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ABSTRACT

The responses of two species of microalgae, Chlorella sorokiniana and Chlorella
zofingiensis, were compared regarding their morphological and biochemical properties
under photoautotrophic and mixotrophic conditions. These microalgae were cultured
under both conditions, and their crude ethanolic extracts were examined for their
pigment and total phenolic contents. In addition, the microalgae’s antioxidant activities
were determined using a DPPH radical scavenging assay and a ferric reducing
antioxidant power (FRAP) assay. Both strains showed increases in cell size due to the
accumulation of lipid bodies and other cell contents, especially carotenoids, under
the mixotrophic condition. Notably, reductions in phenolic and chlorophyll contents
were observed to be associated with lower antioxidant activity. C. zofingiensis compared
with C. sorokiniana, demonstrated higher antioxidant activity and carotenoid content.
This study showed that different species of microalgae responded differently to varying
conditions by producing different types of metabolites, as evidenced by the production
of higher levels of phenolic compounds under the photoautotrophic condition and
the production of the same levels of carotenoids under both photoautotrophic and
mixotrophic conditions.

Subjects Aquaculture, Fisheries and Fish Science, Freshwater Biology, Natural Resource
Management

Keywords Pigments content, Chlorella zofingiensis, Total phenolic content, Antioxidant activity,
Chlorella sorokiniana, Carotenoid content

INTRODUCTION

Microalgae have been identified as good sources of bioactive metabolites, including
polyphenol, vitamins, lipids for use as biofuels and proteins, warranting the sustainable
utilisation of microalgae for energy, food and health applications (Chacén-Lee & Gonzdlez-
Marifio, 20105 Mostafa, 2012). The chemical compounds synthesised by microalgae
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are usually classified into primary and secondary metabolites based on their chemical
functional groups and biosynthetic origins (Kumar, Dasgupta ¢ Das, 2014). The relative
contents of various metabolites in different varieties of microalgae are fairly similar
under normal condition of growth. However, these contents change under sub-optimal
conditions (Hu, 2004; Solovchenko et al., 2008; Juneja, Ceballos & Murthy, 2013). Changes
in various environmental factors, such as temperature, light, pH and nutrients levels,
can affect many cellular activities, including photosynthesis, growth efficiency, cellular
metabolism and cell composition. For example, during photosynthesis, the contents of
pigments such as chlorophyll a and chlorophyll b, which function as light-harvesting
antennae in the main reaction centre (Lodish et al., 2000; Masojidek, Koblizek ¢ Torzillo,
2004), and primary carotenoids might decrease in response to high light intensity; by
contrast, secondary carotenoids that serve as photoprotective agents increase under these
conditions (Hu, 2004; Darko et al., 2014). Primary carotenoids, such as 3-carotene, lutein
and zeaxanthin, usually accumulate in the chloroplast, whereas secondary carotenoids,
such as astaxanthin, canthaxanthin and adonixanthin are found in lipid bodies outside
the chloroplast (Griinewald, Hirschberg & Hagen, 2001). Primary metabolites are usually
produced to maintain the physical integrity and are key for the survival of cells, whereas
secondary metabolites are not vital for cell survival but instead maintain the proper
functions of all physiological systems. Both primary and secondary metabolite pools
consist of antioxidants such as phenols, carotenoids, terpenoids and flavonoid derivatives
(Cardozo et al., 2007). Depending on the ability to handle various growth conditions,
different strains of microalgae produce different metabolites to increase their chances of
survival (Skjanes, Rebours ¢ Lindblad, 2013; De Morais et al., 2015).

Carotenoids are among the best-known antioxidants originating from microalgae and
play an important role in protecting the microalgal system. These pigment molecules
directly quench singlet oxygen, thereby preventing free radical reactions (Vachali, Bhosale
& Bernstein, 2012; Safafar et al., 2015). Previous studies have revealed that carotenoids
contribute significantly to the total antioxidant capacity of microalgae (Takaichi, 2011;
Goiris et al., 2012). Thus, microalgae have become an alternative source of carotenoids
such as astaxanthin from Haematococcus and [3-carotene from Dunaliella) that are used in
the food and pharmaceutical industries (Spolaore et al., 2006). Other important antioxidant
compounds that can be obtained from microalgae are the phenolic compounds, which
consist of several classes of flavonoids and non-flavonoids. These compounds also protect
the microalgae from damage through single electron transfer and hydrogen atom transfer
(Ndhlala, Moyo & Staden, 2010; Leopoldini, Russo ¢ Toscano, 2011). Although little is
known approximately the presence of phenolic compounds in microalgae, several studies
have demonstrated that they contribute significantly to the antioxidant capacity of certain
species of microalgae (Hajimahmoodi et al., 2010; Goiris et al., 2012; Safafar et al., 2015).

