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Abstract

Coronary Artery Disease (CAD) is not only the most common form of heart disease, but also the 

leading cause of death in both men and women[1]. We present a system that is able to 

automatically predict whether patients develop coronary artery disease based on their narrative 

medical histories, i.e., clinical free text. Although the free text in medical records has been used in 

several studies for identifying risk factors of coronary artery disease, to the best of our knowledge 

our work marks the first attempt at automatically predicting development of CAD. We tackle this 

task on a small corpus of diabetic patients. The size of this corpus makes it important to limit the 

number of features in order to avoid overfitting. We propose an ontology-guided approach to 

feature extraction, and compare it with two classic feature selection techniques. Our system 

achieves state-of-the-art performance of 77.4% F1 score.

Graphical abstract

1. Introduction

Coronary Artery Disease (CAD) is not only the most common form of heart disease, but also 

the leading cause of death in both men and women[1]. The second track of the 2014 i2b2/
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UTHealth challenge targeted the automatic identification of risk factors for CAD: a complex 

clinical NLP task which could benefit from concept extraction, assertion classification, 

diagnosis extraction, medication extraction, smoking history, and family history[2].

Free text is considered to be a rich source of information for purposes of health care 

operations and research[3]. Furthermore, there have been several recent studies 

demonstrating the effectiveness of natural language processing (NLP) and machine learning 

methods for disease detection using clinical free text, which are discussed as related works 

in this paper. Thus, our aim is to develop a model for automatically predicting development 
of CAD from clinical free text.

We study the 2014 i2b2 Heart Disease Risk Factors Challenge Data[24] from a different 

perspective. Our purpose is to develop a system that automatically predicts patients who 

develop CAD based on their narrative medical histories before a diagnosis of CAD. For this 

purpose, we examine common risk factors for CAD—these risk factors consist of many of 

the same known risk factors for type-2 diabetes. They include high cholesterol, high-blood 

pressure, obesity, lack of physical activity, unhealthy diet, and stress[25]. As all patients in 

the corpus have diabetes, they are all at high risk for CAD and carry a lot of the same overall 

risk factors. This makes it challenging to separate the patients who actually develop the 

disease from those who do not. Additionally, solving this task on a small corpus requires 

special attention to overfitting. Our hypothesis is that it is possible to predict whether 

patients will develop CAD using a domain ontology to reduce the high dimensional nature 

of free text medical records.

Our approach to CAD prediction is unique in that we examine unstructured data (i.e., 

clinical free text in patients’ electronic medical records (EMRs)) to predict which patients 

will develop a CAD diagnosis in the future. This is a natural language processing (NLP) and 

machine learning task. We believe that our system can complement, supplement and even 

provide a second perspective to existing CAD models that use only non-textual, structured 

data for predicting the disease[23]. As part of the original 2014 i2b2/UTHealth challenge, 

several teams developed systems with the goal of identifying risk factors for heart 

disease[4–22]. However, to the best of our knowledge our work marks the first attempt at 

automatically predicting development of CAD using free text in medical records.

We approach the CAD prediction task as a document classification problem. This means that 

we treat each record as one sample, independent of any previous or future sample (i.e., we 

disregard the longitudinal nature of the data). We simply classify if given one patient record 

at a discrete point in time that patient will eventually develop (or not develop) a CAD 

diagnosis. To improve classifier performance, we propose an ontology-guided approach to 

feature extraction and compare this with two standard feature selection techniques. 

Specifically, our novel feature extraction technique automatically filters out features based 

on domain knowledge in the Unified Medical Language System (UMLS).

The clinical application of our model is in classification of patients who will develop CAD 

in difficult-to-discriminate situations; e.g., when patients are all at high risk for CAD and 

carry many of the risk factors.
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Related works

There is a well established volume of research outlining natural language processing and 

machine learning methods for disease classification in clinical free text. Pineda et al. applied 

the pipeline-based NLP tool Topaz to extract 31 UMLS concept unique identifier (CUI) 

features for classification of influenza in emergency department free-text reports[26]. The 

team compared seven different classifiers to an expert-built Bayesian classifier and achieved 

a 93% F1 score.

Similar methods have been applied to detect thromboembolic disease in free-text radiology 

reports[27]. Specifically, Pham et al. developed a system that pre-processed documents using 

a simple sentence segmenter and tokenizer. They created a lexicon to define concept types, 

which were incorporated into the feature space along with filtered unigrams and bigrams. 

