups, we performed univariate statistical analysis. Filtering the list of statistically 

significant proteins from this analysis using a fold difference criteria (see Experimental 

Section) predominantly had the effect of removing several proteins for which the class 

average spectral count was less than 1. In total, we identified 123 proteins that met our FDR 

and fold difference significance criteria (Table S-2). The top 20 proteins of increased and 

decreased abundance are shown in Table 2. Several proteins with documented associations 

with ALS were identified in the top 20 protein list, including complement C3, cystatin C, 

neurofilament medium polypeptide, ephrin type-A receptor 4, and secretogranin 2. Another 

consistent theme in the top 20 protein list was a decrease in relative levels of extracellular 

matrix (ECM)-associated proteins in sALS, including tenascin R, semaphorins 7A and 3G, 

cell adhesion molecule 3, neurexin-3-alpha, agrin, and oligodendrocyte-myelin glycoprotein 

(Table 2).
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Ontological Enrichment Analysis

To identify biological pathways associated with our list of differentially abundant CSF 

proteins, we performed enrichment analysis in the Gene Ontology (GO) Biological Process 

domain. We found 27 enriched GO terms that were over-represented in our list of 

statistically significant proteins. These results are shown in Figure 3. Several themes 

emerged from our analysis of overrepresented biological processes. We identified many 

neuron-specific processes, including “synapse organization”, “regulation of axonogenesis”, 

“regulation of synaptic plasticity”, and “fasciculation of sensory neuron axon”. Of note, all 

proteins comprising the term “fasciculation of sensory neuron axon” (ephrin type A 

receptors 3 and 4 and multiple epidermal growth factor-like domains protein) were 

significantly altered in sALS samples compared to healthy control samples. Other major 

processes identified from the analysis included “regulation of extracellular matrix”, “acute 

inflammatory response”, and “glial cell differentiation”, each of which has clear relevance to 

ALS.

Taking those biological processes with the highest number of associated proteins, we next 

visualized these terms and their associated proteins together in a network view (Figure 4). A 

protein’s association with a term is indicated by an edge connecting the two. The relative 

contributions of proteins of increased and decreased abundance in sALS can be seen in this 

view. For example, the identification of the terms “acute inflammatory response” and 

“regulation of inflammatory response” is mainly due to increased levels of proteins 

associated with these terms in sALS CSF samples, particularly those proteins of the 

complement pathway. Likewise, the enrichment of the terms “synapse organization” and 

“extracellular matrix organization” stems primarily from the decreased levels of proteins 

associated with these terms in sALS samples. Collectively, this network view underscores 

the notion that the ALS disease process is associated with a concomitant decrease in 

synaptic and ECM proteins and increase in inflammation-related proteins within the CSF. 

We also note that proteins with a high degree of connectivity in the network of Figure 4 (i.e., 

those associated with several terms) tended to be ECM-associated proteins, such as tenascin 

R and laminin subunit alpha 2 (LAMA2), providing further evidence that ECM alterations 

are a preponderant pathological phenomenon in sALS (Figure 4).

To provide functional context and a pathway-level understanding of the observed ECM 

alterations, we linked ECM proteins using STRING action scores to create a network of the 

“regulation of extracellular matrix” GO term. We note that not all proteins from the term are 

shown to enhance the interpretability of the figure. The final network is shown in Figure 5. 

Several findings emerge from this analysis. First, we provide clear evidence of the power of 

LC-MS/MS CSF proteomic profiling to identify ECM-associated proteins. Of the 102 

proteins shown in Figure 5, 85 could be detected in at least one of our pooled CSF samples 

(those that could not are bracketed with parentheses in Figure 5). Second, proteins whose 

levels are significantly altered in sALS CSF converge on few common targets, suggesting 

that pathological ECM protein and signaling alterations are widespread in ALS. Lastly, we 

again note that the majority of altered ECM proteins are decreased in sALS samples. The 

network view thus emphasizes that these decrements may have widespread signaling effects, 

particularly for proteins such as gelsolin (GSN) that act on numerous ECM proteins.
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Validation of Known ALS Biomarkers

We observed significant differences in a number of proteins previously identified as 

candidate ALS CSF biomarkers by LC-MS/MS. To further evaluate the utility of these 

proteins as CSF biomarkers, we performed ELISAs and Western blots on individual CSF 

samples from subjects comprising our ALS, HC, and OND pooled samples. The results of 

these experiments are shown in Figure 6. Complement C3 levels were measured by ELISA 

in 23 sALS, 26 HC, and 12 OND CSF samples. Statistically significant increases in CSF C3 

levels were observed when comparing sALS or OND samples to HC samples (mean sALS = 