Due to its specific characteristics, Chlorella spp. have become one of the most heavily
researched microalgal groups by scientists due to their characteristics, including a high
nutritional value in terms of natural antioxidants (Matsukawa et al., 2000; Rodriguez-Garcia
& Guil-Guerrero, 2008; Hajimahmoodi et al., 2010; Sawant et al., 2014), high productivity
in terms of lipid and carbohydrate contents (Del Campo et al., 2004; Goiris et al., 2012;
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Zhu et al., 20145 Goiris et al., 2015), and a thick cell wall that protects their nutrient contents
(Iwamoto, 2004). Moreover, previous studies have demonstrated that the composition of
microalgae can be controlled by changing the growth medium and by culturing under
different growth conditions. For example, one study showed that different physiological
and biochemical properties are produced by the same microalgae under different growth
conditions (Iwamoto, 2004). Moreover, the colour of Chlorella has been shown to change
from green to red or yellowish based on the pigments produced when grown under different
conditions (Del Campo et al., 2004; Ip, Wong ¢ Chen, 2004; Ip & Chen, 2005; Cordero et al.,
2011). Different cultivation conditions may also affect both the production of metabolites
and the processing cost. Most studies have reported that compared to autotrophic or
heterotrophic conditions, mixotrophic condition are more advantageous in terms of
growth rate and productivity (Yang, Hua ¢ Shimizu, 20005 Ip, Wong ¢ Chen, 2004; Liang,
Sarkany & Cui, 2009; Shetty ¢ Sibi, 2015). However, despite the indisputable advantages,
mixotrophic culture conditions have been comparatively underutilised in commercial
production (Del Campo, Garcia-Gonzilez & Guerrero, 2007). Although some criticism of
the photoautotrophic condition exist (Jorquera et al., 2010), such conditions are still most
commonly utilised for the large-scale cultivation of microalgae for use in commercial
applications (Mimouni et al., 2012). It has also been reported that photoautotrophic
conditions are better than mixotrophic conditions for the production of certain metabolites
(Abreu et al., 2012).

In this study, two species of Chlorella, C. sorokiniana and C. zofingiensis, were selected
for their abilities to produce valuable metabolites that have potential applications in the
pharmaceutical and health industries (Matsukawa et al., 2000; Brdnyikovd et al., 2011; Liu
et al., 2014). These strains are characterised by their high growth rates and high tolerances
of various temperatures used during culture. These characteristics are expected to offer
significant advantages for use in large-scale production bioreactors. Although Chlorella
spp. are frequently consumed as a health supplement, most studies of C. sorokiniana and
C. zofingiensis have focused mainly on the profiling of their biochemical contents such as
lipids and carotenoids, and less on their antioxidant capacities (Del Campo et al., 2004; Ip
& Chen, 2005; Wang ¢ Chen, 2008; Liu et al., 2014). To date, most studies microalgae have
focused on the production of mass and metabolites under different cultivation conditions,
and research into the morphological and ultrastructural changes of microalgae under
various conditions is still lacking. Thus, in the present study, we gathered and evaluated
information on the morphological and biochemical characteristics of C. sorokiniana
and C. zofingiensis grown under photoautotrophic and mixotrophic conditions while
focusing primarily on their antioxidant activities, which were assessed using DPPH radical
scavenging and ferric-reducing antioxidant power (FRAP) assays.

MATERIALS AND METHODS

Microalgal culture
The Chlorella species examined in this study were obtained from the Marine Biotechnology
Laboratory at the Faculty of Agriculture, Universiti Putra Malaysia, which had originally
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been obtained from UTEX and NIES (the culture collections of algae at the University
of Texas, USA and the National Institute of Environmental Studies, Japan). The strains
examined were Chlorella sorokiniana (NIES-2168) and Chlorella zofingiensis (ATCC30412).
The pre-culture microalgae were inoculated with 10% (vol/vol) of an exponentially growing
culture in Bold’s Basal Medium (BBM) at a total volume of 200 mL (in 2 flasks of 100 mL
each) at 27 °C. The microalgal cultures were grown under continuous light with an intensity

of approximately 10 pmol photons m~! s~!

with a shaking speed of 30 rpm.