They then experimented with Weka to train Support Vector Machine (SVM) and Maximum 

Entropy (MaxEnt) classifiers, of which the MaxEnt classifier achieved the highest F1 score 

of 98%.

Furthermore, Redd et al. developed a set of retrieval criteria for identifying patients at risk 

for scleroderma renal crisis in electronic medical records[28]. The team developed their NLP 

system using data from the Veterans Informatics and Computing Infrastructure (VINCI). 

Their concept extraction criteria included specific disease and symptom mentions related to 

systemic sclerosis (SSc). The group then trained an SVM classifier to detect documents that 

indicated a diagnosis of SSc and reported an F1 score of 87.3%.

Several teams have experimented with domain ontologies to guide feature extraction for text 

classification. Wang et al., e.g., established a concept hierarchy by mapping raw terms to 

medical concepts using the UMLS, which they then searched to obtain the optimal concept 

set[29]. This feature selection technique improved the overall accuracy of their text 

classification system as compared with Principal Component Analysis (PCA) for 

dimensionality reduction.

Additionally, Garla and Brand exploited the UMLS ontology during feature engineering to 

improve the performance of machine-learning-based classifiers trained on the 2008 i2b2 

Obesity Challenge Data Set[30]. This data set includes 15 diseases, including CAD, and its 

classification based on one narrative record per patient. To enhance feature ranking for this 

task, Garla and Brand propagated contingency tables of concepts in UMLS to their 

hypernyms, which they refer to as the propagated information gain. They then assigned each 

concept the highest propagated information of any hypernym. The use of this technique 

yielded the greatest performance improvement for their system, however, it did not improve 

performance on the classification of CAD.

For predicting CAD before it develops, we experimented with Naive Bayes, SVM, and 

MaxEnt classifiers and tested dimensionality reduction techniques including PCA, mutual 

information, and domain ontology-guided feature extraction. Our hypothesis is that the 

medical concepts most relevant to predicting CAD have formally defined relationships as 

such in the UMLS Semantic Network that can be exploited to automatically predict the 

disease. By engineering features around these concepts, as opposed to constructing features 
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for every possible concept in our documents, we focus our feature space on information that 

really matters for our task. The reduction in the feature, in turn, results in simpler and more 

robust models, that run without any significant loss of performance.

2. Data

The 2014 i2b2 Heart Disease Risk Factors Challenge data set consists of 1,304 longitudinal 

records of a total of 296 diabetic patients. Each patient in the corpus belongs to one of three 

cohorts:

1. patients who had a CAD diagnosis in the first record of their patient profile

2. patients who developed a CAD diagnosis sometime later in their patient profile

3. patients who did not develop a CAD diagnosis

The criteria for classifying CAD and no-CAD patients in our study has been defined and 

validated in two earlier studies[31],[3]. To create the corpus for the 2014 i2b2 Heart Disease 

Risk Factors Challenge, an expert cardiologist developed the definition for CAD. 

Specifically, the following search criteria were used against Partners HealthCare Electronic 

Medical Records (EMR)[31]:

• at least 3 CAD codes or 1 procedure code for a coronary revascularization

• at least 4 codified mentions of beta-adrenergic inhibitor medications

• at least 4 codified mentions of anti-platelet agents (such as aspirin)

• at least 4 codified mentions of statins (cholesterol lowering drugs)

For the purposes of our study, we focused on prediction of CAD before the patients were 

officially diagnosed, i.e., they had an annotated CAD diagnosis in the i2b2/UTHealth data. 

We therefore discarded from the data any records with a CAD diagnosis. This removed all 

patients who were diagnosed with CAD at the onset of their patient profile. Additionally, for 

patients who later received a CAD diagnosis, records were discarded beginning with the one 

in which the patient received the diagnosis. This left us with the records of the patients who 

did not develop CAD (referred to as no-CAD patients), and the records from those who do 

develop CAD before their diagnosis (referred to as CAD patients).

After discarding all records with diagnosis of CAD, we checked our CAD and no-CAD 

patients with respect to their level of sickness. To achieve this, we calculated normalized 

frequencies of the number of symptoms, diseases and medications extracted by cTAKES in 

each record and divided by the length of the document (i.e., the number of word tokens per 

record), as shown in Equation 1. Intuitively, this calculation measures the disease density of 

the record. Equation 1

Normalized frequency of sickness in patient records.