3.42 ± 0.29 µg/mL, mean OND = 3.40 ± 0.37 µg/mL, and mean HC = 2.22 ± 0.12 µg/mL, p 
< 0.001 for the sALS/HC comparison, p < 0.01 for the OND/HC comparison). We measured 

cystatin C levels by ELISA in 20 sALS samples, 8 HC samples, and 11 OND samples. A 

statistically significant decrease in cystatin c levels was observed in sALS CSF relative to 

HC (means = 3.27 ± 0.34 µg/mL and 4.98 ± 0.36 µg/mL, respectively, p < 0.01). A non-

significant decrease in cystatin C levels was seen when comparing sALS samples to OND 

samples (means = 3.27 ± 0.34 µg/mL and 4.26 ± 0.35 µg/mL, respectively, p > 0.05). Levels 

of secretogranin I were measured by Western blotting of 14 sALS, 10 HC, and 10 OND CSF 

samples. Secretogranin I was significantly decreased in sALS compared to HC (p < 0.01) 

and OND (p < 0.01) samples.

Validation of Protein Alterations in ALS Spinal Cord Tissue

We previously demonstrated that altered levels of CSF proteins in sALS can be used to 

identify pathological alterations in ALS motor neurons72. To extend this approach to the 

current study, we validated select proteins from our list of differentially abundant proteins 

using immunohistochemistry and immmunofluorescence. Because decreases in ECM 

proteins were a consistent theme in our results, we stained 4 sALS and 4 HC lumbar spinal 

cord tissue sections with anti-tenascin R antibody. Tenascin R is a component of 

perineuronal nets, the densely organized extracellular matrix surrounding neurons. We 

observed a clear loss of tenascin R immunoreactivity surrounding motor neurons in sALS 

lumbar spinal cord that was not seen in HC subjects (Figure S-1). Thus, the ECM of the 

ALS-afflicted motor neurons shows perturbations consistent with the results of LC-MS/MS 

proteomic profiling of CSF.

LC-MS/MS also identified a significant increase in levels of the eIF 4e transporter (4e-T) in 

the CSF of sALS patients when compared to HC. 4e-T is a component of stress granules74 

and we therefore performed tissue staining to determine if 4e-T is a component of inclusions 

in sALS spinal cord motor neurons, as has been observed for other stress granule-associated 

proteins75. We observed filamentous and granular nuclear 4e-T staining and cytoplasmic 4e-

T-positive inclusions in lumbar spinal cord motor neurons in the 4 sALS cases examined 

(Figure S-2). By contrast, the 4e-T staining in motor neurons of all 4 HC subjects was 

diffuse, non-filamentous, and nuclear. Immunofluorescence microscopy was then used to 

determine if 4e-T inclusions were p62 positive. We observed considerable accumulation of 

autofluorescent cytoplasmic lipofuscin in motor neurons (Figure S-2; arrowheads) that 

obfuscated the detection of cytoplasmic 4e-T. This accumulation was not present in the 

nucleus, however, and numerous nuclear, p62-positive 4e-T granules in sALS spinal cord 

motor neurons not seen in motor neurons of HC subjects are evident (Figure S-2; arrows).
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Classifier Construction and Machine Learning

In the final phase of the study, we used our pooled sample CSF proteomic profiles from the 

training set to build a support vector machine (SVM) classifier capable of distinguishing 

ALS samples from non-ALS samples in an independent test set. We first used filtering to 

remove proteins for which any class mean spectral count was 0, as such proteins could lead 

to an overfitted classifier and, consequently, poor validation performance on separate test 

sets. Moreover, low CSF peptide counts may reflect low protein levels that can lead to an 

inability to validate protein levels via other methodologies.

Feature selection was used to identify proteins that exhibited large alterations between ALS 

and HC/OND (collectively, NON) samples. Four proteins were selected for training of the 

classifier: WD repeat-containing protein 63 (WDR63), amyloid-like protein 1 (APLP1), 

SPARC-like protein 1 (SPARCL1), and cell adhesion molecule 3 (CADM3). WDR63 was 

increased in the CSF of ALS samples, while the remaining three proteins were decreased in 

sALS samples relative to NON samples.