Triplicates of pre-culture microalgae were allowed to grow until the mid-logarithmic
phase, reaching approximately 8-10 x 10° cells/mL on day 11 and 2.5-3.0 x 10° cells/mL
on day 15 for C. zofingiensis and C. sorokiniana, respectively. Then, both microalgae cultures
were further divided into two flasks, and each flask contained 100 mL of 2 x 10° cells/mL.
One flask of cells was cultured under photoautotrophic condition and the other was
cultured under mixotrophic condition. The same culture sources were used to reduce the
variability of the cultures in subsequent comparisons. The photoautotrophic condition
was the same as the pre-culture condition, whereas the mixotrophic culture condition
consisted of a higher light intensity than the photoautotrophic condition and the addition
of glucose. Generally, mixotrophic conditions trigger changes in the microalgae that
enhance the production of metabolites, as indicated by colour changes of the culture.
Several approaches for imposing changes in the colour of the microalgae cultures were
tested (Latasa & Berdalet, 1994; Chokshi et al., 2015), and the approach utilised in this study
was based on a strategy by Ip, Wong & Chen (2004), with minor modifications. To induce
colour changes in the microalgae, the cultures were transferred to a medium light intensity

's~! with the addition of 2% glucose. Microalgae cultured under

at 100 pmol photons m™
both conditions were allowed to grow for 7 days once the mixotrophic condition was
initiated at the mid-logarithmic phase. The experiments were conducted in a shaking
incubator, and a conical flask was used as the growth chamber; the white fluorescence
light source was located above the cultures. All experiments were repeated independently
in triplicate. The microalgae were harvested by separating the pellet from the medium
by centrifugation at 10,000 rpm for 10 min. The pellet was then flash-frozen using liquid
nitrogen and stored storage at —20 °C prior to use. All experiments were repeated three

times (Fig. 1).

Morphological observation using light and electron microscopy

The microalgae were examined under alight microscope (Olympus FSX100, Japan) using a
bright field objective lens. For transmission electron microscopy, the microalgae were fixed
in 4% glutaraldehyde for 12 h at 4 °C. The fixed cells were then washed three times, 10 min
each, using 0.1 M sodium cacodylate buffer. After post-fixation in 1% osmium tetroxide for
2 h at 4 °C, the cells were washed again and dehydrated in a serial dilution of acetone (35%
to 100%) for 15 min. The cells were then infiltrated, and the beam capsule was filled with
a resin mixture, and polymerization occurred in a 67 °C oven. Semi-thin sections (1 pm
thick) were cut using an ultramicrotome (Leica-Reichert Ultracut S, Austria). The sections
were then stained with toluidine blue and viewed under a light microscope to select the
region of interest prior to ultrathin sectioning. Ultrathin sections were cut and mounted
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Figure 1 Experimental workflow used in this study.

onto 200-mesh copper grids and stained with uranyl acetate and lead citrate for 10 min. The
stained sections were finally examined using a transmission electron microscope (TEM)
(Hitachi H7100, Japan) at 80 kV.

For scanning electron microscopy, the microalgae were treated as for the transmission
electron microscopy until the serial dehydration step with acetone. Subsequently, the cells
were coated with albumin on an aluminium foil with a diameter of 1 cm. The cells were
then transferred into a specimen basket for the critical point drying step for approximately
30 min. After drying, the cells were mounted onto the specimen stub using double-sided
tape or colloidal silver. The cells were then coated with gold particles using a sputter coater
and examined under a scanning electron microscope (SEM) (JEOL, JSM-6400) at 15 kV.

Extract preparation

The ethanol extract of microalgae was obtained according to Hemalatha et al. (2013) and
Saranya et al. (2014). Briefly, the harvested microalgae were ground with a mortar and
pestle. A 0.2 g sample of ground microalgae was extracted for 24 h in 10 mL ethanol at
room temperature. The extraction was repeated twice and the extract was filtered through
Whatmann filter paper. Each filtrate was concentrated to dryness under reduced pressure
using a SpeedVac Concentrator 5310 (Eppendorf, Germany). Finally, the dry extracts were
lyophilised and stored at —20 °C for further analysis.
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Determination of pigment content

The pigment contents of the microalgae were determined using a method described by
Lichtenthaler & Buschmann (2001 ). Briefly, the extracted sample was dissolved in 95%
ethanol, filtered through two layers of cheese cloths and centrifuged at 2,500 rpm for
10 min. The supernatant was separated and the absorbance was measured at 400-700 nm on
a UV/Vis spectrophotometer (Pharmacia Ultrospec 3000 pro). According to Lichtenthaler
¢ Buschmann (2001), chlorophyll a, chlorophyll b, and total carotene show maximum
absorbance at 664 nm, 648 nm and 470 nm, respectively. The concentrations of these
pigments were calculated according to the following formula:

Ca(ng/mL) =13.36 Agss.1 —5.19 Agas 6
Cp(ug/mL) = 27.43 Agss — 8.12 Agea.1
Clasey(g/mL) = (1,000 Agro — 2.13C, — 97.64 Cy) /209

where C, is chlorophyll a, C;, is chlorophyll b and C,) is total carotene.