Buchan et al. Page 4

J Biomed Inform. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We found that the no-CAD patients were depicted as being sicker in their records than the 

CAD patients as described by their pre-CAD diagnosis records. We decided to control this 

factor so that we could make the machine learning models agnostic with respect to the level 

of sickness in the two populations. Thus, we matched a random subsample of records in the 

no-CAD patient population to levels of sickness in CAD patients (See Appendix A Figure 

A.1).

Using this experimental setup for the CAD prediction task resulted in 215 total patients and 

516 total patient records (See Table 1) from the training and test data of the 2014 i2b2/

UTHealth challenge. An analysis of the resulting corpus is provided in Appendix A Table A.

1. Note that given our intent to solve a different task than the original 2014 i2b2/UTHealth 

shared task, the training and test data of the shared task can be merged and methods can be 

cross-validated.

In our subsampling, we also analyzed coverage (i.e., the duration of longitudinal patient 

records) to avoid bias. For CAD patients, the average longitudinal patient history covers 12.9 

months (i.e, 1.075 years), while the longest duration between first and last record for any 

CAD patient is 76 months (i.e., 6.3 years). The average longitudinal patient history for no-

CAD patients is 18.3 months (i.e., 1.525 years), while the longest duration between first and 

last record for any no-CAD patient is 91 months (i.e, 7.6 years). We concluded that coverage 

was comparable in the two populations using the z-test (α0.05).

3. Methods

Our system processes records using Apache cTAKES, an NLP system for extracting 

information from clinical free-text[32]. We compared a feature extraction filter to 

dimensionality reduction techniques including PCA[33] and mutual information[34] using 

three different classifiers: (1) Naive Bayes, (2) MaxEnt, and (3) SVM. To compare 

performances between models, we used approximate randomization testing[35,36,37]. We 

tested significance over micro-average precision, recall and F1, with N= 9,999 and α0.1.

3.1. Feature Extraction

cTAKES (with the Clinical Documents pipeline[38]) performs sentence detection, part-of-

speech (POS) tagging, chunking, named entity recognition, context detection, and negation 

detection. We use it to extract tokens, POS tags, and medical concepts. Rather than using the 

original tokens as they appear in the text, we use lemmas. We remove English stop words 

before constructing bigrams using the Natural Language Toolkit (NLTK)[39].

We extract Concept Unique Identifiers (CUIs) and Type Unique Identifiers (TUIs) from 

cTAKES output. CUIs are codes assigned by the UMLS Metathesaurus to specific 

biomedical and health related concepts, which include anatomical, symptom, procedure, 

medication and disease-related information[40]. TUIs represent the semantic type for each 

CUI. For example, the CUI associated with “pain” is c0030193, and a common semantic 

type for pain is “finding,” represented by the TUI t184.

All features are then normalized using frequencies, as follows:
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where the numerator ni,j is the number of occurrences of the i-th term in j-th document, and 

the denominator is the sum of all terms in the j-th document[41].

3.2. Feature Space

We trained a model using information extracted from cTAKES. As mentioned, all features 

represented are normalized by frequency. We tested lexical features that include unigrams 

and bigrams, as well as unigrams that are concatenated with their corresponding POS tags. 

Inclusion of bigrams introduced noise into the feature space, which hindered system 

performance. Our semantic features were engineered around UMLS concepts. For example, 

we evaluated positive CUIs (i.e., explicit mentions of medical concepts that are present in 

the patient, e.g., patient has asthma), as well as negated CUIs (i.e., explicit mentions of 

medical concepts that are absent in the patient, e.g., patient does not have asthma). We also 

added features that captured patient history attributes related to specific concepts. For 

example, if cTAKES extracted a history of hypertensive disease in a patient record, we 

accounted for this in the feature space (i.e., C0020538_history+1 = 

[normalized_frequency]). Accordingly, if cTAKES extracted a negated history of 

hypertensive disease in a record, we represented this negated concept in our feature space as 

well (i.e., C0020538_history−1 = [normalized_frequency]). In order to capture the proper 

UMLS semantic category for each medical concept, we merged CUI and TUI in one feature. 

We additionally tested isolated TUIs, but these broad categories had little variance 

throughout the corpus and merely added noise, which was detrimental to system 

performance. Our final feature space consisted of 45,695 total features (See Appendix A 

Table A.2 for a breakdown of the features). Given the size of the feature space and noise 

throughout, we evaluated dimensionality reduction techniques.

3.3. Dimensionality reduction and classification

We performed feature selection, dimensionality reduction and classification using 10-fold 

cross-validation to prevent overfitting and ensure a fair estimation of the models’ quality.