These four proteins were used as features for building a linear SVM classifier using the 

training set samples. For the initial evaluation of the classifier, we used stratified 10-fold 

cross validation. All training set samples were correctly classified in the cross validation. An 

independent test set consisting of individual CSF samples analyzed by LC-MS/MS was used 

to further validate the classifier. Several familial ALS (fALS) samples were included to 

increase the size of the test set, as indicated in Table 1. While etiologically distinct from 

sALS subjects, we postulated that motor neuron death may nevertheless produce changes in 

CSF protein levels that are common to both sALS and fALS. The performance metrics of 

the test set evaluation and an ROC curve are shown in Figure 7. The 4 protein classifier 

achieved 83% sensitivity and 100% specificity with the test set, misclassifying one sALS 

sample and two fALS samples. Inspection of the misclassified samples showed that relative 

levels of WDR63 were lower and relative levels of APLP1 were higher in these samples than 

in the other ALS test set samples.

We then validated the levels of our four classifier proteins by Western blot (WB) in select 

individual CSF samples from the training set samples. The results of these experiments are 

shown in Figure 8. WB experiments were performed on sALS (n=15) samples, HC samples 

(n=12), and OND (n=10) samples. Relative levels of WDR63 were increased in sALS CSF 

compared to HC and OND samples (p < 0.001 for both comparisons). Two adjacent bands 

for WDR63 were observed and the results reflect levels of total WDR63 in the CSF. Relative 

levels of APLP1 were decreased in the CSF of sALS patients relative to HC (p < 0.001) and 

OND (p < 0.01) samples. Relative levels of SPARCL1 were decreased in the CSF of sALS 

patients relative to HC (p < 0.01) and OND (p < 0.05) samples. Relative levels of CADM3 

were decreased in the CSF of sALS patients relative to HC and OND samples (p < 0.001 for 

both comparisons).

DISCUSSION

The goals of this study were two-fold. First, we sought to use LC-MS/MS to construct 

comprehensive CSF proteomic profiles of sALS, HC, and OND samples to identify ALS 
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protein/pathway alterations. Second, we sought to build a classifier capable of distinguishing 

ALS from HC and OND samples using our CSF proteomic profiles. With regard to our first 

aim, we identified 1,712 proteins in the CSF across all groups. This number is consistent 

with recent studies characterizing the normal CSF proteome36,37. Similarly, our data sets 

show strong concordance in the proportion of all identified proteins assigned to the various 

Biological Process, Cellular Complex, and Molecular Function Gene Ontology domains, 

suggesting that the overall composition of the CSF proteome is relatively stable, despite 

multiple daily turnovers of the total CSF volume76, 77. This, together with CSF’s proximity 

to the CNS tissue microenvironment, makes it an ideal biomarker source for neurological 

disorders such as ALS. The results also illustrate the considerable sensitivity that is achieved 

by pooling samples and using label-free relative quantitation, a finding that has been shown 

in other studies characterizing the CSF proteome36,37.

The sensitivity of our LC-MS/MS method enabled the detection of differences in relative 

levels of many proteins between sALS and non-sALS samples. Several of these proteins 

have documented associations with ALS. For example, we detected and validated alterations 

in the previously described candidate ALS CSF biomarkers complement C370, cystatin 

C63,78, and secretogranin I79. We also demonstrate decreases in the known ALS disease 

modifier80, ephrin type A receptor 4 (EphA4) in the CSF of ALS subjects. Reducing EphA4 

expression or signaling prolongs survival in ALS model systems80, so the decrease we 

observe in ALS CSF may reflect a compensatory response by the CNS to the ALS disease 

process.

We used enrichment analysis to identify biological processes and pathways altered in ALS. 

The majority of over-represented processes were related to inflammation, synaptic activity, 

cell growth, or extracellular matrix (ECM) regulation. The latter three processes are similar 

to those recently identified using microarray analysis of gene expression in oculomotor and 

spinal motor neurons81, while elevations in inflammation-associated proteins, specifically 

those of the complement pathway, have been previously associated with human ALS70, 82–84 

and ALS model systems85, 86. We detect elevations in several proteins of the complement 

pathway, confirming previously-described elevations of CSF C370,82 and providing new 

evidence for an increase in C5 (which is upregulated in animal models of ALS85, 87) and C2, 

as well as decreased complement factor I. Our results support a role of elevated complement 

pathway activation as a contributing factor to motor neuron death and a potential therapeutic 

target. These complement pathway proteins may also be useful biomarkers to evaluate the 

effectiveness of drugs that target this pathway.

Aberrant synaptic changes are also well-described in human ALS and ALS model systems. 