Total phenolic content (TPC)

The phenolic contents of the ethanolic extracts were estimated using the Folin-Ciocalteau
method (Taga, Miller ¢ Pratt, 1984). An aliquot sample (100 nL) was mixed with 2.0 mL
of 2% Na,COs3 and allowed to stand for 2 min at room temperature. After incubation,
100 pL of 50% Folin-Ciocalteau’s phenol reagent was added and the reaction mixture
was mixed thoroughly and allowed to stand for 30 min at room temperature in the
dark. The absorbance of each sample solutions was measured at 750 nm using a UV/VIS
spectrophotometer. The blank consisted of all reagents and solvents without samples.
Gallic acid was used as a positive control and was diluted in concentrations ranging from
1.0 mg/mL to 0.001 mg/mL. The phenolic contents of the samples were expressed as the
gallic acid equivalent (GAE) per mg dry weight of sample. The results are presented as the
means of triplicate experiments & standard deviation.

DPPH radical scavenging assay

Free radical scavenging activity was measured using 2,2-diphenyl-1-picrylhydrazyl (DPPH)
according to the method described by Cox, Abu-Ghannam ¢ Gupta (2010). Briefly, a 2.0
mL aliquot of the test sample was added to 2.0 mL of 0.16 mM DPPH methanolic solution.
The mixture was vortexed for 1 min and incubated at room temperature for 30 min in
the dark. The absorbance of the sample solution was measured at 517 nm using a UV/VIS
spectrophotometer. The ability to scavenge the DPPH radical activity was calculated using
the following equation:

Sample — Sampleblank
1— x 100
Control

where sample is the absorbance of the test sample containing the DPPH solution, sample
blank is the absorbance of the sample without the DPPH solution, and control is the
absorbance of the DPPH solution without the sample. In this study, ascorbic acid was used
as a positive control. The results are presented as the means of triplicate experiments £
standard deviation.
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Figure 2 Morphology of Chlorella spp. under light microscope. (A) Chlorella sorokiniana in photoau-
totrophic condition, (B) Chlorella sorokiniana in mixotrophic condition, (C) Chlorella zofingiensis in pho-
toautotrophic condition and (D) Chlorella zofingiensis in mixotrophic condition. Scale bar 10 pum.

Ferric reducing antioxidant power assay

The ferric-reducing antioxidant power (FRAP) assay of the ethanolic extract was carried
out according to Hajimahmoodi et al. (2010). Briefly, the FRAP reagent containing 5 mL of
a 10 mM TPTZ (2,4,6-tripyridyl-S-triazine) solution in 40 mM HCI plus 5 mL of 20 mM
FeCls and 50 mL of 0.3 M acetate buffer (pH 3.6) was freshly prepared and incubated at
37 °C. A 100 L extract of each sample was mixed with the FRAP reagent and incubated at
37 °C for 10 min before being measured at 593 nm. When necessary, the extracted samples
were appropriately diluted with ethanol. A known concentration of ascorbic acid was used
as a positive control, and the final results were expressed as the micromolar ascorbic acid
equivalent (WM AAE) per mg dry weight of sample. The results are presented as the means
of triplicate experiments =+ standard deviation.

RESULTS AND DISCUSSION

Morphological changes

Based on the results obtained, the mixotrophic culture triggered morphological changes
in the Chlorella cells. The most obvious changes were to the cell size, as both Chlorella
species grew larger when cultured under mixotrophic condition (Figs. 2 and 3). The
scanning electron micrographs clearly showed that the cell sizes increased due to the
increased amounts of cell contents. Figure 4 shows the distribution of cell sizes under
different culture conditions for C. sorokiniana and C. zofingiensis. On average, the size
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Figure 3 Scanning electron micrograph of Chlorella spp. under photoautotrophic and mixotrophic
conditions. (A) C. sorokiniana in photoautotrophic condition, (B) C. sorokiniana in mixotrophic condi-
tion, (C) C. zofingiensis in photoautotrophic condition, and (D) C. zofingiensis in mixotrophic condition.