In our first run, we tested three separate classifiers that have proven effective in similar 

tasks[24,25]: (1) Gaussian Naïve Bayes; (2) MaxEnt; and (3) SVM with both linear and 

Radial Basis Function (RBF) kernels. For both types of SVM, we optimized the parameters. 

In the case of the linear kernel, which is based on the LIBLINEAR library, parameter 

optimization was built-into the classifier[41]. For the RBF kernel, we used a grid search 

optimization for γ and C parameters on the training portion of each fold during 

classification[42].

In our second run, we performed dimensionality reduction using PCA, a statistical technique 

that provides a lower dimensional projection of uncorrelated components from the most 

informative viewpoint of higher dimensional data by maximizing variance[43]. We tested 

different thresholds for the percentage of variance explained by the number of selected 
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components produced during PCA, and tested these components with the same classifiers 

described in the first run.

Next, we employed logarithmic cuts using mutual information as a feature selection 

technique to trim the feature space for optimal performance in our third run. Mutual 

information measures the contribution of the presence or absence of a feature relative to the 

correct classification[44]. We chose to retain the top ranked features at different percentages 

using logarithmic cuts as opposed to cuts at linear intervals because we observed higher 

classifier performances at dramatic reductions to the feature space.

We further experimented with selective feature extraction using domain knowledge from the 

UMLS ontology to filter attributes. In the fourth run, we automatically searched UMLS 

using the UMLS REST API to gather attributes in the Semantic Network[45]. Specifically, 

we traversed the network to collect the attributes of all relationships, including siblings and 

children, related to “cardiovascular system drugs” and “cardiovascular diseases”. We include 

cardiovascular system drugs and cardiovascular diseases not just as direct evidence of CAD, 

but also as risk factors that indicate a future CAD diagnosis. This helps the system retain 

features commonly correlated with a CAD diagnosis, including features related to the 

common risk factors for CAD mentioned previously (e.g., hypertension, 

hypercholesterolemia, etc.). It also filters out UMLS features that are unlikely related to a 

CAD diagnosis, e.g., features related to “reproductive diseases”. We used the results of these 

queries to compile a filter of 838 CUIs attributed to different symptoms, diseases, 

medications, procedures and anatomical mentions associated with cardiovascular system 

drugs and cardiovascular diseases. During feature extraction of cTAKES output, we only 

included a UMLS feature if its corresponding CUI existed in the filter. This ontology-guided 

feature extraction step cut down total feature space by 29.6% (from 45,695 features to 

32,180).

We subsequently applied PCA and mutual information feature selection to the feature space 

produced using the ontology-guided feature extraction filter. See Table 2 for an analysis of 

the number of features produced using the different dimensionality reduction techniques 

described in this section.

Lastly, we investigated ensemble classification through a weighted majority vote using the 

optimal settings for each dimensionality reduction technique that we evaluated.

4. Results and discussion

We used approximate randomization to test significance over micro-average precision, recall 

and F1, with N= 9,999 and α0.1
[35,36,37]. We considered the best model to be the simplest 

(e.g., fewest number of features) among the highest performing runs with statistically 

significant increments.

Using the full feature space (i.e., 45,695 features), the Naïve Bayes classifier achieved an F1 

score of 68.8%. Implementations of PCA, MI, and the ontology-guided feature extraction 

filter with PCA reduced dimensionality of the overall feature space, but did not significantly 

improve performance of the Naïve Bayes classifier. Performance did significantly improve, 
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however, after implementing just the ontology filter during feature extraction (i.e., without 

PCA). This model achieved an F1 score of 76.6%, and reduced the feature space by 29.6% 

(i.e., 13,515 features). Applying MI to this ontology-guided feature extraction filter further 

reduced the feature space (with a total reduction of 52.8%) while maintaining high 

performance (i.e., 77.1% F1 score). Thus, we considered this model to be optimal for Naïve 

Bayes (See Table 3 for top classifier results by dimensionality reduction technique; See 

Figures 1–4 for graphs of classifiers’ results by dimensionality reduction technique; See 

Appendix A Tables A.3–A.8 for complete tables of classifiers’ results by dimensionality 

reduction technique).