Axonal dying-back is recognized both as a pathologic feature and hypothesized causal 

mechanism in ALS88,89 and degenerative structural changes are observed at synapses of 

motor neurons and neuromuscular junctions (NMJ) in ALS spinal cord tissue90,91. We now 

identify candidate synaptic proteins that contribute to these pathological changes. For 

example, decreases in semaphorins 7A and 3G were observed in sALS CSF. The 

semaphorins act as axonal guidance molecules and have previously been linked to ALS92,93. 

They are expressed in a variety of cell types, including neurons, glia, regulatory T-cells, and 

vascular epithelial cells. Probing these cell types for altered levels of semaphorins and other 
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synaptic proteins in ALS tissues or model systems may provide insights into how cell type-

specific altered synaptic protein expression leads to changes in synapse structure and 

function that lead to or contribute to motor neuron degeneration in ALS.

Many of the synaptic proteins that were altered in sALS samples are also components of the 

extracellular matrix (ECM). Pathological ECM alterations have been described for ALS94 

and ALS model systems95. Our results showed consistent decreases in levels of ECM 

proteins, including tenascin R, agrin, and cell adhesion molecule 3. These observations point 

to a loss of integrity of perineuronal nets (PNN), the highly specialized ECM surrounding 

neurons. The functions of PNNs are diverse and include physically surrounding neurons, 

protecting against harmful external agents96, influencing synaptic transmission97, and 

buffering against oxidative stress98. Validation of the decrease in tenascin R seen in CSF by 

immunohistochemistry of spinal cord tissues further establishes altered morphology and 

protein composition of PNNs as a pathological phenomenon in ALS, consistent with 

findings on TNR in ALS animal models95. As the alterations we observed were localized to 

motor neurons, we propose that pathological PNN alterations contribute to selective MN 

vulnerability in ALS.

An implicit and overarching assumption of CSF proteomic profiling is the idea that protein 

alterations detected in CSF can provide evidence of intracellular changes resulting from the 

ALS disease process42. We showed previously that RBM45, an RNA binding protein whose 

levels are increased in the CSF of ALS patients72, forms cytoplasmic inclusions in motor 

neurons and glia of ALS patients. Similarly, we now show that increased levels of the stress-

granule associated74 eIF4E transporter protein (4e-T) in the CSF of sALS patients correlate 

with its presence in p62-positive nuclear granules and cytoplasmic inclusions (Figure S-2). 

Intranuclear inclusions are a pathological feature of sALS99,100 and we demonstrate the 

presence of a transport protein, 4e-T, in these inclusions. Moreover, while p62-positive 

intranuclear inclusions have been described in c9ORF72-linked familial ALS tissue101, we 

demonstrate the presence of such inclusions for the first time in sporadic ALS patients.

Our second major objective was to build a discriminant classifier capable of distinguishing 

ALS patients from healthy controls and other neurodegenerative disease patients on the basis 

of the CSF proteomic profiles of each group. We70 and others102 have shown that the CSF 

protein levels and machine learning can be used to distinguish sALS and healthy control 

subjects. Whether this approach is also feasible for the simultaneous separation of sALS 

from HC and OND samples was unclear. As is typical for high-dimensional –omics data 

sets, we were able to build a classifier capable of correctly classifying all training set 

samples. Validation on an independent test set composed of sALS, fALS, HC, and OND 

samples demonstrated that the classifier generalized well, achieving 83% sensitivity and 

100% specificity.

Given the considerable clinical and pathological heterogeneity of ALS9–12, no biomarker (or 

panel of biomarkers) is likely to achieve 100% sensitivity and specificity when separating 

ALS from both HC and OND samples. Because ALS is a relatively rare disorder, the 

specificity of a classifier is of paramount importance. In this regard, our set of classifier 

proteins shows considerable promise, correctly classifying all HC and OND samples. The 
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misclassified ALS samples had lower WDR63 and higher APLP1 levels than the other ALS 

samples profiled. Determining the relationship between WDR63 and APLP1 CSF levels and 

ALS disease mechanisms and clinical parameters, thus, is an important area of future 

research. Similar to other LC-MS/MS studies66, the sample size of both the training and test 

sets is small relative to the number of proteins identified. Future studies are thus needed to 

confirm the predictive ability of this biomarker panel with a larger set of samples.

Previously identified CSF protein biomarkers for ALS have often been of increased 

abundance in ALS, such as complement C3 and neurofilament proteins70. Markers of 

inflammation or neuronal injury will correctly separate ALS from HC samples. They are, 

however, less likely to correctly distinguish ALS from OND samples (Figure 6a), which is 

also important for biomarker-based disease classification. To account for this, we grouped 

HC and OND samples together as NON (i.e., non-ALS) samples prior to feature selection. 