of C. sorokiniana under photoautotrophic condition was 2 to 4 um. When a higher
light intensity and glucose were introduced to the mixotrophic condition, the size of

C. sorokiniana increased slightly to 3 to 5 pm and in some cases, even reached to 7 to

8 wm. Compared to C. sorokiniana, C. zofingiensis cells doubled in size when cultured
under mixotrophic condition, from approximately 4 pm to 6 to 9 pm. Our results were
similar to those of George et al. (2014), who studied the effects of light intensity on cell
morphology and found that the cell shapes changed and the cell sizes increased in cultures

1 s~1. Several other researchers have studied the

grown under 150 pmol photons m™
individual or combined effects of different environmental and nutritional conditions on
cell morphology; those studies also reported that the sizes of microalgae cells increased
when culture conditions were introduced (Latasa ¢ Berdalet, 1994; Chokshi et al., 2015).
Most of such studies found that the size of the cells increased 1- to 2-fold, regardless of the
microalgae species.

The cell content also changed under the mixotrophic condition in this study. This
was evidenced by TEM ultrastructure evaluation (Fig. 5). A previous study proposed that
mature Chlorella cells contain multiple parietal chloroplasts, whereas younger cells contain
a single nucleus and a single parietal chloroplast (Fucikovd ¢ Lewis, 2012). The presence of
multiple chloroplasts in Chlorella species assists with the construction of larger cell sizes due
to the simultaneous accumulation of glycolytic lipids in storage vesicles and photosynthetic
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Figure 4 Cell size distribution of C. sorokiniana and C. zofingiensis in photoautotrophic and
mixotrophic conditions. (A) C. sorokiniana in photoautotrophic condition, (B) C. sorokiniana in
mixotrophic condition, (C) C. zofingiensis in photoautotrophic condition, and (D) C. zofingiensis in
mixotrophic condition.

carbon fixation (Rosenberg et al., 2014), and multiple chloroplasts were observed in both
C. sorokiniana and C. zofingiensis in this study. However, electron micrographs also showed
that though C. sorokiniana had a lower number of chloroplasts, these chloroplasts were
larger than those of C. zofingiensis under photoautotrophic condition. Wan et al. (2011)
reported that C. sorokiniana expresses acetyl-coA carboxylase at higher levels in the cytosol
than in the chloroplast under mixotrophic culture condition, suggesting that this species
is less dependent on photosynthetically fixed carbon for lipid synthesis. Thus, fewer
chloroplasts are needed to achieve sufficient amount of lipid accumulation. Future studies
should compare the expression levels of acetyl-coA carboxylase in the cytosol and the
chloroplasts in C. zofingiensis to further support this idea. In addition to the chloroplasts,
C. sorokiniana also had more pyrenoid starch and larger plastoglobules than C. zofingiensis.
When the cells were cultured under mixotrophic condition, the lipid bodies and starch
formation, which accumulated in the middle of the cells and were surrounded by a lipid
body, were predominant in both C. sorokiniana and C. zofingiensis. Similar findings have
also been reported in other strains of microalgae (Siaut et al., 2011; Yao et al., 2012; George
et al., 2014). However, previous studies have shown that the biosynthesis of starch and lipid
bodies are not necessarily proportional and that their accumulation is strain-dependent
and variable depending on the medium and culture conditions (Siaut et al., 2011; Takeshita
et al., 2014). Based on the observations of the present study, we confirmed that moderate
light intensity was sufficient to trigger changes under mixotrophic culture condition.
Moreover, this change did not necessarily require the use of higher light intensities that
were previously reported in the literature (Del Campo et al., 2000; Cazzaniga et al., 2014).
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Figure 5 Transmission electron micrograph of C. sorokiniana and C. zofingiensis. (A) C. sorokiniana
in photoautotrophic condition, (B) C. sorokiniana in mixotrophic condition, (C) C. zofingiensis in pho-
toautotrophic condition, and (D) C. zofingiensis in mixotrophic condition. S, starch granule; N, nucleus,
Nu, nucleolus; Ch, chloroplast; Py, pyrenoid; Pg, plastoglobule; Cm, cell membrane.