Using just the ontology filter during feature extraction (i.e., without MI or PCA), SVM 

linear achieved the highest overall F1 score of any classifier at 77.4%. However, regardless 

of dimensionality reduction technique, top performances for the SVM linear, SVM RBF, and 

MaxEnt classifiers were not significantly different from the highest overall F1 score of 

77.4%. For this reason, models that achieved top performance using the fewest numbers of 

features were considered optimal. At only 405 features (a reduction of 99.1%), the ontology-

guided feature extraction filter with PCA produced the most compressed feature space. This 

dimensionality reduction technique resulted in performances of 75.8%, 74.1%, and 76.3% 

F1 score for the SVM linear, SVM RBF, and MaxEnt classifiers respectively.

Our approach of ensemble classification through a weighted majority vote did not 

significantly improve system performance (See Appendix A Table A.9 for ensemble 

classification results).

Based on these results, we propose that the best dimensionality reduction technique is PCA 

with an ontology-guided feature extraction filter (See Figure 5 for of a graph of classifier 

results using this approach).

An analysis of the feature selection results provided insights into the characteristics that 

differentiate the CAD and no-CAD patient populations in the data set. In general, several of 

the top 100 ranked features belonged to semantic categories important to predicting CAD. 

These semantic categories include medications (e.g., Simvastatin, Lipitor, Metoprolol, 

Atenolol, Metformin, Novolog, Trazodone, and Penicillin); symptoms and signs for diseases 

(e.g., illness, tobacco and history of pain); diseases (e.g., stroke, Hairy Cell Leukemia); 

procedures (e.g., cardiac catheterization, creatinine blood test, white blood cell count and 

appendectomy); and anatomical sites (e.g., artery, gastrointestinal, cerebellar and 

neurological). Of CUIs extracted for both CAD and no-CAD patient populations, there was 

only a 1.0% difference in positive mentions for congestive heart failure (CHF). Additionally, 

every patient record contained at least one CUI in the feature extraction filter, which is 

consistent with the original design of the corpus. Of the highest ranked features, the most 

frequent CUIs extracted were all symptom, diseases, or medications (See Appendix A – 

Table A.10).

We expect that as the number of available training samples increases, the selective feature 

extraction method becomes less necessary. This is because our model better learns which 

features to select for classification as training samples increase. However, in the presence of 
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noisy data in which the number of features greatly outnumbers the number of samples, 

exploiting domain knowledge to automatically filter features is an effective method of 

dimensionality reduction.

The results show that no-CAD patients were more hypertensive (by 9.69%) and experienced 

a much higher incidence of stroke (by 17.05%). These patients were prescribed medications 

to treat hypertension and prevent further strokes at a higher rate. These medications include 

statins (e.g., Simvastatin), ACE inhibitors (e.g., Lisinopril) and beta blockers (e.g., 

metoprolol and atenolol). Importantly, these are the same treatments prescribed to prevent 

the development of CAD[44]. The features selected to predict patients who will develop 

CAD seem to suggest an important outcome in this sample population: patients who suffer 

from hypertension and/or stroke are treated with medications that prevent the development 

of CAD.

These results further explain several of our system errors. For example, 55 of 80 false 

negative classifications (i.e., 68.6%) discuss hypertensive patients. Also, 7 false negatives 

contain a cerebrovascular accident, because there were only 20 cerebrovascular accidents for 

the entire CAD patient population (i.e., 258 records) vs. 65 in the no-CAD population. 

Furthermore, of the 26 false positive records, there were considerably fewer mentions of 

drugs that help to prevent stroke. For example, only ten records referenced beta blockers; 

only five records contained ACE inhibitors; and only one record mentioned a statin.

Given the average of patients who do not develop CAD (i.e., 65 years old), it is possible that 

our system classifies patients who have not yet been diagnosed with CAD, but who will be 

diagnosed with the disease in a future visit that is not covered by our dataset. For this reason, 

we believe that one application of our system is to automatically classify records for patients 

who have gone undiagnosed, or who have been misdiagnosed, with respect to CAD.

Furthermore, our system can process any number of patient records to predict CAD with 

relatively little overhead—especially in comparison with manual methods. This is of great 

use to clinical researchers for building datasets to better understand CAD manifestation. One 

extension of this research would be to collect more data to examine why patients go 

undiagnosed or are misdiagnosed for CAD even though they present with several common 

risk factors.

4.1. Limitations

One limitation of our experiment is embedded in the selection of patients who do not 

develop CAD. The average age of this population is 65 (standard deviation = 12.47; Q1 = 

54.00; Q3 = 73.63)[29]. Thus, it is possible that some of these patients eventually developed 

CAD after record collection in the creation of the corpus. Our prediction is limited to the 

text available. More specifically, our system reasonably predicts CAD for a patient that—at 

the time the system is run, and according to the data available—has not yet been diagnosed 

with the disease. Evaluating additional retrospective data would increase the reliability of 

our results.