Proteins identified by this approach may include more specific markers of ALS-associated 

loss of motor neuron synaptic integrity or degeneration. The roles of APLP1 and CADM3 in 

neuromuscular junction (NMJ) function discussed below provide support for this notion.

Classification based on decreased protein abundance creates the potential for 

misclassification in subsequent studies due to protein instability or differences in analytical 

sensitivity. For this reason, future studies are required to evaluate the longitudinal stability of 

the decreases we observed in our classifier proteins. Likewise, evaluating the clinical stage at 

which these alterations become apparent has considerable implications for the diagnostic/

prognostic value of these markers. From an analytical perspective, our ability to detect all 

proteins of the classifier in all of our individual samples profiled by Western blot suggests 

that these markers are readily detectable in CSF. They are thus likely amenable to future 

measurement by quantitative approaches, such as ELISA, which may further enhance 

measurement sensitivity and classification accuracy.

The four proteins used in our classifier have plausible connections to motor neuron 

degeneration. Three of the proteins used in the classifier, amyloid-like protein 1 (APLP1), 

SPARC-like protein 1 (SPARCL1), and cell adhesion molecule 3 (CADM3) were decreased 

in the CSF of ALS patients. Each protein has documented associations with neurons and 

synaptic activity, making them promising candidate biomarkers for ALS. APLP1 associates 

with NMDA receptors and regulates surface expression of this family of glutamatergic 

receptors103. This regulation is crucial for maintaining cellular homeostasis and synaptic 

activity. Knockout of APLP1 and APLP2 (also significantly reduced in our ALS samples) 

results in reduced pre- and post-synaptic compartment size at the NMJ104. Reduced levels of 

APLP1 in ALS, therefore, may contribute to muscle de-innervation and axonal die-back by 

altering the integrity of the NMJ.

SPARCL1 belongs to the BL-40 family of ECM proteins105. The protein is secreted by 

astrocytes and promotes synapse formation106. Knockout of the SPARCL1 gene in mice 

resulted in a decrease in the number of excitatory synapses in the superior colliculus107. In 

addition to synapse formation, the protein may also be essential for synaptic maintenance. If 

so, reduced levels of SPARCL1 could result in decreases in synaptic activity that ultimately 

contributes to motor neuron degeneration. SPARCL1 also binds extracellular calcium108. 
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Reduced astrocytic or neuronal SPARCL1 may then also promote calcium dyshomeostasis, 

which could likewise contribute to motor neuron vulnerability.

CADM3 (or nectin-like molecule 1 or synCAM3) is a cell junction protein that localizes to 

synapses110. The protein is an immunoglobulin-like molecule that is enriched in the nervous 

system and regulates cell-cell contacts and synapse formation109. In keeping with this role, 

developmental patterns of CADM3 expression are observed in the nervous system of 

multiple organisms109. The protein also has a role in the formation of functional NMJs110. 

Decreased levels of CADM3, thus, are predicted to impair synaptic maintenance, produce 

neuromuscular junction impairments, and reduce ECM integrity. Cumulatively, CADM3-

induced alteration of any or all of these processes could make motor neurons susceptible to 

degeneration.

At present, studies characterizing the function of WDR63, the last of our classifier proteins, 

have not been performed. Unlike APLP1, SPARCL1, and CADM3, levels of WDR63 were 

elevated in ALS samples relative to HC and OND. This specificity for ALS makes it a 

promising biomarker though a hypothesized role in motor neuron degeneration or ALS more 

generally is difficult to predict. The WD-repeat is a common structural motif and many 

diverse functions, including signal transduction, mRNA synthesis, and cytoskeletal 

assembly, among others, can be assigned to proteins containing WD repeats111,112. Thus, 

further research is necessary to determine a functional connection between WDR63 and 

ALS.

In conclusion, we constructed LC-MS/MS proteomic profiles of sALS, HC, and OND CSF 

samples. We used these profiles to identify proteins whose levels are significantly altered in 

sALS samples relative to HC and OND samples. In doing so, we identified several proteins 

with documented associations with ALS, as well as several new candidate biomarkers with 

clear biological relevance to motor neuron degeneration. Using ontological analysis, we 

described several biological pathways that are altered in ALS. Lastly, we used an SVM 

learning algorithm to build a classifier capable of separating ALS samples from HC and 

OND samples.