Pigment contents

The pigment contents of C. sorokiniana and C. zofingiensis under photoautotrophic

and mixotrophic conditions are shown in Table 1. Based on the results presented in
Table 1, chlorophyll a was the most comment pigment found in both microalgae under
photoautotrophic condition, followed by chlorophyll b and total carotene. This result is
explained by the fact that chlorophyll a is the principal pigment in microalgae, whereas
chlorophyll b is an accessory pigment that collects energy, which is then passed on to
chlorophyll a. Chlorophyll a and b are widely studied pigments commonly found in other
Chlorella species (Ip ¢» Chen, 2005). In the present study, C. sorokiniana had a higher
chlorophyll a content (17.929 png/mg dry weight of sample) compared with C. zofingiensis
(15.690 ng/mg dry weight of sample). Chlorophyll a content in C. sorokiniana was also
higher than those reported for other Chlorella species (Da Silva Gorgénio, Aranda ¢ Couri,
2013; Goiris et al., 20155 Safafar et al., 2015). When the cells were cultured under the
mixotrophic condition, the chlorophyll a and b contents dropped by 80% compared
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Table 1 Pigments present in the microalgae C. sorokiniana and C. zofingiensis under

photoautotrophic and mixotrophic conditions.

Condition Sample Chlorophyll a Chlorophyll b Total carotene
(ng/mg dws) (ng/mg dws) (ng/mg dws)
Photoautotrophic C. sorokiniana 17.929 +£ 0.027 6.436 % 0.040 3.882 + 0.017
C. zofingiensis 15.690 =+ 0.003 7.311 £ 0.054 4.005 £ 0.046
Mixotrophic C. sorokiniana 2.593 £ 0.005 1.127 £ 0.013 5.256 + 0.217
C. zofingiensis 2.598 £ 0.025 1.431 £ 0.051 5.805 £ 0.012
Notes.

Data are mean value of three replicates & SD. DWS: dry weight of sample.

with those of cells cultured under photoautotrophic condition. These reductions in the
chlorophyll contents under the mixotrophic condition were correlated with relieve of
photoinhibition under high light intensity. This finding was similar to those of several
previous studies (Ip, Wong ¢ Chen, 2004; Liu et al., 2009; Abreu et al., 2012).

The content of total carotenoids in both microalgae species increased by 30-40%,
which was comparable with increase of the carotenoid content reported in the literature
(Matsukawa et al., 2000; Ip, Wong ¢ Chen, 2004; Goiris et al., 2015; Safafar et al., 2015).
As shown in Table 1, the amount of total carotenoid content per dry weight of the
sample was almost the same under both conditions; this result is in contrast to those
for chlorophylls a and b. Thus, we postulated that compared with the photoautotrophic
culture condition, decreased amount of primary carotenoids and excessive amounts of
secondary carotenoids were produced under conditions with higher light intensities and
the addition of glucose in mixotrophic condition. Mulders et al. (2014) have stated that
prolonged growth under limited light condition resulted in extremely low or absent
concentrations of secondary carotenoids, whereas primary carotenoids were generally
present at maximal concentrations. By contrast, other studies have shown that under
mixotrophic culture conditions, primary carotenoids are generally degraded (although
certain green algae produce excessive amounts of secondary carotenoids) (Leya et al., 2009;
Mulders et al., 2014). The changes in carotenoid content were also shown in this study by
the discolouration of C. sorokiniana from greenish to a pale green or yellowish green and
of C. zofingiensis from green to red or orange (Fig. 2). These results were similar to those
reported in previous studies, in which the primary carotenoids decreased with the onset
of the red phase (Leya et al., 2009; Mulders et al., 2014). Furthermore, in microalgae grown
under mixotrophic condition, the production of secondary carotenoids is always observed
because carotenoids serve as photoprotective compounds that prevent photooxidative
damage to photoautotrophic cells (Solovchenko et al., 2008). Thus, higher carotenoid
content indicates higher cell survival rates. Compared with synthetic carotenoids, natural
carotenoids from microalgae offer a greater commercial advantage with high bioavailability
and lower toxicity compared to synthetic carotenoids (Priyadarshani ¢ Rath, 2012).