Buchan et al. Page 9

J Biomed Inform. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Another limitation of our study is embedded in the subsample of patients who develop CAD. 

To avoid any bias introduced by removing records that contained ground truth labels (i.e., 

CAD diagnoses), we controlled for sickness in both CAD and no-CAD patient populations. 

In doing so, we sacrificed greater longitudinal coverage for CAD patients, as we were left 

with 12.9 months of coverage for patients who eventually develop a CAD diagnosis. We 

view the 12.9 months of coverage before manifestation of CAD as a necessary tradeoff to 

ensure the validity of our study. However, our system is not restricted to classifying records 

within a certain window of time (e.g., one-year prior to CAD manifestation). Rather, the 

average 12.9 months of coverage for CAD patients is a summary statistic of our subsample. 

Nonetheless, it would be ideal to assess risk for developing CAD further in advance as it 

would give more time to prevent development of the disease. Evaluating more data would 

also help to mitigate this limitation.

In general, the relatively small size of the dataset is a limitation of our study. Although we 

believe that the dataset adequately represents a very specific patient population that we are 

interested in better understanding, it does not cover all types of patients that clinicians would 

encounter in the wild.

Furthermore, we discovered during error analysis that smoking histories are not extracted by 

the cTAKES pipeline used in our system[33[]. For example, in one patient record the doctor 

explicitly states, “[the patient] does not smoke,” but no CUI is extracted related to smoking 

(e.g., a non-smoker CUI, a negated smoker CUI, etc.). Smoking is a common risk-factor for 

CAD, and it is well-represented with several concepts in UMLS4.*

The importance of extracting a patient’s smoking history accurately was confirmed in the 

mutual information feature selection results, as the unigram “smoking” was among the most 

important features extracted (i.e., it was in the top 1.0% of features selected). A separate 

smoking status pipeline, originally developed for the 2006 i2b2 Deidentification and 

Smoking Challenge[47,48], was integrated into cTAKES, but assessing its benefits would 

require further testing.

5. Conclusion

Among diabetic patients who share similar risk factors for CAD, it is possible to reasonably 

predict which patients will develop the disease. We focus on predicting the development of 

CAD. In this study, we show that domain ontology-guided feature extraction can reduce the 

high dimensional nature of free text medical records to improve the performance of machine 

learning methods for classification. Furthermore, we demonstrate that classic dimensionality 

reduction techniques complement this approach. Finally, we explain that the features 

selected to predict patients who will develop CAD seem to suggest an important outcome in 

this sample population: patients who suffer from hypertension and/or stroke are treated with 

medications that prevent the development of CAD. We conclude that the clinical application 

of our model is in classification of patients who will develop CAD in difficult to 

*Some examples of smoking CUIs in UMLS are C0337664 (smoker), C0337666 (cigar smoker), C0337671 (former smoker), and 
C0337672 (non-smoker).
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discriminate situations, such as when patients are all at high risk for CAD and carry many of 

the risk factors.
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Appendix A

Figure A.1. 
Measure of sickness in CAD and no-CAD patients.

Table A.1

An analysis of word tokens and sentences in the corpus.

Total Average per document

# of tokens # of sentences # of tokens # of sentences

268,090 51,736 519 100

Table A.2

A breakdown of the 45,695 total features in the final feature space by type.

Feature type Positive
CUIs

Negated
CUIs

Positive
CUI-histories

Negated
CUI-histories

Positive
CUI-TUIs

Negated
CUI-TUIs Unigrams Unigram-

POS

# of features 5,329 879 85 496 5,954 903 13,764 18,285
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Table A.3

Precision [P.], recall [R.], F1 score [F1] of full feature space.

% of 
feature 
space

Total # 
of 

features

Naïve Bayes SVM (linear kernel) SVM (RBF kernel) MaxEnt

P. R. F1 P. R. F1 P. R. F1 P. R. F1

100.00 45,695 0.761 0.635 0.688 0.744 0.802 0.769 0.714 0.829 0.765 0.740 0.790 0.762

Note: Performance of shaded region is not significantly different from the top overall model (i.e., F1 of 77.4%).

Table A.4

Precision [P.], recall [R.], F1 score [F1] results using PCA.