Collectively, our results illustrate the utility of label-free LC-MS/MS proteomic methods, the 

promise of CSF as a biomarker source, and the applicability of machine learning methods to 

classifying samples based on mass spectrometric-based proteomic profiles.
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ABBREVIATIONS

ALS amyotrophic lateral sclerosis

sALS sporadic amyotrophic lateral sclerosis

fALS familial amyotrophic lateral sclerosis

HC healthy control

OND other neurological disease

MS multiple sclerosis

LMND lower motor neuron disease

UMND upper motor neuron disease

AD Alzheimer’s disease

ROC AUC Area Under Receiver Operating Characteristic Curve
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Figure 1. 
Experimental Workflow. The process of sample preparation, data acquisition, and data 

analysis are shown in a flowchart. sALS = sporadic amyotrophic lateral sclerosis, HC = 

healthy control, OND = other neurological disease.
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Figure 2. 
Gene Ontology (GO) domain overview of all identified proteins. All identified proteins were 

input into the three GO domains – Biological Process, Cellular Complex, and Molecular 

Function – and the resultant terms and percentage of proteins associated with these terms are 

visualized as pie charts. Term names and percentages are located next to their position on the 

chart. Percentages correspond to all 1,712 proteins identified across all classes (sALS, HC, 

and OND).
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Figure 3. 
GO Biological Process enrichment analysis. Proteins whose levels were significantly 

different between sALS, HC, and OND groups were used to identify over-represented GO 

Biological Process terms. The results are shown in a network view where node size 

corresponds to the term’s p value and edge thickness corresponds to kappa score value as 

indicated in the legend at right. Nodes are positioned for ease of interpretation and edge 

length is arbitrary. Leading terms, GO terms with the highest number of included proteins, 

are shown in a larger, colored font.
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Figure 4. 
Leading terms from Figure 3 are shown with their associated proteins. Each two-group log2 

fold difference (sALS/HC, sALS/OND, OND/HC) is visualized using a red to green 

gradient. Proteins with a log2 fold difference > 0.58 for sALS relative to both HC and OND 

groups are emphasized as indicated, as are externally validated proteins.
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Figure 5. 
Enrichment of “Regulation of Extracellular Matrix” GO Term. Statistically significant 

proteins from the GO Biological Process term “Regulation of Extracellular Matrix” were 

visualized as circular nodes, with log2 fold difference (on a red to green gradient) shown in 

the three squares above each node. Proteins with a log2 fold difference > 0.58 for sALS 

relative to both HC and OND groups are emphasized as indicated, as are externally validated 

proteins. The network was enriched using STRING action scores (activation, inhibition, 

expression, and post-translational modification; colored as indicated) to add associated 

proteins to the network. Statistically significant protein names from the LC-MS/MS data are 

shown in red font for emphasis. Names of proteins not detected in our LC-MS/MS analysis 

are bracketed by parentheses. Edge width reflects the strength of the STRING action score 

as indicated in the legend and edge length is arbitrary.
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Figure 6. 
Validation of Known ALS Biomarkers. A. Complement C3 levels in CSF from sALS, HC, 

and OND subjects were measured by ELISA in triplicate. The concentration of Complement 

C3 (µg/mL ± SEM) is indicated on the y axis. B. Cystatin C levels in CSF from sALS, HC, 

and OND subjects were measured by ELISA. The concentration of cystatin C (µg/mL ± 

SEM) is indicated on the y axis. C. Relative levels of secretogranin I in CSF from sALS, 

HC, and OND subjects were measured by Western blot. The mean normalized integrated 

density value ± SEM is indicated on the y axis. For A–C. * = p < 0.001 for the indicated 

comparison, # = p < 0.01 for the indicated comparison.
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Figure 7. 
Classifier Performance. A. ROC curve showing the performance of the support vector 

machines classifier on an independent test set. The various levels of the decision threshold 

are shown as diamonds along the curve. B. Confusion matrix, classifier errors, and the 

indicated performance metrics are shown for the application of the classifier to an 

independent test set.
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Figure 8. 
Validation of Classifier Proteins. Relative levels of classifier proteins in CSF from training 

set sALS, HC, and OND subjects were measured by Western blot. The mean normalized 

integrated density value ± SEM is indicated on the y axis. A. WDR63. B. APLP1. C. 
SPARCL1. D. CADM3. For A–D, * = p < 0.001 for the indicated comparison, # = p < 0.01 

for the indicated comparison, and § = p < 0.05 for the indicated comparison.
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