Based upon previous studies, the type of carotenoid commonly produced by
C. sorokiniana is lutein (Matsukawa et al., 2000; Cordero et al., 2011) whereas C. zofingiensis
produces astaxanthin (Liu et al., 2014). Under mixotrophic culture condition,

C. sorokiniana and C. zofingiensis exhibited yellow and red colours (Fig. 2) that
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mixotrophic conditions.

corresponded to the colour of lutein and astaxanthin, respectively (Gupta et al., 2007).
When the microalgal culture was exposed to a higher light intensity, secondary carotenoids
such as astaxanthin were produced to filter the higher light intensity, preventing photons
from being absorbed by the photosynthesis reaction centre (Vonshak & Torzillo, 2004).
A previous study by Vonshak & Torzillo (2004) has shown that these carotenoids usually
accumulate inside and/or outside the chloroplast. Thus, in the present study, the colours
of the cells changed according to which pigments were produced (Fig. 2). In addition,
previous research has shown that under mixotrophic conditions, some carotenoids, such
as [-carotene, accumulate in globules outside the chloroplast and protect the reaction
centre from excessive excitation by absorbing the light and reducing the amount of
energy transferred to the reaction centre (Vonshak ¢ Torzillo, 2004). This phenomenon
was observed in the TEM micrographs where the globular structures representing the
accumulation of lipids and/or lipid-soluble substances such as carotenoids was seen (Fig. 5).

Total phenolic content

The phenolic compounds that are commonly found in plants and microalgae have been
reported to have a wide range of biological activities, including antioxidant properties.
Being among the most important antioxidants, phenolic compounds have the ability to
donate a hydrogen atom or an electron to form stable radical intermediates. Based on a
previous study, the Folin-Ciocalteu method was used to study the total phenolic content of
microalgae (Ndhlala, Moyo ¢ Staden, 2010). The total phenolic contents of ethanol extracts
of both Chlorella species under photoautotrophic and mixotrophic conditions are presented
in Fig. 6. In both species, total phenolic content was higher under the photoautotrophic
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condition than under the mixotrophic condition for both species, at 73.7 ug GAE mg~!
for C. sorokiniana and 40.8 g GAE mg~! for C. zofingiensis. When the cells were cultured
under the mixotrophic condition, the total phenolic content was reduced by up to 84.4%
in C. sorokiniana and 63% in C. zofingiensis, resulting in total phenolic contents of 11.56
g GAE mg~! and 15.10 pg GAE mg ™!, respectively. This contradicts a previous report,
which claimed that mixotrophic condition was best to produce higher phenolic contents in
Chlorella species (Shetty ¢ Sibi, 2015). Although the phenolic content was reduced under
the mixotrophic condition, the phenolic content was higher than that reported in the
literature for other microalgae (Goiris et al., 2012; Hemalatha et al., 2013; Saranya et al.,
20145 Safafar et al., 2015). For example, Saranya et al. (2014) compared the biochemical
contents of different microalgae and observed that Isochrysis spp. had the highest phenolic
content with only 4.57 mg GAE g~!. In another study, Ali et al. (2014) screened different
microalgae for their carotenoids and phenolic contents and found a high phenolic content
(39.1 mg GAE g~1) in Chlorella spp. Goiris et al. (2015) reported that though the production
of carotenoids and phenolic contents were reduced under nutrient-limited conditions, the
production of ascorbic acid and tocopherols both increased. Thus, in our case, harvesting
at the end of the stationary phase might contribute to the reduction of phenolic contents.
Moreover, Goiris et al. (2012) found that the antioxidant content of different microalgae
varied greatly between species and was dependent on extraction strategy.

Antioxidant activity
The DPPH radical scavenging activities (%) of C. sorokiniana and C. zofingiensis under
photoautotrophic and mixotrophic conditions are presented in Fig. 7. Extracts from both
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strains of microalgae cultured under photoautotrophic and mixotrophic conditions showed
the ability to scavenge DPPH to the same degree. Compared with C. sorokiniana, which
showed 11.5% and 13.7% scavenging activities under photoautotrophic and mixotrophic
conditions, respectively, C. zofingiensis showed slightly stronger scavenging activities of
13% and 14%, respectively. Generally, the percentage of scavenging activity measured in
this study was within the range obtained for different microalgae (9 to 35%), as reported
by previous studies (Hemalatha et al., 2013; Saranya et al., 2014; Safafar et al., 2015). For
example, Hemalatha et al. (2013) investigated the antioxidant properties of different
microalgae, such as Navicula clavata, Chlorella marina and Dunaliella salina, and reported
DPPH scavenging activities ranging from 9% to 24%. Meanwhile, Saranya et al. (2014) and
Safafar et al. (2015) showed that the methanolic extracts of Isochrysis galbana and Chlorella
sorokiniana had the highest DPPH scavenging activities, with each approximately 34%.