POV # of components
Naïve Bayes SVM (linear kernel) SVM (RBF kernel) MaxEnt

P. R. F1 P. R. F1 P. R. F1 P. R. F1

0.99 426 0.556 0.907 0.689 0.739 0.798 0.765 0.709 0.825 0.760 0.737 0.790 0.760

0.95 333 0.541 0.957 0.691 0.743 0.774 0.753 0.712 0.802 0.752 0.731 0.790 0.757

0.90 259 0.532 0.969 0.687 0.709 0.717 0.710 0.714 0.783 0.745 0.731 0.782 0.753

0.85 205 0.528 0.965 0.682 0.713 0.721 0.714 0.686 0.786 0.731 0.728 0.779 0.750

0.80 163 0.526 0.965 0.681 0.701 0.732 0.714 0.698 0.791 0.741 0.711 0.740 0.723

0.75 130 0.528 0.965 0.682 0.700 0.740 0.717 0.672 0.771 0.717 0.712 0.744 0.725

0.70 102 0.532 0.961 0.685 0.686 0.721 0.700 0.665 0.771 0.714 0.681 0.736 0.706

0.65 80 0.536 0.950 0.685 0.699 0.725 0.710 0.670 0.764 0.713 0.703 0.736 0.717

0.60 62 0.546 0.930 0.688 0.692 0.702 0.693 0.678 0.752 0.712 0.687 0.713 0.698

Note: Performance of shaded region is not significantly different from the top overall model (i.e., F1 of 77.4%).

Table A.5

Precision [P.], recall [R.], F1 score [F1] results using mutual information.

% of 
feature 
space

Total # 
of 

features

Naïve Bayes SVM (linear kernel) SVM (RBF kernel) MaxEnt

P. R. F1 P. R. F1 P. R. F1 P. R. F1

75.00 34,272 0.761 0.635 0.688 0.739 0.771 0.752 0.727 0.821 0.770 0.746 0.767 0.754

50.00 22,848 0.738 0.624 0.674 0.738 0.767 0.749 0.728 0.825 0.772 0.749 0.763 0.753

25.00 11,424 0.819 0.609 0.693 0.761 0.767 0.760 0.717 0.810 0.759 0.753 0.775 0.761

10.00 4,569 0.792 0.581 0.660 0.753 0.779 0.763 0.701 0.779 0.737 0.742 0.748 0.741

5.00 2,284 0.699 0.488 0.567 0.746 0.799 0.770 0.684 0.799 0.735 0.717 0.763 0.738

1.00 1142 0.676 0.542 0.595 0.705 0.775 0.738 0.657 0.810 0.723 0.685 0.760 0.720

0.50 456 0.688 0.728 0.705 0.685 0.782 0.729 0.637 0.830 0.720 0.671 0.786 0.723

0.10 228 0.628 0.821 0.710 0.703 0.763 0.731 0.618 0.841 0.711 0.650 0.771 0.705

0.05 45 0.561 0.856 0.677 0.767 0.767 0.703 0.596 0.899 0.715 0.611 0.806 0.694

Note: Performance of shaded region is not significantly different from the top overall model (i.e., F1 of 77.4%).
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Table A.6

Precision [P.], recall [R.], F1 score [F1] using UMLS ontology-guided feature extraction.

% of 
feature 
space

Total # 
of 

features

Naïve Bayes SVM (linear kernel) SVM (RBF kernel) MaxEnt

P. R. F1 P. R. F1 P. R. F1 P. R. F1

100.00 32,180 0.872 0.689 0.766 0.762 0.795 0.774 0.747 0.760 0.747 0.733 0.806 0.764

Note: Performance of shaded region is not significantly different from the top overall model (i.e., F1 of 77.4%).

Table A.7

Precision [P.], recall [R.], F1 score [F1] results using UMLS ontology-guided feature 

extraction and PCA.