As indicated by FRAP assay, the reducing power of both Chlorella species was higher
under photoautotrophic condition than under mixotrophic condition (Fig. 8). Specifically,
under photoautotrophic condition, C. zofingiensis showed a higher reducing power activity
than C. sorokiniana with FRAP values of 9.2940.029 uM AAE mg~! and 6.1340.097 pM
AAE mg_l, respectively. On the other hand, under mixotrophic condition, both species
showed FRAP values of approximately 1 uM AAE mg™~!. FRAP detects antioxidants that
act through single electron transfer, but cannot detect compounds that act as radical
quenchers via hydrogen atom transfer (Prior, Wu ¢ Schaich, 2005) a phenomenon that
is mainly carried out by phenols with the ability to transfer single electrons. Based on
the FRAP results, the antioxidants activities tended to be proportional to the phenolic
content. Thus, the FRAP assay results represent the antioxidant activities of the phenolic
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compounds. Although the total phenolic content of C. zofingiensis was lower than that of
C. sorokiniana, the antioxidant activity detected by the FRAP assay was high. This result
might have been due to the presence of different types of antioxidant compounds that
are similar to phenols, such as flavonoids, tocopherols and vitamin C (Ndhlala, Moyo &
Staden, 2010). More interestingly, the reducing activities of these microalgal extracts were
higher compared to those reported in the literature, as most of the previously evaluated
microalgae, such as Navicula clavata, Chlorella marina, Dunaliella salina, Chaetoceros
calcitrans, Chlorella salina and Isochrysis galbana, have reducing activities below 1 mg AAE
g_1 (Uma, Sivasubramanian & Devaraj, 2011; Hemalatha et al., 2013; Saranya et al., 2014).

The results of the DPPH and FRAP assays showed that the former detected more
antioxidant activity in the mixotrophic samples than the latter. This result may have
several explanations. First, DPPH has limitations when assessing carotenoid samples, as
some carotenoids molecules have absorbance wavelengths of 517 nm that overlap with the
DPPH signal in absorbance spectra (Arnao, 2000; Pérez-Jiménez et al., 2008). Second, in
the DPPH assay, steric accessibility is the major determinant of the reaction mechanisms,
thus, small molecules such as carotenoids have higher apparent antioxidant capacities due
to their better access to the DPPH radical site (Prior, Wu ¢ Schaich, 2005). Third, some
protein and thiol antioxidants, such as glutathione, cannot be measured by the FRAP assay
(Ndhlala, Moyo ¢ Staden, 2010). This steric accessibility might also affect the antioxidant
activity detected by the FRAP assay under mixotrophic condition, in which glutathione is
produced in greater quantities (Cheng ¢» He, 2014).

Comparing the results obtained for both Chlorella species, C. zofingiensis showed
a slightly higher antioxidant activity than C. sorokiniana. Although the total phenolic
content of C. sorokiniana was higher than that of C. zofingiensis, the FRAP result for C.
zofingiensis was higher, indicating that C. zofingiensis possessed greater antioxidant activity
than C. sorokiniana. This result suggests that different species of microalgae respond to
mixotrophic condition in different ways, leading to the production of different classes
of antioxidants. In addition, different classes of antioxidants respond in different ways
under different culture conditions. For example, the antioxidant activities of carotenoids
and phenolic compounds were not the same under photoautotrophic and mixotrophic
conditions. Specifically, the antioxidant activity of phenolic compounds was high under
photoautotrophic condition, but low under mixotrophic condition, whereas the total
carotene antioxidant activity was high under both conditions.

CONCLUSIONS

This work demonstrated the different responses of Chlorella sorokiniana and Chlorella
zofingiensis to different culture conditions. The antioxidant activities measured by the
DPPH and FRAP assays represented the carotenoid and phenolic contents of the microalgae
cultured under photoautotrophic and mixotrophic conditions. Phenolic compounds were
produced at higher levels under the photoautotrophic condition, whereas carotenoids
were produced to the same degree under both photoautotrophic and mixotrophic
conditions. This indicates that different metabolites were produced under different culture
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conditions. In addition, the levels of antioxidants in both Chlorella species also differed
with regards to the phenolic and carotenoid contents. Hence, future studies profiling the
carotenoids and polyphenols using HPLC and LC-MS are of high priority, as these works
will improve the understanding of the detailed changes of these important metabolites
under the mixotrophic condition. Thus, the manipulation of the conditions used to
culture a specific microalgal species is very important for the production of the desired
metabolites. Production under photoautotrophic or mixotrophic conditions would affect
the commercial application of Chlorella sorokiniana and Chlorella zofingiensis, especially
in downstream processes, as different products require different processing methods and
system setups.
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