POV # of components
Naïve Bayes SVM (linear kernel) SVM (RBF kernel) MaxEnt

P. R. F1 P. R. F1 P. R. F1 P. R. F1

0.99 405 0.533 0.950 0.683 0.748 0.779 0.758 0.718 0.775 0.741 0.726 0.810 0.763

0.95 289 0.539 0.938 0.684 0.719 0.767 0.738 0.717 0.744 0.725 0.719 0.790 0.749

0.90 210 0.538 0.942 0.684 0.710 0.751 0.725 0.703 0.736 0.713 0.704 0.775 0.734

0.85 158 0.535 0.934 0.680 0.695 0.729 0.708 0.688 0.728 0.698 0.690 0.760 0.722

0.80 121 0.537 0.934 0.681 0.679 0.740 0.706 0.675 0.732 0.695 0.686 0.768 0.722

0.75 93 0.537 0.926 0.680 0.682 0.756 0.715 0.641 0.736 0.681 0.674 0.764 0.715

0.70 71 0.539 0.915 0.678 0.683 0.764 0.720 0.651 0.725 0.681 0.671 0.752 0.708

0.65 54 0.544 0.896 0.676 0.676 0.744 0.706 0.637 0.741 0.682 0.664 0.744 0.701

0.60 41 0.556 0.888 0.683 0.669 0.764 0.711 0.645 0.772 0.700 0.661 0.748 0.701

Note: Performance of shaded region is not significantly different from the top overall model (i.e., F1 of 77.4%).

Table A.8

Precision [P.], recall [R.], F1 score [F1] using UMLS ontology-guided feature extraction and 

mutual information.

% of 
feature 
space

Total # 
of 

features

Naïve Bayes SVM (linear kernel) SVM (RBF kernel) MaxEnt

P. R. F1 P. R. F1 P. R. F1 P. R. F1

75.00 24,136 0.879 0.693 0.771 0.752 0.791 0.768 0.747 0.744 0.738 0.720 0.786 0.749

50.00 16,054 0.858 0.693 0.763 0.753 0.791 0.768 0.746 0.740 0.736 0.721 0.790 0.751

25.00 8,027 0.868 0.605 0.710 0.746 0.787 0.763 0.749 0.748 0.742 0.723 0.790 0.752

10.00 3,210 0.769 0.531 0.620 0.738 0.771 0.751 0.729 0.763 0.738 0.708 0.775 0.737

5.00 1,605 0.713 0.515 0.590 0.747 0.798 0.769 0.715 0.795 0.747 0.693 0.787 0.736

1.00 321 0.670 0.612 0.635 0.703 0.783 0.740 0.688 0.794 0.735 0.665 0.767 0.712

0.50 160 0.671 0.748 0.704 0.691 0.806 0.743 0.665 0.821 0.731 0.660 0.810 0.726

0.10 32 0.613 0.833 0.705 0.685 0.771 0.725 0.646 0.791 0.707 0.643 0.810 0.715

0.05 16 0.575 0.849 0.685 0.650 0.767 0.702 0.614 0.845 0.707 0.614 0.810 0.698

Note: Performance of shaded region is not significantly different from the top overall model (i.e., F1 of 77.4%).
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Table A.9

Precision [P.], recall [R.], F1 score [F1] using ensemble classification through a weighted 

vote of classifiers for dimensionality reduction techniques under optimal settings.

Dimensionality reduction technique Total # of features P. R. F1

Full feature space 45,695 0.738 0.818 0.776

PCA 333 0.724 0.814 0.766

Mutual Information 2,284 0.741 0.798 0.769

Ontology 32,180 0.774 0.81 0.792

Ontology + PCA 289 0.723 0.798 0.759

Ontology + MI 1,605 0.749 0.798 0.773

Note: Performance of shaded region is not significantly different from the top overall model (i.e., F1 of 77.4%).

Table A.10

Top sematntic features selected with Ontology + MI at 25% cut to feature space.

Feature CAD count No-CAD count % difference in corpus

Cerebrovascular accident 20 64 17.05

Simvastatin 11 44 12.02

Lisinopril 55 86 12.02

Metoprolol 13 41 10.85

Hypertension 158 183 9.69

Atenolol 50 69 7.36

Palpitation 41 52 4.26

Glyceryl trinitrate 20 11 3.49

Syncope 25 17 3.10
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Highlights

• A system to automatically predict coronary artery disease (CAD) from 

clinical narratives is proposed.

• The system relies on an ontology-guided approach to feature extraction, 

which is compared to two classic feature selection techniques.

• The system achieves state-of-the art performance of 77.4% F1-score.
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Figure 1. 
F1 scores by dimensionality reduction technique for the Naïve Bayes classifier.
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Figure 2. 
F1 scores by dimensionality reduction technique for the SVM linear classifier.
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Figure 3. 
F1 scores by dimensionality reduction technique for the SVM RBF classifier.
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Figure 4. 
F1 scores by dimensionality reduction technique for the MaxEnt classifier.
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Figure 5. 
Classifiers’ F1 scores for Ontology + PCA.
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